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Abstract. In their seminal 1991 paper “What is in a Step: On the Se-
mantics of Statecharts”, Pnueli and Shalev showed how, in the presence
of global consistency and while observing causality, the synchronous lan-
guage Statecharts can be given coinciding operational and declarative
step semantics. Over the past decade, this semantics has been supple-
mented with order-theoretic, denotational, axiomatic and game-theoretic
characterisations, thus revealing itself as a rather canonical interpreta-
tion of the synchrony hypothesis.
In this paper, we survey these characterisations and use them to em-
phasise the close but not widely known relations of Statecharts to the
synchronous language Esterel and to the field of logic programming. Ad-
ditionally, we highlight some early reminiscences on Amir Pnueli’s con-
tributions to characterise the semantics of Statecharts.

1 Introduction

One of the many contributions of Amir Pnueli to the field of Computer Science
is in the semantics of Statecharts [27, 28, 25, 51, 15]. Statecharts is a popular
language for specifying and developing reactive systems, which was invented
by Harel in the early 1980s [22]. It extends Mealy machines with concepts of
(i) hierarchy, so that a state may have sub-states; (ii) concurrency, thus allowing
states to have simultaneously active sub-states that may communicate via the
broadcasting of events; (iii) priority, such that one may express that certain
events have priority over others. The novelty at the time was that Statecharts is a
visual and executable language that it easily understood by software and systems
engineers. It is one of the earliest examples of its kind that embraces model-
driven software engineering [23]. Within a decade of its inception, already two
dozen variants of Statecharts existed [5]. Some of today’s widely used variants
are the original STATEMATE [25], Matlab/Simulink’s Stateflow [47], and the
UML state-machine dialect Rhapsody [24].

⋆ The initial ideas leading to this paper were developed by the authors during the
Dagstuhl Seminar 09481 (Synchron 2009) in November 2009.



Towards a semantics. Statecharts belongs to the family of synchronous lan-
guages which also includes, e.g., Esterel, Signal, Lustre and Argos [6]. Their
semantics is based on a cycle-based reaction whereby the events input by the
system’s environment are sampled first and potentially cause the firing of tran-
sitions that may produce new events. The generated events are output to the
environment when the reaction cycle ends. The synchrony hypothesis [7], which
is adopted by all synchronous languages, ensures that this potentially complex,
non-atomic reaction is bundled into an atomic step. The hypothesis is justified
in practice by the fact that reactions can typically be computed much quicker
than it takes for new events to arrive from the system’s environment.

Obviously, this concept of a step-based reaction still offers several choices as
to what exactly constitutes a step [31, 32, 44, 16, 17]. One important choice is
whether generated events may be sensed only in the next step, or already in the
current step and may thus trigger the firing of further transitions. The first option
was adopted by Harel et al. in the “official” but non-compositional semantics
of Statecharts as is implemented in STATEMATE [25, 26, 29]. STATEMATE
steps are typically run to completion via its so-called super-step semantics for
which Damm, Josko, Hungar and Pnueli have later proposed a compositional
variant [15] that supports modular system verification [8].

The second option was investigated by Harel, Pnueli, Schmidt and Sher-
man [28], where a step involves a causal chain of firing transitions. Here, a tran-
sition fires if the positive events in its trigger are present (i.e., if they are offered
by the system environment or have been generated by a transition that has fired
previously in the same step) and if its negative trigger events are absent (i.e.,
if they are not present). When it fires, the transition may, as part of its action,
broadcast new events which, by the principle of causality, may trigger further
transitions. Only when this chain reaction of firing transitions comes to a halt is
a step complete and becomes, according to the synchrony hypothesis, an atomic
entity. Unsurprisingly, the semantics of [28] is not compositional since bundling
transitions into an atomic step implies forgetting about the transitions’ causal
justification [32]. This shortcoming has later been remedied in a fully-abstract
fashion by Huizing, Gerth and de Roever [33]. In addition, the semantics of [28]
is not globally consistent as it permits an event to be both present and absent
within a step: an event that occurs negatively in the trigger of one firing transi-
tion may be generated by a transition that fires later within the same step.

Pnueli & Shalev’s contribution. In the words of Pnueli and Shalev, “a proven
sign of healthy and robust understanding of the meaning of a programming or
a specification language is the possession of both an operational and declarative
semantics, which are consistent with one another” [51]. They showed in their
seminal paper (cf. Sec. 2) that adding global consistency is the key to achieving
this ambitious goal for Statecharts, and this meant to move away from the se-
mantics of [28]. Their operational semantics for Statecharts relies on an iterative
fixed point construction over a non-monotonic enabledness function for transi-
tions. This construction ensures causality but involves backtracking as soon as
a global inconsistency is encountered; in the extreme, this may imply that a
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Statechart does not possess any step under the considered input by the environ-
ment. Pnueli and Shalev’s declarative semantics for Statecharts then identifies
the desired fixed points of the enabledness function via a notion of separability.

Levi later developed a compositional proof system for the Pnueli-Shalev step
semantics in terms of the modal µ-calculus [36] which facilitates the modular
verification of Statecharts. A variant of Pnueli-Shalev semantics which disables
transitions that may introduce global inconsistency was presented by Maggiolo-
Schettini, Peron and Tini in [43]. This semantics was also used in an early ax-
iomatisation of Statecharts by Hooman, Ramesh and de Roever [30].

This paper. Whereas, to the best of our knowledge, the Pnueli-Shalev step se-
mantics has never been implemented in a Statecharts tool, its mathematical
elegance has attracted attention by the concurrency theory community. Over
the past decade, the semantics has been supplemented with order-theoretic, de-
notational, algebraic and game-theoretic perspectives, thus further testifying to
its robustness (cf. Sec. 3). The order-theoretic semantics of Levi [36] fixes the
lacking compositionality of the Pnueli-Shalev step semantics by encoding the
causality relation between a step’s firing transitions via an irreflexive ordering
relation. The denotational semantics [41] also addresses the compositionality
problem and does so in a fully-abstract way. It is based on an intuitionistic
logic interpretation of steps, which appreciates the possibility that an event may
neither be present nor absent in a step, but that it may be introduced by the
system’s environment in the middle of a step. The algebraic semantics [40] char-
acterises this fully-abstract denotational semantics in terms of equations, thus
leading to a step algebra. Finally, the game-theoretic semantics [1] interprets
Pnueli-Shalev steps via winning strategies in a 2-player maze game.

Other than revealing the Pnueli-Shalev semantics as a rather canonical in-
terpretation of Statecharts steps, the characterisations mentioned above have
opened the door for a mathematically exact comparison of Statecharts steps to
Esterel reactions and for relating Statecharts to logic programming (cf. Sec. 4).
Esterel is another popular synchronous language that was devised by Berry in-
dependently of, but at the same time as, Statecharts [52]. Its semantics differs
from the one proposed by Pnueli and Shalev only by the interpretation of neg-
ative events. While one may speculate in Statecharts for an event to be absent,
the absence of events in Esterel must be proved constructively, which is key to
the language’s determinism [42]. Negation is also widely studied in the field of
logic programming where stable negation [49] corresponds to Pnueli and Shalev’s
reading of negative events in the presence of global consistency.

The aims of this paper are to (i) survey these additional perspectives on the
Pnueli-Shalev semantics; (ii) highlight the semantic relationship between State-
charts and Esterel, and between Statecharts and logic programming; (iii) discuss
Pnueli and Shalev’s results in the light of related work. This offers new insights
into the classical question in the Statecharts literature: “What is in a step?”
Last, but not least, the first author recalls some reminiscences on Amir Pnueli’s
contributions to characterise the semantics of Statecharts (cf. Sec. 5).
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2 Pnueli and Shalev’s Interpretation of Statecharts

This section provides a brief introduction to Statecharts, and recalls the step
semantics presented by Pnueli and Shalev in [51].

2.1 Introduction to Statecharts

A Statechart may best be understood as a hierarchical, concurrent Mealy ma-
chine, where basic states may be hierarchically refined by injecting other State-
charts. This creates composite states of two possible sorts, which are called and -
states and or -states, respectively. Whereas and-states permit parallel decompo-
sitions of states, or-states allow for sequential decompositions. Consequently, an
and-state is active if all its sub-states are active, and an or-state is active if
exactly one of its sub-states is. At any given point during execution, the set of
active states is referred to as a configuration.

A Statecharts step is defined relative to a configuration C and a set E of
events that are given to the system by its environment. Key to a step are tran-
sitions t, each of which is labelled by two sets of events: a trigger, trg(t), and an
action, act(t). The trigger trg(t) = P, N splits into a set of positive events P ⊆ Π
and negative events N ⊆ Π , taken from a universe Π of events and their nega-
tive counterparts in Π =df {e : e ∈ Π}, respectively. For convenience, we define
e =df e. Intuitively, t is enabled and thus fires if the set E ⊆ Π is such that all
events of P but none of N are in E, i.e., if P ⊆ E and N ∩ E = ∅. The effect
of firing t is the generation of all events in the action of t, where a transition’s
action act(t) ⊆ Π consists of positive events only.
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Fig. 1. Example Statechart.

We illustrate the Statecharts language by means of a small example. Consider
the Statechart depicted in Fig. 1 with and-state s, or-states s1, s2 and s21, and
basic-states s11, s12, s211, s212, s213 and s22. Further assume that all components
are in their initial states marked by the small unlabelled arrows, so that the
initial configuration C1 is {s, s1, s11, s2, s21, s211}. If, in this configuration, the
environment offers event c, then transitions t3 and t4 are enabled. Since they
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are both placed within the same or-state s2, only one of them may fire. In
a Statecharts dialect that does not give transitions an implicit priority along
the state hierarchy, the choice between t3 and t4 is nondeterministic. Thus, t3
may fire, generate event a, and change state to s213. Again depending on the
Statecharts dialect, this generated event may or may not trigger transition t1 in
the parallel, or orthogonal, state s1 within the same reaction cycle, i.e., within
the same step. Hence, the question arises which transitions leaving states in C1,
which we denote by trans(C1), may fire together to form a step.

2.2 The Pnueli-Shalev Step Semantics

As stated in the introduction, Pnueli and Shalev defined coinciding operational
and declarative semantics of Statecharts configurations in their paper [51]. Given
a configuration C, a step in the sense of Pnueli and Shalev comprises a maximal,
globally consistent and causal, set of transitions in trans(C), which are mutually
orthogonal, i.e., “consistent” in Statecharts terminology, and triggered by the
events offered by the environment or produced by the firing of other transitions
in the step.

Transition t is consistent with set T of transitions, in signs t∈consistent(C, T ),
if t is not in the same “parallel component” as any t′ ∈ T \ {t}. Formally,

consistent(C, T ) =df {t ∈ trans(C) | ∀t′ ∈ T. t△Ct′} ,

where t△Ct′ if (i) t = t′ or (ii) t and t′ are in different substates of an enclosing
and-state. Further, transition t is triggered by a set E of events, in signs t ∈
triggered(C, E), if the positive but not the negative trigger events of t are in E:

triggered(C, E) =df {t ∈ trans(C) | trg(t) ∩ Π ⊆ E, (trg(t) ∩ Π) ∩ E = ∅} .

Finally, transition t is enabled in C with respect to set E of events and set T of
transitions, if t ∈ enabled(C, E, T ) where

enabled(C, E, T ) =df consistent(C, T ) ∩ triggered(C, E ∪
⋃

t∈T

act(t)) .

Assuming the transitions in T are known to fire, enabled(C, E, T ) determines the
set of all transitions of C that are enabled by the environment events in E and,
since generated events are sensed within the same step, the actions of T . In the
following, we write act(T ) for the actions

⋃
t∈T act(t).

Operational semantics. Using this enabledness function enabled, we may now
present the step-construction procedure of [51] which operationally determines
Statecharts steps relative to a configuration C and a set E of environment events:
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procedure step–construction(C, E);
var T := ∅;
while T ⊂ enabled(C, E, T ) do

choose t ∈ enabled(C, E, T ) \ T ;
T := T ∪ {t}

od;
if T = enabled(C, E, T ) then return T
else report failure

end step–construction.

This step-construction procedure computes sets T of transitions that can fire to-
gether in a step. Returning to our example, i.e., the Statechart depicted in Fig. 1,
we have enabled(C, {c}, ∅) = {t3, t4}. Therefore, step–construction(C1, {c}) may
choose transition t3 in its first iteration and, since enabled(C, {c}, {t3}) = {t1, t3},
transition t1 in its second iteration, before reaching a fixed point and return-
ing {t1, t3}. Due to the presence of statement choose, the procedure may intro-
duce nondeterminism. Indeed, step–construction(C1, {c}) may also return {t4}
when choosing t4 instead of t3 in the first iteration.
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Fig. 2. Further example Statecharts.

When the procedure reports a failure as the result of detecting an inconsis-
tency, i.e., there exists a t ∈ T such that t /∈ enabled(C, E, T ), it may backtrack
and possibly make a different choice at statement choose. In particular, the pro-
cedure may only report failures and not produce any step. To see this, consider
the Statechart shown on the left in Fig. 2 in its initial configuration C2, and
assume the empty environment. In its first iteration, step–construction(C2, ∅)
picks the only enabled transition t1, and then the other transition t2 in the sec-
ond iteration. At this point T = {t1, t2} but enabled(C2, ∅, T ) = {t2}, and a
failure is reported. No backtracking is possible since there have not been any
nontrivial choice points along the computation. Hence, the step-construction
procedure does not produce any step. This situation is to be distinguished from
an empty response T = ∅, which is exhibited by the Statechart depicted on the
right in Fig. 2 in its initial configuration C3 and for the empty environment,
since enabled(C3, ∅, ∅) = ∅.
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Following Pnueli and Shalev’s terminology, a set T of transitions is called
constructible for a given configuration C and a set E of environment events, if it
can be obtained as a result of successfully executing procedure step-construction.
For each constructible set T , set A =df E ∪ act(T ) ⊆ Π is called the (step)
response of C for E.

Declarative semantics. Pnueli and Shalev also provided an equivalent declara-
tive definition of their operational step semantics. Given a configuration C and a
set E of environment events, a set T of transitions is called separable for C and E
if there exists a proper subset T ′ ( T such that enabled(C, E, T ′)∩ (T \T ′) = ∅.
Further, T is admissible for C and E if T is inseparable for C and E and
T = enabled(C, E, T ). This declarative semantics is thus a fixed-point seman-
tics. Observe that, in the absence of negative events, function enabled(C, E, ·) is
monotonic, and then the uniquely defined inseparable fixed point coincides with
the least fixed point. However, since function enabled(C, E, ·) is in general non-
monotonic when transitions with negative trigger events are involved, a unique
least fixed point may not exist. In this case, the notion of inseparability chooses
distinguished fixed points that reflect causality. Indeed, a separable set of tran-
sitions points to a break in the causality chain when firing these transitions.

We illustrate the notion of inseparability by returning to the above examples.
For the Statechart depicted in Fig. 1, {a, b, c} is a step response of initial config-
uration C1 for environment E =df {c}. Firstly, as seen above, T =df {t1, t3} is a
fixed point of enabled(C1, E, T ). Secondly, it is inseparable for C1 and E since,
for T ′ = ∅, we have enabled(C1, E, T ′) ∩ (T \ T ′) = {t3, t4} ∩ T = {t3} 6= ∅, and
similarly for the other proper subsets T ′ ( T . For the initial configurations C2

and C3 of the two Statecharts of Fig. 2, {a, b} is not a step response for the
empty environment. For the Statechart on the left in the figure, T =df {t1, t2}
is not a fixed point of function enabled since enabled(C2, ∅, T ) = {t2} 6= T . For
the Statechart on the right, T is separable; consider T ′ = ∅ ( T , for which
enabled(C3, ∅, T ′) ∩ (T \ T ′) = ∅ ∩ T = ∅.

Main result. We can now state the main result of Pnueli and Shalev’s paper [51]:

Theorem 1 (Pnueli & Shalev). For all configurations C and event sets E ⊆
Π, a set T of transitions is admissible for C and E if and only if T is con-
structible for C and E.

Such a theorem can also be proved for the step semantics of Maggiolo-Schettini,
Peron and Tini [43]. Their semantics uses a modified function enabled(C, E, T )
in which a transition t is not enabled if its firing would generate an event whose
absence is assumed in T , i.e., if act(t) ∩

⋃
t′∈T trg(t′) 6= ∅. For example, the

Statechart in Fig. 2 on the left, which did not have any response for E = ∅, now
has response {b}. This response is obtained by t1 firing on the basis of a being
absent which then immediately disables t2. One shows that {t1} is an inseparable
with enabled(C2, ∅, {t1}) = {t1}.

7



3 Developments & New Perspectives

This section surveys four characterisations of the Pnueli-Shalev step semantics
which have been developed within the past decade: an order-theoretic semantics
that encodes causality via an irreflexive ordering relation [36]; a denotational
semantics that is based on intuitionistic logic [41]; an algebraic semantics that
specialises axioms of this logic to Statecharts steps [40]; and a game-theoretic
semantics [1]. In contrast to Pnueli and Shalev’s operational and declarative
semantics, all four semantics presented here are compositional, and the denota-
tional and algebraic semantics are fully-abstract.

3.1 Configuration Syntax

This paper focuses on the semantics of single Statecharts steps, since the seman-
tics across steps is clear and well understood. It will therefore be convenient to
reduce the Statecharts notation to the bare essentials and identify a Statecharts
configuration with its set of leaving transitions, to which we — by abuse of ter-
minology — also refer as configuration. We formalise configurations using the
following, simple syntax, where I ⊆ Π ∪ Π and A ⊆ Π :

C ::= 0 | I/A | C‖C .

Intuitively, 0 stands for the configuration with the empty behaviour. Configura-
tion I/A encodes a transition t with trg(t) = I and act(t) = A. When triggered,
transition t fires and generates the events in A. Transitions I/A with empty
trigger, i.e., I = ∅, are simply written as A below. If we wish to emphasise that
trigger I consists of the positive events P ⊆ Π and the negative events N ⊆ Π ,
i.e., I = P ∪ N , then we denote transition I/A by P, N/A. Finally, configu-
ration C1‖C2 describes the parallel composition of configurations C1 and C2.
Observe that 0 coincides semantically with a transition with empty action; nev-
ertheless, it seems natural to include 0. Using this syntax, we may encode the
initial configuration C1 of our example Statechart of Fig. 1 as

a/b ‖ b, c, e3, e4/a, e2 ‖ c, e2, e4/a, e3 ‖ b, e2, e3/c, e4 .

Here, the ei are distinguished events not occurring in the triggers or actions of
the Statechart’s transitions. These events allow us to encode nondeterministic
choice, including state hierarchy, via parallel composition and event negation,
although one can do without them as is shown in [41]. Assuming the environ-
ment injects event c, Pnueli and Shalev’s step-construction procedure may first
fire transition t3 and then t1 within a single step from configuration C1, thereby
reaching configuration {s, s1, s12, s2, s21, s213}. This latter configuration is rep-
resented by 0 ‖ b/c in our syntax.

For simplicity, the following exposition focuses on Statecharts configurations
with respect to the empty environment only. This is not a restriction, however,
since considering the steps of a configuration C relative to a set E ⊆ Π of envi-
ronment events is equivalent to considering the steps of the configuration C‖E
relative to the empty set of environment events.
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3.2 Order-Theoretic Perspective

The first results for turning Pnueli and Shalev’s step construction into a com-
positional semantics for Statecharts were obtained by Uselton and Smolka [56],
Levi [36], and Maggiolo-Schettini, Peron and Tini [43, 44]. They observed that
Statecharts may be viewed as process terms in the style of process algebra,
whose semantics is given by a compositional translation into labelled transition
systems. Each transition represents a step of a configuration decorated with
an action label specifying the synchronous interaction with the environment. It
turned out that for this structured operational semantics to work, labels must
be order-relational structures as opposed to simple first-order events, in order
to encode sufficient causal information. In this section we recall the basic el-
ements of this order-theoretic approach, following essentially the exposition of
Levi in [36], albeit in a simplified form.

The set of (causality) labels Σ(Π), or basic actions in the terminology of
Levi, is the set of pairs (ℓ,≺). Here, ℓ ⊆ Π ∪Π is a consistent subset of positive
or negative events, i.e., ℓ ∩ ℓ = ∅, and A ≺ B is an irreflexive and transitive
causality ordering on subsets A, B ⊆ ℓ, where B = ∅ or B = {b} for b ∈ Π .
Irreflexivity means that A ≺ {b} implies b 6∈ A, and transitivity requires that, if
A ≺ {b} and b ∈ B ≺ C, then (B \ {b}) ∪ A ≺ C.

Causality labels represent globally consistent and causally closed interactions
that are composed from Statecharts transitions. Specifically, every transition t ∈
trans(C) leaving a configuration C induces a causality label lab(t) =df (ℓt,≺t),
where ℓt =df trg(t)∪act(t) and ≺t =df {trg(t) ≺t {e′} : e′ ∈ act(t)}. It is assumed
without loss of generality that transitions are nontrivial in the sense that trg(t)∩
act(t) = ∅ and, for no e ∈ Π , both e, e ∈ trg(t) ∪ act(t). Then, ℓt is consistent,
≺t is irreflexive and, trivially, transitive. For instance, the transitions t1 =df a/b
and t2 =df b, c/d correspond to the labels σi =df lab(ti) = (ℓi,≺i) with ℓ1 =
{a, b}, {a} ≺1 {b}, and ℓ2 = {b, c, d} with {b, c} ≺2 {d}. The joint execution
of t1 and t2 would be the label σ3 =df (ℓ3,≺3) such that ℓ3 = {a, b, c, d} with
causalities {a} ≺3 {b}, {b, c} ≺3 {d} and {a, c} ≺3 {d}. Here, the last pair
arises from the combined reaction of t1 triggering t2; its presence is enforced by
transitivity of ≺3.

As causality labels are compositional generalisations of transitions, each σ =
(ℓ,≺) ∈ Σ(Π) has an associated set of trigger and action events, viz., trg(σ) =df

{e ∈ ℓ | ¬∃C ⊆ ℓ. C ≺ {e}} and act(σ) =df ℓ \ trg(σ). Thus, a transition t = I/A
has trg(lab(t)) = I and act(lab(t)) = A as expected. For the label σ3 from above,
we get trg(σ3) = {a, c} and act(σ3) = {b, d}, which are the same trigger and
action as in lab(t4), for t4 =df a, c/b, d. However, the latter does not express the
causality contained in σ3, viz., that event b is a consequence of a alone, while d
depends on both a and c. It is this extra causality information which makes
labels compositional: σ3 is the combined execution of t1 and t2 as opposed to t4
which is a single atomic transiton.

Labels, like transition sets, can be enabled or disabled by the environment.
A consistent ℓ ⊆ Π ∪Π enables an action σ if trg(σ)∩Π ⊆ ℓ and trg(σ)∩ ℓ = ∅.
It disables σ if trg(σ) ∩ ℓ 6= ∅. For consistent and complete (or binary) ℓ, i.e.,
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Π ⊆ ℓ ∪ ℓ, both notions are complementary. Note that if ∅ enables σ then no
trigger is needed to execute σ.

Next we define the operation of parallel composition between causality labels
σ1 = (ℓ1,≺1) and σ2 = (ℓ2,≺2) to form the full causal and concurrent closure
of all interactions coded in two orderings. Due to nondeterminism, the compo-
sition σ1 × σ2 does not yield a single causality label but rather a set of them.
They are obtained as the maximal irreflexive and transitive sub-orderings of the
transitive closure (≺1 ∪ ≺2)

+. Here, the transitive closure of ≺1 ∪ ≺2 is the
smallest relation ≺ with ≺1 ∪ ≺2 ⊆ ≺ such that, if A ≺ {b} and b ∈ B ≺ C,
then (B \ {b}) ∪ A ≺ C. Now, (ℓ,≺) ∈ σ1 × σ2 if (i) ℓ = ℓ1 ∪ ℓ2, (ii) (ℓ,≺) is a
causality label, and (iii) ≺ is maximal in (≺1 ∪ ≺2)

+.
For example, we have lab(t1) × lab(t2) = {σ3}, where t1, t2 and σ3 are as

before, which confirms formally that σ3 is the composition of t1 and t2. Note that
Cond. (ii) implies that ℓ1 ∪ ℓ2 must be consistent. Hence, lab(a/b) × lab(b/a) =
∅ which reflects the fact that both transitions can never be part of the same
step due to global consistency. Cond. (iii) resolves cyclic dependencies: Consider
actions lab(a/b) = ({a, b},≺1), lab(b/c) = ({b, c},≺2) and lab(c/a) = ({c, a},≺3

), which are consistent but their combined transitive closure (≺1 ∪ ≺2 ∪ ≺3)
+

has reflexive cycles {e} ≺ {e}, for e ∈ {a, b, c}. The maximal irreflexive and
transitive sub-orderings are given by σ4 =df (ℓ, {a} ≺ {b} ≺ {c}, {a} ≺ {c}),
σ5 =df (ℓ, {b} ≺ {c} ≺ {a}, {b} ≺ {a}), σ6 =df (ℓ, {c} ≺ {b} ≺ {a}, {c} ≺ {a}),
where ℓ = {a, b, c}. Then, lab(a/b) × lab(b/c) × lab(c/a) = {σ4, σ5, σ6} which
describes the three ways in which transitions a/b, b/c and c/a can partake in the
same step. They show that the environment needs to provide at least one of the
triggers trg(σ4) = {a}, trg(σ5) = {b} or trg(σ6) = {c} to generate the combined
action act(σ4) = {b, c}, act(σ5) = {c, a} or act(σ6) = {a, b}, respectively.

We can now define the initial causality labels of a configuration C presented
as a one-step reaction relation C 7→ σ, for σ ∈ Σ(Π), by induction on C:

– 0 7→ (ℓ, ∅) for all binary ℓ ⊆ Π ∪ Π;
– t 7→ lab(t), and t 7→ (ℓ, ∅) for all binary ℓ ⊆ Π ∪ Π which disable lab(t).
– C1 7→ σ1 and C2 7→ σ2 implies C1 ‖ C2 7→ σ for all σ ∈ σ1 × σ2.

Observe that transitions not only generate active steps t 7→ lab(t) but also
passive, or idle, steps t 7→ (ℓ, ∅) with trg(lab(t))∩ℓ 6= ∅ in which they are disabled.
This resolves conflicting choices and introduces internal nondeterminism. For
example, although lab(a/b) × lab(b/a) = ∅, there are active and passive steps
a/b 7→ lab(a/b) and b/a 7→ ({a, b}, ∅), respectively, which combine lab(a/b) ×
({a, b}, ∅) = {lab(a/b)}. Symmetrically, there is a passive step a/b 7→ ({a, b}, ∅)
and active step b/a 7→ lab(b/a) giving ({a, b}, ∅) × lab(b/a) = {lab(b/a)}.

The following theorem is a key result of Levi [36]:

Theorem 2 (Correctness & Completeness). If C is a configuration and
A ⊆ Π, then A is a Pnueli-Shalev step response of C if and only if there exists
a causality label σ with C 7→ σ such that ∅ enables σ and A = act(σ).

Levi defines the labelled transition system across all steps Ci
σ:κ
7→ Ci+1 of

a Statechart, compositionally in the full syntax including choice and hierarchy.
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The additional flag κ ∈ {ε, ε} in Levi’s label indicates if the step is idle or non-
idle. These flags are needed for compositionality with respect to choice, which
is not part of the syntax considered here. Without the flag both 0 and a/∅,
say, would have the same initial labels, viz. ({a}, ∅) and ({a}, ∅), and thus be
semantically indistinguishable. However, they induce different behaviour in the
context (· + ∅/b) ‖ ∅/a: The configuration (0 + ∅/b) ‖ ∅/a must always produce
events {a, b}, whereas in (a/∅ + ∅/b) ‖ ∅/a the transition ∅/b can be preempted
by a/∅ making a step on its own triggered by the parallel transition ∅/a in
the context. Hence, (a/∅ + ∅/b) ‖ ∅/a not only has the response {a, b} but also
{a}. Levi’s flags avoid the confusion between 0 and a/∅ since the initial step
0 7→ ({a}, ∅) : ε of the former is idle while the intial step a/∅ 7→ ({a}, ∅) : ε of
the latter is non-idle.

Further, Levi presents a compositional µ-calculus verification system for these
labelled transition systems [36]. However, no congruence and full-abstraction
results are proven. In the work of Maggiolo-Schettini, Peron, Tini [43, 44], a
similar order-theoretic refinement for Pnueli-Shalev semantics, as well as for the
modified semantics mentioned in Sec. 2.2, is developed, together with congruence
results for several behavioural preorders. It has been shown by Lüttgen, von der
Beeck and Cleaveland [38] that the two levels of the order-theoretic semantics,
i.e., configurations and causality labels Σ(Π), can also be flattened into a single
labelled transition system with first-order labels in which special clock transitions
mark the beginning and end of a step.

3.3 Denotational Perspective

While Pnueli and Shalev’s declarative step semantics corresponds to their oper-
ational step semantics, it is not denotational because it lacks compositionality
as an interaction with the environment is only allowed at the beginning of a step
but not during a step. The denotational perspective presented in this section
does away with this shortcoming.

Interaction steps. The idea is to read a configuration C of a Statechart as a spec-
ification of a set of interaction steps between the Statechart and all its possible
environments. This set is nonempty since one may always construct an environ-
ment that disables those transitions in C that would cause a global inconsistency
and, thus, failure in the sense of Pnueli and Shalev. Formally, an interaction step
is a monotonic sequence M = (M0, M1, . . . , Mn) of reactions Mi ⊆ Π , where
Mi−1 ( Mi for all i. Each reaction contains events representing both environ-
mental input and the Statechart’s response. Intuitively, by the requirement for
monotonicity, such a sequence extends the communication potential between the
Statechart and its environment, until this potential is exhausted.

An interaction step is best understood as a separation of a Pnueli-Shalev
step response Mn. Each Mi extends Mi−1 by new environmental stimuli plus the
Statechart’s response to these. Here, responses are computed according to Pnueli
and Shalev, except that events not contained in Mn are assumed to be absent
in Mi. In this way, global consistency is interpreted as a logical specification
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of the full interaction step M and not only relative to a single reaction Mi.
In other words, each interaction step separates a Pnueli-Shalev step response
into causally closed sets of events. Each passage from Mi−1 to Mi represents
a non-causal “step” triggered by the environment. This creates a separation
between Mi−1 and Mi in the spirit of Pnueli and Shalev: as all events generated
by the transitions enabled under Mi−1 are contained in Mi−1, their intersection
with Mi \ Mi−1 is empty.

Interpreting configurations, logically. Transitions P, N/A of the considered con-
figuration C are interpreted on interaction steps M = (M0, M1, . . . , Mn) as
follows. For each Mi, either (1) all events in A are also in Mi, or (2a) one or
more events in A are not in Mi and P 6⊆ Mi, or (2b) one or more events in A
are not in Mi, and some event e ∈ N is in Mj for some i ≤ j ≤ n. Intuitively,
case (1) corresponds to the situation in which the transition is enabled and thus
fires, or where the environment ensures that all events of the transition’s ac-
tion are provided. Cases (2a) and (2b) correspond to the situation where the
transition is not enabled since not all positive trigger events are present (2a),
or not all negative trigger events are absent because they are provided later in
the sequence (2b). Case (2b) ensures that, as desired above, global consistency
is enforced over the whole interaction step M .

Remarkably, this interpretation corresponds exactly to the one of intuition-
istic logic [14] when reading negative events e as ¬e, and transition slashes “/”
as logical implication. The composition of events in triggers or actions, as well
as parallel composition ”‖” on configurations, may simply be understood as con-
junction, and our interaction steps M are nothing but linear Kripke structures.
This correspondence with propositional intuitionistic logic over linear Kripke
structures leads us to a general semantic relation |=, namely the logical satis-
faction relation. Formally, an interaction step M = (M0, M1, . . . , Mn) satisfies
configuration C, in signs M |= C, if M, i |= C for all 0 ≤ i ≤ n, where

M, i |= 0 always

M, i |= I/A if (I ∩ Π ⊆ Mi and (I ∩ Π) ∩ Mn = ∅) implies A ⊆ Mi

M, i |= C1‖C2 if M, i |= C1 and M, i |= C2 .

If M |= C we also say that M is an (interaction) model of C. The above defini-
tion is a shaved version of the standard semantics of propositional intuitionistic
logic [14]. Configuration 0 is identified with true and, if I = ∅ for a transi-
tion I/A, the semantics of I/A reduces to A ⊆ Mi. Now we have M |= C if and
only if C is valid in the linear Kripke structure M . Note that for interaction steps
of length one, the notions of interaction model and classical model coincide, and
we simply write M1 for (M1).

Response models. The step responses of a configuration C in the sense of Pnueli
and Shalev are now exactly those interaction models M of C of length one, called
response models, that are not suffixes of interaction models N=(N0, . . . , Nm, M)
of C with m ≥ 0. If such a singleton interaction model was suffix of a longer
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interaction model, then — according to the argumentation above — the reaction
would be separable and hence not causal. Thus, we have the following theorem
which is proved in [41]:

Theorem 3 (Correctness & Completeness). If C is a configuration and M
⊆ Π, then M is a Pnueli-Shalev step response of C if and only if M is a response
model of C.

We illustrate our notion of response model by means of a few examples:

– Firstly, consider the configuration a/b which exhibits the Pnueli-Shalev step
response {b} for the empty environment. Indeed, {b} is a response model, i.e.,
a model and not a suffix of a longer interaction model. The only possibility
would be the interaction step (∅, {b}), but this is not an interaction model
since (∅, {b}), 0 6|= a/b: by definition, we have to consider ∅ ⊆ ∅ and {a} ∩
{b} = ∅ implies {b} ⊆ ∅, and this implication is false because b /∈ ∅.

– Secondly, configuration C2 =df a/b ‖ b/a has no response model. Although
{a, b} is a classical model of C2, it may be left-extended to the interaction
model (∅, {a, b}). Note in particular that (∅, {a, b}), 0 |= a/b : by definition,
we have to consider ∅ ⊆ ∅ and {a} ∩ {a, b} = ∅ implies {b} ⊆ ∅, and this
implication trivially holds. In other words, event a is absent at position 0 of
the interaction step (∅, {a, b}) since it is added later in the step, namely at
position 1, and thus is not absent.

– Thirdly, consider configuration C3 =df a/b ‖ b/a with its Pnueli-Shalev step
response ∅. It is easy to see that ∅ is trivially a response model. In contrast,
the set {a, b} — while being a classical model of C3 — is not a response
model since the suffix extension (∅, {a, b}) is an interaction model of C3.

– Fourthly, configuration a/b ‖ b/a offers two response models, namely {a}
and {b}, which are exactly the configuration’s Pnueli-Shalev step responses.
As in the example regarding configuration C2 above, neither response model
can be left-extended to an interaction model of length greater than one.

Full abstraction. The interaction models of a configuration C encode all possible
interactions of C with all its environments and nothing more. Firstly, any dif-
ferences between the interaction models of C are differences in the interactions
of C with its environments and thus can be observed. Secondly, any observable
difference in the interaction of C with its environments should imply a difference
in the interaction models, and this holds by the very construction of interaction
models. Therefore, the above interaction step semantics provides the desired
compositional and fully abstract semantics for Pnueli-Shalev steps:

Theorem 4 (Compositionality & Full Abstraction). Let C1, C2 be con-
figurations. Then, C1 and C2 have the same interaction models if and only if,
for all configurations C3, the parallel configurations C1‖C3 and C2‖C3 have the
same Pnueli-Shalev step responses.

The proof of this theorem can be found in [41], where interaction steps are called
sequence structures and where interaction models are referred to as sequence
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models. Most notably, the proof shows that it is sufficient to consider interaction
models of lengths 1 and 2 only. This leads to a strategy for implementation, e.g.,
via encoding such interaction models using binary decision diagrams [13]. Finally,
it should be remarked that the denotational approach has been generalised from
single-step configurations to a full Statecharts language in [39].

3.4 Algebraic Perspective

We now turn to characterising the Pnueli-Shalev step semantics, or more pre-
cisely the largest congruence contained in equality on step responses, in terms of
axioms. These are derived from general axioms of propositional intuitionistic for-
mulas over linear Kripke models. Thus, the algebraic characterisation presented
here is closely related to the above denotational characterisation.

Table 1. Axiom system for the Pnueli-Shalev step semantics

(A1) C1 ‖C2 = C2 ‖C1

(A2) (C1 ‖C2) ‖C3 = C1 ‖ (C2 ‖C3)
(A3) C ‖C = C
(A4) C ‖ 0 = C
(B1) P, I/P = 0
(B2) I/A‖ I/B = I/(A ∪ B)
(B3) I/A = I/A ‖ I, J/A
(B4) I/A ‖A, J/B = I/A ‖A, J/B ‖ I, J/B

(B5) P, N/A = 0 if P ∩ N 6= ∅
(C1) P, N/A = P, N/A, B if N ∩ A 6= ∅
(C2) P, N/A = P, e,N/A ‖P, N, e/A if N ∩ A 6= ∅
(C3) I,N/B ‖P, N/A = {I, N, e/B : e ∈ P} ‖P, N/A, if N ∩ A 6= ∅ and P 6= ∅

Our axioms system is displayed in Table 1, where A, B, N, P ⊆ Π , I, J ⊆
Π ∪ Π and e ∈ Π , and where C, C1, C2, C3 are configurations. Axioms (A1)–
(A4) are fairly natural, and we thus concentrate on explaining the remaining,
more interesting axioms. Axiom (B1) describes that, if the firing of a transition
merely reproduces in its action some of the events required by its trigger, then
we might just as well not fire the transition at all. As a special case, I/∅ = 0.
Axiom (B2) encodes that two transitions with the same trigger will always fire
together and produce the events in both of their actions. Axiom (B3) states
that, by adding in parallel to a transition I/A a transition I, J/A with the same
action A but additional trigger events J , the behaviour remains unchanged.
Logically speaking, “guarding” via a trigger is a weakening operation.

Axiom (B4) is a version of the cut rule known from logic and reflects the
chain-reaction character of firing transitions. The left-hand side I/A ‖A, J/B
represents a situation in which there is a transition A, J/B that is waiting,
among other preconditions J , for the events in A that will be produced when
transition I/A fires. Hence, it is safe to add transition I, J/B to the right-hand
side. Axiom (B5) deals with inconsistencies in triggers. If an action A is guarded
by a trigger P, N in which some event is required to be both present and absent,
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i.e., P ∩ N 6= ∅, then this transition will never become enabled and is thus
equivalent to 0.

The remaining Axioms (C1)–(C3) are concerned with conflicts between the
trigger and action of a transition. They axiomatise the effect of transitions that
produce a failure under certain trigger conditions. More precisely, these axioms
involve a transition P, N/A with N ∩ A 6= ∅, whose firing leads to a global
inconsistency. Such a transition rejects the completion of all steps in which its
trigger P, N is true. Thus, since P, N/A can never fire in a consistent way, the
step construction cannot terminate in a situation in which trigger P, N holds
true. In other words, whenever all events in P have become present, the step
construction must continue until at least one event in N is present in order to
inactivate the transition. If this does not happen, the step construction fails.
Axioms (C1)–(C3) formalise three different consequences of this.

Axiom (C1) reflects the fact that, since P, N/A can never contribute to a
completed step if N ∩A 6= ∅, we may add arbitrary other events B to its action,
without changing its behaviour. Logically, this axiom corresponds to the laws
e ∧ ¬e ≡ false and false ⊃ B ≡ true, for any B. Axiom (C2) offers a second way
of reading the inconsistency between triggers and actions. Since at completion
time any event e is either present or absent, the same rejection that P, N/A
produces can be achieved by P, N, e/A ‖P, N, e/A. This is because if e is present
at completion time, then P, N, e/A raises the failure; if e is absent, then P, N, e/A
does the job. This is essentially the law ¬e∧¬¬e ≡ false in logic. It is important
to observe that the side condition N ∩ A 6= ∅ is necessary: For example, ∅/A
is different from e/A ‖ e/A because in a parallel context A/e the latter fails (no
step) while the former has the response A ∪ {e}.

Finally, consider Axiom (C3). Instead of saying that P, N/A generates a
failure if all events in P are present and all events in N are absent, we might
say that, if all events in N are absent, then at least one of the events in P must
be absent, provided the step under consideration is to be completed without
failure. But then any parallel component of the form I, N/B can be replaced
by the parallel composition ‖{I, N, e/B : e ∈ P}. The reason is that, if I, N/B
fires at all in the presence of transition P, N/A, then at least one of the weaker
transitions I, N, e/C will be able to fire at some point, depending on which of
the events in P 6= ∅ it is that will be absent to avoid failure. Again there is
a logic equivalent for this, namely the law ¬(p1 ∧ p2) ≡ ¬p1 ∨ ¬p2 that holds
for linear Kripke structures. Last, but not least, it is important to note that
configuration P, N/A, for N ∩ A 6= ∅, is not the same as configuration 0, since
the former inevitably produces a failure if its trigger is true, while 0 does not
respond at all.

Theorem 5 (Correctness & Completeness). C1 = C2 can be derived from
the axioms of Table 1 via standard equational reasoning if and only if, for all
interaction steps M , M |= C1 iff M |= C2.

A proof of this theorem be found in [40]. In that paper, a more general syntax for
configurations has been employed in which transition actions may be arbitrary
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configurations. Last, but not least, it should be remarked that Axioms (B3) and
(C1)–(C3) are unsound for Maggiolo-Schettini, Peron and Tini’s variant of the
Pnueli-Shalev step semantics [43].

3.5 Game-Theoretic Perspective

During the 1990s, a promising alternative to the traditional operational and de-
notational semantics of programming languages emerged. Game-theoretic mod-
els, which had long been used in descriptive set theory, economics and engineering
control theory, were identified as a surprisingly powerful setting for dealing with
system-environment interactions in a compositional fashion. For example, in the
semantics of discrete reactive systems, games were applied to capture notions of
refinement sensitive to input/output causality [3]. More specifically on the topic
of this paper, it has been demonstrated that 2-player positional games provide a
natural way of characterising different step semantics in synchronous program-
ming. Game theory handles cyclic causal dependencies of non-monotonic be-
haviours by accounting for the system and environment dichotomy through the
binary polarity of player and opponent. The swapping of roles gives constructive
meaning to negation, and different forms of winning conditions generate different
response semantics with varying degrees of constructiveness [2, 1].

In the following let us recall the main result from [1] as it applies to the
Pnueli-Shalev semantics. To this end we first introduce the notion of a maze as
the game equivalent of a configuration. A maze is a labelled transition system
M = (Sι, Sτ ,

ι
−→,

τ
−→) consisting of disjoint sets of visible rooms Sι and secret

rooms Sτ , together with accessibility relations
γ

−→⊆ S × S between rooms S =
Sι ∪Sτ with two possible labels γ ∈ {ι, τ}. The transitions represent valid moves

or corridors ; a transition m
ι

−→ m′ corresponds to a visible corridor connecting
room m with m′, whereas m

τ
−→ m′ is a secret corridor. Designating a room or

corridor as secret makes it unobservable, i.e., abstracts from it semantically.

A maze M acts as the game board on which two players A and B compete
with each other to conquer rooms by taking alternate turns in moving along
the corridors. When the play enters a room m in which player A receives the
turn, then m becomes part of A’s territory. If A now moves to some connected
room m′ through a visible corridor m

ι
−→ m′, then A must hand over to B

who then plays from m′. On the other hand, if A moves along a secret corridor
m

τ
−→ m′, then A keeps their turn and continues to play from m′. Room m may

later be revisited in the play and, depending on who has the turn then, m may
either fall to the other player B, or possession of m is perpetuated by A. We
assume that the players use positional and consistent strategies. A strategy is a
function that determines the next move of a player at every stage of a play in
which they receive the turn. A strategy is positional if the decision only depends
on the room from which the move is made, and not on the history of the play.
This implies that every time a player receives the turn in a given room, they
will take the same corridor out of it. A strategy is called consistent if all the
positions ever occupied by a player are never lost to the opponent, and also if
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the player never enters a room left to the opponent. A consistent strategy keeps
player A safely within a region RA ⊆ S, while at the same time it ensures that
the opponent is confined to a region RB ⊆ S from which they cannot escape.

In general, the objective of the game is that of defending regions (RA, RB),
called front lines, according to a given winning condition. The winning condition
that we are interested in here is reactiveness. A strategy is reactive if the player
always eventually hands over to the opponent to make them appear in a visible
room or get stuck in a secret room. We say that A defends front line (RA, RB) if A
has a positional and consistent reactive strategy for all plays starting from RA

with A as the first player, and from RB where B is the first to move. Reactive
strategies permit infinite plays but require the player to be reactive in the sense
that they are never embarrassed about a move when challenged and always
generate a proper response (i.e., hand over to the opponent in a visible room)
in finite time, though we do not insist that the player can stop the opponent
from ever challenging again. In analogy with evaluation strategies in functional
programming such defensible front lines are called lazy [1].

With every configuration C we associate a maze MC such that the events Π
correspond to the visible rooms Sι and transitions trans(C) to secret rooms Sτ .
The two sets (RA, RB) of a front line for MC constitute a possible reactive re-
sponse of C such that RA and RB will contain events that are present and absent,
respectively. It turns out that the maximal lazy front lines of MC are essentially
the synchronous step responses of C as conceived by Pnueli and Shalev.

a2

ak

a1

a2

ak

a1

a2

ak

a1

bn

cm

b1

c1

b c

b/a1, . . . , ak c/a1, . . . , akc1, . . . , cm, b1, . . . , bn/a1, . . . , ak

Fig. 3. Coding of transitions.

The maze MC is obtained by observing that a transition t = P, N/A of C
expresses the fact that action a ∈ A is caused to be in RA (i.e., present) if, for
all c ∈ P , c is in RA and, for all b ∈ N , b is in RB. This conjunction can be
modelled canonically by considering the transition t as an intermediate (secret)
room and by adding (i) a visible corridor between each a ∈ A and t; (ii) a visible
corridor between t and each c ∈ RA; and (iii) a secret corridor between t and
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each b ∈ N as seen in Fig. 3 on the left. The graphical convention used here is that
visible rooms/corridors are drawn with solid lines and secret rooms/corridors
with dashed lines. When all transitions t ∈ C have been represented in this
way, they form a maze MC of secret rooms connected through events Π as the
visible rooms. Clearly, this translation is compositional where C1‖C2 is the set-
theoretic union of the mazes MC1

and MC2
. Some simplifications are possible,

e.g., a transition like c/a1, . . . , ak with only one trigger may be coded without
the intermediate room as a bundle of secret corridors from ai to c. Similarly, a
transition b/a1, . . . , ak is simply a bunch of visible corridors from ai to b. This
is illustrated in Fig. 3 on the right.

Theorem 6 (Correctness & Completeness). Let C be a configuration and
MC be the maze associated with C. Then, A ⊆ Π is a Pnueli-Shalev step response
of C if and only if there exists a lazy front line (RA, S \ RA) in MC such that
A = RA ∩ Π.

The proof of this theorem can be found in [1]. Note how the game model ac-
commodates both the failure and nondeterminism of step responses. Depending
on MC , it may happen that there is no strategy to avoid a (visible) room m
being visited by both players infinitely often. This corresponds to Pnueli and
Shalev’s step-construction procedure returning a failure. Also, a room m may
occur in two different lazy front lines, which yields nondeterministic behaviour.

c

dx ya

b

Fig. 4. The maze MC for component C = c/b ‖ b/c ‖ c, a, b/a ‖ b, d/d with maximal lazy
front lines ({b, x, y}, {a, c, d}) and ({c, y}, {b, d}).

In general, the responses of a configuration C are the maximal lazy front
lines in the maze MC . Every binary front line, i.e., a front line (RA, RB) with
RA∪RB = S, is trivially maximal. Yet, maximal lazy front lines need neither be
uniquely defined nor two-valued. For the maze MC in Fig. 4 we find that there
are two maximal lazy front lines ({b, x, y}, {a, c, d}) and ({c, y}, {b, d}). Of those
only the former is binary and thus a Pnueli-Shalev step response according to
Thm. 6. Consider RA = {b, x, y} and RB = {a, c, d} first. From all rooms in RA

player A has a strategy to make the opponent take the turn in one of the visible
rooms RB. E.g., from x we move secretly to b keeping the turn and then continue
visibly to c where the opponent must continue. Also, from RB the opponent
must immediately hand back to A in a room of RA with the first move. This
keeps A consistently in RA and B in RB and makes B always eventually take
the turn in a visible room. Similarly, one shows that the front line RA = {c, y}
and RB = {b, d} is defensible. This, too, is a maximal front line because none
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of the remaining rooms a or x can be defended consistently as part of RA or
of RB. Indeed, the Pnueli-Shalev semantics eliminates this non-binary solution
({c, y}, {b, d}) by backtracking so that configuration C is deterministic.

4 Related Work, Esterel & Logic Programming

This section discusses the Pnueli-Shalev step semantics in the light of the rich
volume of related work which was either triggered by or performed orthogonally
to the research in Statecharts and its semantics. In particular, this section com-
pares the Pnueli-Shalev step semantics to the constructive semantics of the syn-
chronous language Esterel [7, 52], with the aim of highlighting the close semantic
relationship between Statecharts and Esterel. We also relate the Pnueli-Shalev
step semantics to the so-called stable models of logic programming [49], a field
in which the interpretation of negation plays a prominent role, too.

4.1 Related Work

Defining a synchronous step response involves the incremental firing of transi-
tions which may both trigger and inhibit each other via broadcasting events.
The deterministic stabilisation of this micro-scheduling process is highly non-
trivial in the presence of cyclic dependencies and negative trigger conditions.
Pnueli and Shalev’s approach is one of many conceivable ways of defining a con-
sistent scheduling strategy. We set the scene here with a brief survey of work on
synchronous step semantics based on how event absence is treated in the step
construction. We do not consider semantics that evade the consistency problem
by banning negation such as Modecharts [34] or UML state machines and their
derivatives [55].

The first take on the problem was the view underlying the first formal State-
charts semantics [28]. It does not consider the constraint of global consistency
so that the absence of an event remains a local, or a transient, condition which
may be overridden within the same step.

The second take is to break causality cycles systematically, for which we can
identify two strands. One option is to delay the broadcast of events into the next
step, so as to avoid instantaneous broadcast. This is the approach adopted in
Leveson et al’s RSML [35] and the step semantics of STATEMATE [26]. The
other option to break cycles by default may be subsumed under Boussinot’s
slogan “no instantaneous reaction to [event] absence,” according to which a
negative trigger event tests for absence in the previous step rather than the cur-
rent one. This interpretation has gained some importance in the synchronous
programming community. Examples are Boussinot’s Reactive-C [9], Boussinot
and de Simone’s synchronous reactive calculus SL [12], Mandel and Pouzet’s
functional reactive programming language ReactiveML [45], and Boussinot and
Dabrowski’s FunLoft [11] which is a globally asynchronous, locally synchronous
model of multi-threading. The idea is also applied in logic programming, specif-
ically in Saraswat, Jagadeesan and Gupta’s language tcc for timed concurrent
constraint programming [53].
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The third take permits both instantaneous reaction to absence and instanta-
neous event propagation under the constraint of global consistency. All these step
semantics construct maximal causally-closed and consistent sets of transitions.
There are surprisingly many strategies for doing this which have found their
applications. One important split arises in the operational model of step con-
struction from the question of who is responsible for event absence: the system
or the environment. The system view of absence underlies the work of Maggiolo-
Schettini, Peron and Tini [43] and of Lüttgen, von der Beeck and Cleaveland [37],
as discussed above. Dual to this view is the environment view in which absence
is defined externally and thus is not determined until the step is complete and
closed off against the environment. This is logically the most tricky scenario as
it involves constructive anticipation and forces one to deal with non-causal pro-
grams, i.e., potential failure and deadlock behaviour. A rather useful systematics
for this class of semantics has been introduced by Boussinot in his Sugarcubes
report [10]. Boussinot’s classification is based on a potential function π which is
used at stage i of the step construction to speculate about which events π(i) ⊆ π
may potentially be broadcast later. By complement, all other events Π \π(i) are
deemed absent at stage i. If σ(i) is the set of events that have been broadcast by
stage i, then a transition t is triggered if trg(t)∩Π ⊆ σ(i) and trg(t)∩π(i) = ∅. If π
is correct — i.e., it contains all events that are eventually broadcast: σ(j) ⊆ π(i)
for i ≤ j —, then one does not get an inconsistency failure and does not need
to backtrack. Boussinot shows that every correct potential function leads to a
deterministic but possibly deadlocking step [10].

The most prominent representatives in this category are Pnueli and Shalev’s
semantics [51], Philipps and Scholz’ µCharts variation [50] of it, and Berry’s con-
structive semantics for Esterel [52] discussed in detail below, which corresponds
to a correct potential function. The Pnueli-Shalev step semantics is obtained for
the trivial potential function π(i) = σ(i), which permits full speculation so that
all events not currently broadcast can be taken to trigger absences. Such π is
not correct and, consequently, one has failure and nondeterminism. However, the
scheduling cannot deadlock.

All approaches to global consistency reported so far are operational, in the
sense that they can be implemented by some form of scheduling. This is different
from the logical approach described in Sec. 3.3, which employs intuitionistic logic
for interpreting negative events. Of course, we can also apply classical logic;
a configuration C then induces Boolean equations over events which describe
the necessary and sufficient conditions for each event to be present in a step
of C. Each classical solution is called a logically coherent step. A program is
logically correct if all its configurations have exactly one logically coherent step
under every input stimulus. This is the logical behavioural semantics [52] that is
applied in the visual language Argos [46], one of the early synchronous languages
developed by Maraninchi around 1991. Argos is well-known for the invention of a
fully semantical and thus compositional version of inter-level transitions. There
are, of course, many other truth-value interpretations of configurations such
as (a) the Kleene-style ternary interpretation [19] which is related to Esterel’s

20



constructive semantics discussed in Sec. 4.2, and (b) the various models of normal
logic programming mentioned in Sec. 4.3.

4.2 Relation to Esterel

Esterel is a textual, imperative language for specifying the behaviour of reac-
tive systems, which has been developed by Berry and colleagues since the early
1980s [7, 52], concurrently to and independently of Harel’s Statecharts. A visual
version of Esterel is André’s SyncCharts [4] which is implemented as Safe State
Machines in the embedded-software development tool SCADE [18]. Similar to
Statecharts, Esterel provides primitives for decomposing reactions sequentially
and concurrently, where concurrent reactions may involve a complex exchange
of events. In Esterel terminology, one speaks of the emission of signals rather
than the generation of events or the firing of transitions.

Like the semantics of Statecharts, the semantics of Esterel is designed around
the concept of a step, called an instant, and it also supports the principles of
synchrony and causality. Unlike the Pnueli-Shalev semantics of Statecharts, how-
ever, those Esterel programs for which the step construction does not complete,
are rejected by the Esterel compiler. As a further distinction from Statecharts
steps, Esterel instants are guaranteed to be deterministic. Esterel’s semantics has
significantly evolved over the years. In [52], Berry describes a much improved
version that is founded on the idea of constructiveness and that encodes the
principle of causality in a precise way, and not in an approximative way as ear-
lier Esterel versions did. He also establishes the coincidence of three constructive
styles of Esterel semantics — a behavioural semantics, an operational semantics,
and a circuit semantics —, thereby testifying to the mathematical elegance and
robustness of Esterel.

Table 2. The Must and Cannot functions for computing Esterel instants

Must(0, S) =df ∅

Must(I/A,S) =df

8

<

:

A if I ⊆ S

∅ otherwise

Must(C1‖C2, S) =df Must(C1, S) ∪ Must(C2, S)

Cannot(0, S) =df Π

Cannot(I/A,S) =df

8

<

:

Π \ A if I ∩ S = ∅

Π otherwise

Cannot(C1‖C2, S) =df Cannot(C1, S) ∩ Cannot(C2, S)

The behavioural semantics of Esterel is declarative and based on computing
the fixed point of a reaction function that is the analogue of Pnueli and Shalev’s
enabled function. As for Statecharts events, Esterel signals may be present or
absent. While the presence of signals in Esterel is always derived from emit
statements explicitly contained in the program text, the absence of a signal

21



is inferred indirectly from the absence of emit statements. Esterel’s reaction
function collects all those signals e as being present that must be emitted under
the assumption that certain signals are asserted by the system environment or
emitted earlier within the instant. However, in addition and unlike Pnueli and
Shalev’s enabled function, Esterel’s reaction function also records signals e that
cannot be emitted as being absent. Hence, both the presence and the absence of
signals must be shown constructively in Esterel; in contrast to the Pnueli-Shalev
step semantics, the absence of a signal is not inferred by speculation.

To be more precise, we define the semantics of Esterel instants for our con-
figuration syntax [52]. As indicated above, Esterel’s reaction function operates
on sets S ⊆ Π ∪ Π coding explicit presence and absence statuses of signals.
These are determined by two functions, Must(C, ·) and Cannot(C, ·), each of
which takes a set of consistent signal statuses and returns a set of positive or
negative signal statuses, respectively, for a given configuration C. The formal
definition of both functions is displayed in Table 2. Here, a set S ⊆ Π ∪ Π is
called consistent, if S does not contain both e, e for any e ∈ Π . The Esterel reac-
tion function esterel(C, ·) for configuration C is now defined as esterel(C, S) =df

Must(C, S) ∪Cannot(C, S), which is monotonic in S and preserves consistency.
The Esterel semantics of C is then the least fixed point of esterel(C, ·).

As an example, consider the configuration C =df a/b || b/a. According to
Esterel’s semantics, the absence of neither signal a nor b can be inferred since ei-
ther signal may potentially be emitted; formally, Must(C, ∅) = Cannot(C, ∅) = ∅
and indeed ∅ is the least fixed point of esterel(C, ·). Hence, the Esterel compiler
cannot determine the status of signals a and b and thus rejects C as not being
causal. In contrast, Pnueli and Shalev’s step-construction procedure may ini-
tially assume that a is absent, or alternatively that b is absent, and thus infer
two possible steps: step {b} in the former case and step {a} in the latter case. As
suggested by this example, it is the constructive treatment of negation in Esterel
that ensures the determinism of Esterel instants. Technically, this constructive-
ness ensures that Esterel’s reaction function esterel(C, ·) is monotonic, which is
not the case for Pnueli and Shalev’s enabled function. Thus, the least fixed point
of esterel(C, ·) is guaranteed to exist. The following theorem, which is proved
in [42], relates the least fixed point property of Esterel to inseparability in the
sense of Pnueli and Shalev. Recall here that inseparability reflects causality, i.e.,
a separable set of signal statuses points to a break in the causality chain when
emitting signals.

Theorem 7 (Inseparability in Esterel). Let C be a configuration. Then, S is
the least fixed point of esterel(C, ·) if and only if S is a fixed point of esterel(C, ·)
and inseparable for C.

Esterel programs describing an instant may also be given a denotational
semantics in terms of response models similar to Sec. 3.3, since Esterel instants
are constructive in the sense of intuitionistic logics. This can be achieved by
reading the behavioural Esterel reaction function as a formula in intuitionistic
logic over signal statuses. Details of this denotational, model-theoretic approach
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can be found in [42]. In a similar spirit can the game-theoretic approach to
the Pnueli-Shalev step semantics presented in Sec. 3.5 be adapted to Esterel
instants, as is shown in [2, 1]. Formally, it can be proved that every constructive
Esterel instant of a configuration C is also a Pnueli-Shalev step response of C.
Interestingly, the configuration of Fig. 4 that we have found to only have a single
Pnueli-Shalev step response is non-constructive under Esterel’s semantics. This
means that Pnueli-Shalev steps are more liberal than Esterel instants even on
deterministic behaviours.

4.3 Relation to Logic Programming

The simplest declarative view of Statecharts configurations is to consider each
transition as a logical implication between atomic propositions stating the pres-
ence or absence of events within a synchronous step. For instance, a, b/c states
that “whenever a is present and b is absent then c is present.” In logic syntax we
would write (a∧¬b) ⊃ c, as suggested in Sec. 3.3. In this way, a configuration C
turns into a set of propositional Horn clauses with negative atoms, or a logic
program in which all atoms are ground. While negation is not part of standard
definite Horn clause programming, it is a central feature of normal logic pro-
gramming (NLP) which permits negative literals in clause bodies and queries.
It is thus natural to relate the Pnueli-Shalev step semantics of Statecharts with
constructive interpretations of negation in logic programs.

Not surprisingly, NLP exhibits problems of compositionality and full-abs-
traction very similar to those that have hampered the development of Statecharts
semantics. The gap between the declarative, model-theoretic semantics and the
operational semantics is even bigger in NLP. Specifically, if the operational model
of NLP is based on a strong sequential execution model, then the order in which
clauses and literals are executed is constrained. The standard operational model
of negation-as-finite-failure (NF) is based on SLDNF resolution. This is, essen-
tially, a top-down, depth-first search in which all clauses and propositions are
evaluated according to a deterministic rule selection strategy. For instance, un-
der strict left-to-right selection, the program a/a ‖ a, b/c ‖ c/d loops for query d?.
It needs to resolve atom c? due to the third clause and then atom a? as the first
condition of a, b/c. In this process, however, the search gets caught in the loop-
ing clause a/a. On the other hand, if the first clause’s body is commuted to
a/a ‖ b, a/c ‖ c/d, then the query c? has finite failure, and d? evaluates to true.
Clearly, such intensional features of clause scheduling are difficult to capture
by compositional model-theoretic or domain-theoretic techniques. Note that the
step semantics of both Pnueli-Shalev and Esterel are better behaved, because of
their implicit concurrent evaluation which makes trigger conjunction and paral-
lel composition commutative. In both semantics, the program a/a ‖ a, b/c ‖ c/d
generates a single step with a and b absent and d present.

Despite the problems with the standard operational SLDNF semantics, vari-
ous types of declarative models based on three-valued and many-valued interpre-
tations have been developed in the literature to approximate SLDNF for certain
classes of NLP programs. We refer the reader to [54, 20] for a detailed survey of
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the results. It has been observed in [1] that Pnueli and Shalev’s interpretation of
steps coincides exactly with the so-called stable models introduced by Gelfond
and Lifschitz [21]. Consider configuration C as a propositional logic program.
Given a set of events E ⊆ Π , let CE be the program in which (i) all transitions
with negative triggers in E are removed, i.e., we drop from C all P, N/A with
N ∩ E 6= ∅; and (ii) all remaining transitions are relieved from any negative
events, i.e., every P, N/A with N ∩E = ∅ is simplified to P/A. The pruned pro-
gram CE has no negations, and thus it has a unique minimal classical model M .
A classical model of CE is a set M ⊆ Π making all transitions/clauses of CE

true, i.e., for all P/A from CE for which P ⊆ M we have A ⊆ M . A set M ⊆ Π
is called a stable model of C if M is the minimal classical model of CM . It has
been shown in [21, 49] that stable models yield a more general semantics which
consistently interprets a wider class of NLP programs than SLDNF.

Theorem 8 (Correctness & Completeness). M ⊆ Π is a stable model of
configuration C if and only if M is a Pnueli-Shalev step response of C.

The proof of this theorem is straightforward via the denotational characterisation
theorem (Thm. 3), together with the observation that (M0, M1, . . . , Mn) |= C
in the sense of Sec. 3.3 if and only if all Mi are classical models of CMn

, i.e.,
Mi |= CMn

. In one direction suppose that M is the minimal classical model
of CM , i.e., M |= CM and thus M |= C. For every M ′ ( M with (M ′, M) |= C
we would have M ′ |= CM , thus contradicting that M was assumed to be minimal.
Hence, M is a response model of C. Vice versa, suppose M is a response model
of C. Then, M |= C and thus M |= CM . Further, for any other classical model
M ′ ( M of CM , we would have (M ′, M) |= C. However, since M is a response
model of C, this is impossible. This proves that M is a minimal model of CM .

It is interesting to note that, while Pnueli and Shalev’s notion of synchronous
steps has not had much impact on synchronous programming tools, stable models
have gained practical importance for NLP as the semantical underpinning of
answer set programming [48]. From a wider perspective, therefore, it is fair to say
that Pnueli-Shalev steps have indeed been implemented successfully in software
engineering, albeit in a different domain. In addition, the theoretical results
obtained around the Pnueli-Shalev semantics have ramifications in NLP. For
instance, Thm. 4 of Sec. 3.3 implies that the standard intuitionistic semantics
of logic provides a compositional and fully-abstract semantics for ground NLP
programs under the stable interpretation.

5 Reminiscences on Amir Pnueli’s First Contributions to
the Semantics of Statecharts (by Willem de Roever)

The first time Amir Pnueli mentioned Statecharts to me was in 1984 during a
summer school in La Colle sur Loup, North of Nice, in France. He also men-
tioned that he had invented the term “reactive systems” together with David
Harel, during a joint air-plane flight, for the type of systems he was trying to
characterise. I was immediately enthused by the concept of Statecharts: a clear
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pictorial specification that could be executed, with all the operators one needed,
instead of using those cumbersome algebraic notations we were wrestling with!
This was what we needed to make formal specification accessible to a much
larger community of users, I thought.

When, through the Esprit funding programme of Basic Research of the Eu-
ropean Community which was launched in 1985, the opportunity presented itself
to cooperate with Amir on the semantics and proof theory of Statecharts within
a European project (Descartes), we immediately grasped it and started visiting
each other accompanied by our teams.

5.1 Visit to the Weizmann Institute in the Mid 1980s

I recall a visit to Amir in 1986 at the Weizmann Institute, accompanied by
Rob Gerth, Cees Huizing, Ton Kalker and Ruurd Kuiper, in order to attend
one of AdCad’s first schools on Statecharts. We listened to the members of the
new AdCad company which David Harel, Amir and Haggi and Ido Lachover
had founded to commercially develop the STATEMATE system, enabling the
execution of Statecharts and Activity Charts.

We had a great time! At the weekends we were taken on outings to Mitzpe
Ramon, the remains of a large crater in the Negev, not far from Bersheva, and
by Haggi Lachover to a cave where some remains of the Neanderthal man were
discovered. And during the week we had these brilliant expositions of Statecharts
and their semantics. For Amir and David had recognized very early that devising
the “right” semantics for Statecharts would be a really challenging problem for
us semanticists!

The discussions centered on ... 5 different semantics for Statecharts. Full Stop!
This is amazing! We, computer scientists, are accustomed, indeed, to a range of
semantics for programming languages and concepts, culminating in the “best”
semantics, the so-called fully abstract one, which doesn’t introduce any unob-
servable differences. But for Statecharts there seemed to exist widely different
semantics, which, in a sense, contradicted each other. Of course we didn’t truly
believe this at first, and, helped by the probing minds of Rob Gerth and Cees
Huizing [32], we obtained criteria on which to judge the semantics:

– Responsiveness, which guarantees an instantaneous response to a request
for reaction, as dictated by Gérard Berry’s synchrony hypothesis [7].

– Modularity, which consists of two properties: (1) The composition of two
reactive systems is defined on the basis of their observable behaviours; there
exist no additional inner details of the execution which can only be seen by
the other system. (2) When an event is generated, it is broadcast all around
the system and is immediately available to everyone.

– Causality, i.e., for every event that is generated, there is a causal chain of
events that leads to that event.
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To us, whether meeting at the Weizmann Institute with Amir and David or
working at the EUT in Eindhoven, these were the three criteria which a reason-
able semantics for Statecharts should satisfy. But somehow it turned out to be
very difficult to meet these criteria simultaneously. And that explains why Amir
introduced 5 different semantics for Statecharts.

5.2 The 5 Different Semantics

For instance, there was semantics A [26] adopted in the STATEMATE system,
in which the events that are generated as a reaction to some input can only be
sensed in the step following that input, i.e., semantics A was not responsive.
Certainly we should be able to do better than that!

This led to semantics B [28] which was responsive, but required the intro-
duction of the notion of micro-steps : every observable action, i.e., every macro-
step, was divided into an arbitrary finite number of micro-steps. Of this one, Rob
Gerth, Cees Huizing and I developed a fully-abstract version [33]. The problem
with this semantics is that if you take micro-steps in a different order, one may
get a different observable result. So, semantics B turned out to be too subtle and
too nondeterministic to be of practical use.

This led to semantics C [51], also known as the Pnueli-Shalev semantics,
which overcomes this problem by demanding global consistency of every micro-
step. Relative to this semantics, Jozef Hooman, Ramesh and I [30] developed a
sound and complete compositional Hoare logic for Statecharts, and Francesca
Levi [36] a sound and complete compositional proof system for checking µ-
calculus properties of Pnueli-Shalev Statecharts. However, semantics C does not
fully solve the problem of modularity, i.e., the behaviour of a process cannot be
explained in terms of macro-steps only.

This led to semantics D in which all events that are generated during
some macro-step are considered as if they were present right from the start of
the step, no matter at which particular micro-step they were generated. As a
consequence, the macro-behaviour of a process suffices to describe its interactions
with other processes. Early versions of the languages Esterel, Lustre and Argos
follow this approach. The advantage of semantics C over D, however, is that the
first respects causality: each reaction can be traced back to an input from the
environment via a chain of reactions, each causing the next one. In semantics D,
however, it is possible that reactions trigger themselves! I.e., there is a problem
with causality.

And then there is semantics E, modeling the current implementation of
Statecharts in STATEMATE, which is an “acceleration” of semantics A. Events
are generated at the next step, but before the reaction of the system has com-
pletely died out no input from the environment is possible.

Fig. 5, taken from [32], shows how each version of the semantics is an attempt
to improve upon the other one. The discovery of Rob Gerth and Cees Huizing
in 1988 that no semantics for reactive systems can be responsive, modular and
causal at the same time, contributed a lot to the clarification of our many discus-
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Fig. 5. Overview of the relationships among semantics A–E [32].

sions with Amir on the semantics of Statecharts: there exists no best semantics
for them! This helps us to explain the situation so aptly described by:

– Michael von der Beeck in [5], in which he lists more than 20 different seman-
tics for Statecharts published by 1994;

– Andrea Maggiolo-Schettini, Adriano Peron and Simone Tini in [44], who
employ some variants of Statecharts’ step semantics using SOS semantics to
study (pre-)congruence properties of their preorders and equivalences;

– Rick Eshuis in [16], who identifies a set of constraints ensuring that Pnueli-
Shalev, STATEMATE and UML semantics coincide, if observations are re-
stricted to linear, stuttering-closed and separable properties;

– Sharam Esmaeilsabzali, Nancy A. Day and Joanne M. Atlee in [17], who
address the following two problems for Statecharts and for a large number
of other languages that subscribe to the synchrony hypothesis: (1) When
should one choose which semantic variant? (2) How can different semantic
variants be compared, and on the basis of which criteria?

Thus one observes that, within a time span of 25 years, the focus of providing
semantics for the concept of Statecharts and related languages has shifted from
looking for one ideal “best” semantics to the realization that such a quest is
hopeless. Instead, the insight has been gained that one either should look for
a set of restrictions on the environment and one’s observations such that these
semantic differences disappear; or one accepts that different applications require
different specification mechanisms, assisted by a catalogue of possible criteria
one might want to be met.
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