Skip to main content

Image Segmentation for Robots: Fast Self-adapting Gaussian Mixture Model

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6111))

Abstract

Image segmentation is a critical low-level visual routine for robot perception. However, most image segmentation approaches are still too slow to allow real-time robot operation. In this paper we explore a new method for image segmentation based on the expectation maximization algorithm applied to Gaussian Mixtures. Our approach is fully automatic in the choice of the number of mixture components, the initialization parameters and the stopping criterion. The rationale is to start with a single Gaussian in the mixture, covering the whole data set, and split it incrementally during expectation maximization steps until a good data likelihood is reached. Singe the method starts with a single Gaussian, it is more computationally efficient that others, especially in the initial steps. We show the effectiveness of the method in a series of simulated experiments both with synthetic and real images, including experiments with the iCub humanoid robot.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Montesano, L., Lopes, M., Bernardino, A., Santos-Victor, J.: Earning object affordances: From sensory motor maps to imitation. IEEE Trans. on Robotics 24(1) (2008)

    Google Scholar 

  2. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Bridging the gap between simulation and reality in urban search and rescue. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 1–12. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Greggio, N., Silvestri, G., Menegatti, E., Pagello, E.: Simulation of small humanoid robots for soccer domain. Journal of The Franklin Institute - Engineering and Applied Mathematics 346(5), 500–519 (2009)

    Article  MATH  Google Scholar 

  4. Vincze, M.: Robust tracking of ellipses at frame rate. Pattern Recognition 34, 487–498 (2001)

    Article  MATH  Google Scholar 

  5. Dobbe, J.G.G., Streekstra, G.J., Hardeman, M.R., Ince, C., Grimbergen, C.A.: Measurement of the distribution of red blood cell deformability using an automated rheoscope. Cytometry (Clinical Cytometry) 50, 313–325 (2002)

    Article  Google Scholar 

  6. Shim, H., Kwon, D., Yun, I., Lee, S.: Robust segmentation of cerebral arterial segments by a sequential monte carlo method: Particle filtering. Computer Methods and Programs in Biomedicine 84(2-3), 135–145 (2006)

    Article  Google Scholar 

  7. McLachlan, G., Peel, D.: Finite mixture models. John Wiley and Sons, Chichester (2000)

    Book  MATH  Google Scholar 

  8. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood estimation from incomplete data via the em algorithm. J. Royal Statistic Soc. 30(B), 1–38 (1977)

    MathSciNet  Google Scholar 

  9. Sakimoto, Y., Iahiguro, M., Kitagawa, G.: Akaike information criterion statistics. KTK Scientific Publisher, Tokio (1986)

    Google Scholar 

  10. Rissanen, J.: Stochastic complexity in statistical jnquiry. Wold Scientific Publishing Co., USA (1989)

    Google Scholar 

  11. Pernkopf, F., Bouchaffra, D.: Genetic-based em algorithm for learning gaussian mixture models. IEEE Trans. Patt. Anal. Mach. Intell. 27(8), 1344–1348 (2005)

    Article  Google Scholar 

  12. Li, J., Barron, A.: Mixture density estimation, vol. 11. NIPS, MIT Press (2000)

    Google Scholar 

  13. Vlassis, N., Likas, A.: A greedy em algorithm for gaussian mixture learning. Neural Processing Letters 15, 77–87 (2002)

    Article  MATH  Google Scholar 

  14. Verbeek, J., Vlassis, N., Krose, B.: Efficient greedy learning of gaussian mixture models. Neural Computation 15(2), 469–485 (2003)

    Article  MATH  Google Scholar 

  15. Ueda, N., Nakano, R., Ghahramani, Y., Hiton, G.: Smem algorithm for mixture models. Neural Comput. 12(10), 2109–2128 (2000)

    Article  Google Scholar 

  16. Zhang, Z., Chen, C., Sun, J., Chan, K.: Em algorithms for gaussian mixtures with split-and-merge operation. Pattern Recognition 36, 1973–1983 (2003)

    Article  MATH  Google Scholar 

  17. Figueiredo, A., Jain, A.: Unsupervised learning of finite mixture models. IEEE Trans. Patt. Anal. Mach. Intell. 24(3) (2002)

    Google Scholar 

  18. Jensen, J.H., Ellis, D., Christensen, M.G., Jensen, S.H.: Evaluation distance measures between gaussian mixture models of mfccs. In: Proc. Int. Conf. on Music Info. Retrieval ISMIR 2007 Vienna, Austria, October 2007, pp. 107–108 (2007)

    Google Scholar 

  19. Ahrendt, P.: The multivariate gaussian probability distribution. Tech. Rep. (2005), http://www2.imm.dtu.dk/pubdb/p.php?3312

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Greggio, N., Bernardino, A., Santos-Victor, J. (2010). Image Segmentation for Robots: Fast Self-adapting Gaussian Mixture Model. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2010. Lecture Notes in Computer Science, vol 6111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13772-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13772-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13771-6

  • Online ISBN: 978-3-642-13772-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics