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Abstract. We study the rationality of the intersection points of certain
lines and smooth plane quartics C defined over Fq. For q ≥ 127, we prove
the existence of a line such that the intersection points with C are all
rational. Using another approach, we further prove the existence of a
tangent line with the same property as soon as q ≥ 662 + 1. Finally, we
study the probability of the existence of a rational flex on C and exhibit
a curious behavior when charFq = 3.

Key words: smooth plane quartics, rationality, intersection points, tan-
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1 Introduction

In computational arithmetic geometry, it is an important task to develop
an efficient group law for the Jacobian variety of algebraic curves defined
over a finite field. One of the most important and recent application of
such efficient arithmetic comes from cryptography [17, 18, 4]. In [7], the
authors introduced an efficient algorithm to perform arithmetic in the
Jacobian of smooth plane quartics. The presented algorithm depends on
the existence of a rational line l intersecting the quartic in rational points
only. Moreover, the more special l is (for instance, tangent, tangent at a
flex,. . . ), the better is the complexity of the algorithm. Motivated by the
above efficiency argument, we prove here the following theorems.

Theorem 1. Let C be a smooth plane quartic over the finite field Fq with
q elements. If q ≥ 127, then there exists a line l which intersects C at
rational points only.
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Theorem 2. Let C be a smooth plane quartic over Fq. If q ≥ 662 + 1,
then there exists a tangent to C which intersects C at rational points only.

In [7], the authors gave heuristic arguments and computational evi-
dences that the probability for a plane smooth quartic over a finite field
to have a rational flex is about 0.63. In this article, we present a ‘proof’
which depends on a conjectural analogue over finite fields of a result of
[13] on the Galois group G of the 24 flexes of a general quartic. Harris
proved that, over C, the group G is as big as possible, namely the symmet-
ric group S24. Unfortunately, Harris’s proof uses monodromy arguments
which cannot be adapted so easily in positive characteristic. Worse, we
surprisingly found that Harris’s result is not valid over fields of charac-
teristic 3 and we prove that for this field the Galois group is S8. This is a
consequence of the peculiar fact that, in characteristic 3, a smooth plane
quartic C has generically only 8 flexes (with multiplicity 3), which belong
to a conic. We suspect that this is the only exceptional case.

The methods used for these three problems are various and can be
generalized or adapted to other questions. This was our principal moti-
vation to write down our approaches in the case of quartics. It illustrates
also the very unusual behavior of special points and lines in small char-
acteristics.

Coming back to our initial motivation, it appears nowadays unlikely
(due to recent progress in index calculus [5]) that smooth plane quartics
may be used for building discrete logarithm cryptosystems. However, it is
interesting to mention that the complexity analysis of the index calculus
attack of [5] uses an asymptotic bound for the number of lines intersect-
ing a smooth plane quartic in four distinct rational points, in the spirit
of Theorem 1.

The paper is organized as follows: Section 2 gives a brief overview on
the possible geometric intersections of a line and a smooth plane quar-
tic. In Section 3, we give a proof of Theorem 1 using Chebotarev density
theorem for covers of curves. In Section 4, we prove Theorem 2 using
the tangential correspondence and its associated curve XC ⊂ C × C.
When charFq 6= 2, the crucial point is to prove that XC is geometrically
irreducible in order to apply Hasse-Weil bound for (possibly singular)
geometrically irreducible curves. For the characteristic 2 case, XC is not
always absolutely irreducible. However, if it is not, we prove it is reducible
(over Fq) and we can apply Hasse-Weil bound on each component. Finally,



in Section 5, we also address the question of the probability of existence
of a rational flex and show that in characteristic 3, the flexes are on a
conic.

Conventions and notation. In the following, we denote by (x : y : z)
the coordinates in P

2, and by (x, y) the coordinates in A
2. Let p be a

prime or 0 and n ≥ 1 an integer. We use the letter K for an arbitrary
field of characteristic p and let k = Fq be a finite field with p 6= 0 and
q = pn elements. When C is a smooth geometrically irreducible projective
curve, we denote by κC its canonical divisor. Operators such as Hom, End
or Aut applied to varieties over a field K will always refer to K-rational
homomorphisms and endomorphisms.

Acknowledgments. We would like to thank Noam Elkies and Pierre
Dèbes for their suggestions and references in Section 5. We are also very
grateful to Felipe Voloch for showing us how to prove Theorem 2 in char-
acteristic 2.

2 Structure of the canonical divisor

In this section, we recall some geometric facts about special points and
lines on a plane smooth quartic. Let K be an algebraically closed field of
characteristic p and C be a smooth (projective) plane quartic defined over
K. The curve C is a non hyperelliptic genus 3 curve which is canonically
embedded. Hence the intersection of C with a line l are the positive
canonical divisors of C. There are 5 possibilities for the intersection divisor
of l and C denoted (l · C) = P1 + P2 + P3 + P4:

case 1 The four points are pairwise distinct. This is the generic position.

case 2 P1 = P2, then l is tangent to C at P1.

case 3 P1 = P2 = P3. The point P1 is then called a flex. As a linear
intersection also represents the canonical divisor κC , these points
are exactly the ones where a regular differential has a zero of order
3. The curve C has infinitely many flexes if and only if p = 3 and
C is isomorphic to x4 + y3z + yz3 = 0 which is also isomorphic
to the Fermat quartic x4 + y4 + z4 = 0 and to the Klein quartic
x3y + y3z + z3x = 0. This is a funny curve in the sense of [14,
Ex.IV.2.4] or a non classical curve in the sense of [27, p.28]. On
the contrary, if C has finitely many flexes, then these points are
the Weierstrass points of C and the sum of their weights is 24.



case 4 P1 = P2 and P3 = P4. The line l is called a bitangent of the curve
C and the points Pi bitangency points. If p 6= 2, then C has exactly
28 bitangents (see for instance [22, Sec.3.3.1]). If p = 2, then C has
respectively 7, 4, 2, or 1 bitangents, if the 2-rank of its Jacobian is
respectively 3, 2, 1 or 0 [26]. Recall that the p-rank γ of an abelian
variety A/K is defined by #A[p](K) = pγ .

case 5 P1 = P2 = P3 = P4. The point P1 is called a hyperflex. Generically,
such a point does not exist. More precisely, the locus of quartics
with at least one hyperflex is of codimension one in the moduli
space M3 (see [28, Prop.4.9,p.29]). If p = 3 and C is isomorphic to
the Fermat quartic then the number of hyperflexes of C is equal
to 28. Otherwise, the weight of a hyperflex is greater than or equal
to 2, so there are less than 12 of them [25]. Note that the weight
of a hyperflex is exactly 2 when p > 3 or 0 and that the weight
of a flex which is not a hyperflex is 1 if p 6= 3. See also [29] for
precisions when p = 2 and Section 5 when p = 3.

A point P can even be more special. Let P ∈ C be a point and let
us denote φP : C → |κC − P | = P

1 the degree three map induced by the
linear system |κC − P |. If this cover is Galois, such a point P is called a
(inner) Galois point and we denote Gal(C) the set of Galois points of C.

Lemma 1 ([8–11]). Let C be a smooth plane quartic defined over K.
The number of Galois points is at most 4 if p 6= 3 and at most 28 if
p = 3. Moreover, the above bounds are reached, respectively by the curve
yz3 + x4 + z4 = 0 and the Fermat quartic.

In the sequel, we will need the first item of the following lemma.

Lemma 2. Let C be a smooth plane quartic defined over K. There is
always a bitangency point which is not a hyperflex unless

– p = 3 and C is isomorphic to the Fermat quartic,
– p = 2 and JacC is supersingular,
– p = 2 and C is isomorphic to a 2-rank one quartic

(ax2 + by2 + cz2 + dxy)2 + xy(y2 + xz) = 0

with ac 6= 0,
– p = 2 and C is isomorphic to a 2-rank two quartic

(ax2 + by2 + cz2)2 + xyz(y + z) = 0

with abc 6= 0 and b+ c 6= 0.



Proof. According to Section 2 case 5, the number of hyperflexes when C
is not isomorphic to the Fermat quartic and p = 3, is less than 12. On
the other hand, if p 6= 2, a curve C has 28 bitangents, and thus there are
at least 28 · 2 − 12 · 2 = 32 bitangency points which are not hyperflexes.
However, for the Fermat quartic in characteristic 3, all bitangency points
are hyperflexes.
There remains to look at the case p = 2 for which we use the classifica-
tion of [30], [21]. The quartic C falls into four categories according to its
number of bitangents:

1. if C has only one bitangent, then C is isomorphic to a model of the
form Q2 = x(y3+x2z) where Q = ax2+by2+cz2+dxy+eyz+fzx and
c 6= 0. The unique bitangent x = 0 intersects C at points (x : y : z)
satisfying by2+cz2+eyz = 0 . Therefore, C has a hyperflex if and only
if e = 0, i.e. C falls into the subfamily S [21, p.468] of curves whose
Jacobian is supersingular. Conversely, any curve in S has a hyperflex.

2. if C has two bitangents, then C is isomorphic to a model of the form
Q2 = xy(y2 + xz) where Q = ax2 + by2 + cz2 + dxy + eyz + fzx
and ac 6= 0. All bitangency points are then hyperflexes if and only if
e = f = 0.

3. if C has four bitangents, then C is isomorphic to Q2 = xyz(y + z)
with

Q = ax2 + by2 + cz2 + dxy + eyz + fzx and abc 6= 0, b+ c+ e 6= 0.

All bitangency points are hyperflexes if and only if d = e = f = 0.
4. if C has seven bitangents, then C is isomorphic to Q2 = xyz(x+y+z)

with Q = ax2+ by2+ cz2+dxy+eyz+fzx and some open conditions
on the coefficients [21, p.445]. The bitangents are

{x, y, z, x + y + z, x+ y, y + z, x+ z}.

Suppose that the intersection points of x = 0, y = 0 and z = 0 with
C are hyperflexes, then d = e = f = 0. Moreover x + y = 0 gives a
hyperflex if and only if (a+ b)y2 + yz+ cz2 is a perfect square, which
is never possible. ⊓⊔

3 Proof of Theorem 1

Let q ≥ 127 be a prime power. Note that, as an easy consequence of
Serre-Weil bound, we know that

#C(k) ≥ q + 1− 3 · ⌊2√q⌋ = 62.



For the proof, we follow the same strategy as [5, p.604]. The lines inter-
secting C at P are in bijection with the divisors in the complete linear
system |κC − P |. We wish to estimate the number of completely split
divisors in this linear system, since such a divisor defines a line solution
of Theorem 1. To get the existence of such a divisor, we will use an effec-
tive Chebotarev density theorem for function fields, as in [20, Th.1]. This
theorem assumes that the cover is Galois but we can reduce to this case
thanks to the following lemma.

Lemma 3. Let K/F be a finite separable extension of function fields
over a finite field. Let L be the Galois closure of K/F . A place of F splits
completely in K if and only if it splits completely in L.

Proof. It is clear that, if a place P ∈ F splits completely in L, it splits
completely in K. Conversely, let G be the Galois group of L/F and H
be the Galois subgroup of L/K. By construction (see [3, A.V.p.54]), L is
the compositum of the conjugates Kσ with σ ∈ G/H. If a place P ∈ F
splits completely in K, it splits completely in each of the Kσ. It is then
enough to apply [24, Cor.III.8.4] to conclude. ⊓⊔

We consider the separable geometric cover φP : C → |κC − P | = P
1

of degree 3 induced by the linear system |κC − P |. We may assume that
no rational point in P

1 is ramified for φP . Otherwise, it is easy to see
that the fiber of φP above this point has only rational points and the
line defined by these points intersects the quartic in rational points only.
Theorem [20, Th.1] boils down to the following proposition.

Proposition 1. a) If the cover φP has a non-trivial automorphism, then
the number N of completely split divisors in |κC − P | satisfies

∣

∣

∣

∣

N − q + 1

3

∣

∣

∣

∣

≤ 2
√
q + |D|

where |D| = ∑

y∈P1,ramified deg y.

b) If the cover φP has a non-trivial k̄-automorphism not defined over k,
then there are no completely split divisors in |κC − P |.

c) If the cover φP has no non-trivial k̄-automorphism, then the number
N of completely split divisors in |κC − P | satisfies

∣

∣

∣

∣

N − q + 1

6

∣

∣

∣

∣

≤ √
q + |D|.



Proof (of Theorem 1). To avoid case (b) of Proposition 1, it is enough
that P is not a Galois point (and we will avoid case (a) as well). By
Lemma 1, we know that the number of such P is less than 28. So let the
point P ∈ C(k) \ (Gal(C) ∩ C(k)). Then the cover φP has a completely
split divisor if

q + 1

6
>

√
q + |D|. (1)

Using Riemann-Hurwitz formula we get

|D| ≤ (2 · 3− 2)− 3 · (0− 2) = 10.

Hence the inequality (1) is satisfied as soon as q ≥ 127. ⊓⊔

Remark 1. We do not pretend that our lower bound 127 is optimal. In
[2], the converse problem is considered (i.e. the existence of a plane (not
necessarily smooth) curve with no line solution of Theorem 1) but their
bound, 3, is also far from being optimal in the case of quartics. Indeed,
by [16], for q = 32, there still exists a pointless smooth plane quartic for
which of course there is no line satisfying Theorem 1.

4 Proof of Theorem 2

Let C be a smooth plane quartic defined over a field K. Let the map
T : C → Sym2(C) be the tangential correspondence which sends a point P
of C to the divisor (TP (C) ·C)−2P . We associate to T its correspondence
curve

XC = {(P,Q) ∈ C × C : Q ∈ T (P )}
which is defined over K. Our goal is to show that when K = k = Fq with
q > 662, then XC has a rational point, i.e. there is (P,Q) ∈ C(Fq)

2 such
that (TP (C) · C) = 2P +Q + R for some point R, necessarily in C(Fq).
Thus, the tangent TP (C) is a solution of Theorem 2.

4.1 Study of the geometric cover XC → C

Let πi : XC → C, i = 1, 2, be the projections on the first and second
factor. The morphism π1 is a 2-cover between these two projective curves.

Lemma 4. Let K be an algebraically closed field of characteristic p. The
projection π1 : XC −→ C has the following properties:

1. The ramification points of π1 are the bitangency points of C,



2. π1 is separable,
3. The point (P,Q) ∈ XC such that P,Q are bitangency points and P is

not a hyperflex (i.e. P 6= Q) is a regular point if and only if p 6= 2,
4. If p 6= 2, the only possible singular points of XC are the points (P,P )

where P is a hyperflex of C.

Proof. The first property is an immediate consequence of the definition
of a bitangent.
If π1 is not separable then p = 2 and π1 is purely inseparable. Thus
#π−1

1 (P ) = 1 for all P ∈ C, i.e. all P are bitangency points. This is
impossible since the number of bitangents is finite (less than or equal to
7).
Let F (x, y, z) = 0 be an equation of C. Let Q 6= P be a point of C
defining a point (P,Q) in XC \∆ where ∆ is the diagonal of C ×C. For
such points, it is easy to write local equations as follows. We can suppose
that P = (0 : 0 : 1) = (0, 0), Q = (1 : 0 : 1) = (1, 0) and assume that
f(x, y) = F (x, y, 1) = 0 is an equation of the affine part of C. Then, if we
consider the curve YC in A

4(x, y, z, t) defined by











f(x, y) = 0 ,

f(z, t) = 0 ,
∂f
∂x

(x, y)(z − x) + ∂f
∂y

(x, y)(t− y) = 0 ,

YC\∆ is an open subvariety ofXC containing (P,Q). The Jacobian matrix
at the point (P,Q) = ((0, 0), (1, 0)) is equal to















∂f
∂x

(0, 0) 0 ∂2f

∂x2
(0, 0) −

∂f
∂x

(0, 0)

∂f
∂y

(0, 0) 0 ∂2f
∂x∂y

(0, 0) −

∂f
∂y

(0, 0)

0
∂f
∂x

(1, 0)
∂f
∂x

(0, 0)

0 ∂f
∂y

(1, 0) ∂f
∂y

(0, 0)















.

Now, if P and Q are bitangency points, then the tangent at these points
is y = 0, so ∂f

∂x
(0, 0) = ∂f

∂x
(1, 0) = 0. The only non-trivially zero minor

determinant of the matrix is then

∂f

∂y
(1, 0) · ∂f

∂y
(0, 0) · ∂

2f

∂x2
(0, 0).

So (P,Q) ∈ XC is not singular if and only if ∂
2f
∂x2

(0, 0) 6= 0. This can never
be the case if p = 2, so we now suppose that p 6= 2. We can always assume
that the point (0 : 1 : 0) /∈ C and we write

f(x, y) = x4 + x3h1(y) + x2h2(y) + xh3(y) + h4(y),



where hi are polynomials (in one variable) over K of degree ≤ i. Since
y = 0 is a bitangent at P and Q, we have

f(x, 0) = x2(x− 1)2 = x4 − 2x3 + x2,

and thus h2(0) = 1. Now

∂2f

∂x2
(0, 0) = 2h2(0) 6= 0.

Finally if (P,Q) ∈ XC is not ramified for π1, it is a smooth point. This
proves the last assertion. ⊓⊔

We want to apply the following version of Hasse-Weil bound to the
curve XC .

Proposition 2 ([1]). Let X be a geometrically irreducible curve of arith-
metic genus πX defined over Fq. Then

|#X(Fq)− (q + 1)| ≤ 2πX
√
q.

In particular if q ≥ (2πX)
2 then X has a rational point.

Hence, to finish the proof, we need to show that XC is geometrically
irreducible and then to compute its arithmetic genus. For the first point,
we use the following easy lemma for which we could not find a reference.

Lemma 5. Let φ : X → Y be a separable morphism of degree 2 between
two projective curves defined over an algebraically closed field K such that

1. Y is smooth and irreducible,
2. there exists a point P0 ∈ Y such that φ is ramified at P0 and φ−1(P0)

is not singular.

Then X is irreducible.

Proof. Let s : X̃ → X be the normalization of X and φ̃ = φ ◦ s : X̃ → Y .
Due to the second hypothesis, φ̃ : X̃ → Y is a separable, ramified 2-cover.
Clearly, X is geometrically irreducible if and only if X̃ is.
Let us assume that X̃ is not irreducible. There exist smooth projective
curves X̃1 and X̃2 such that X̃ = X̃1 ∪ X̃2. Then, consider for i = 1, 2,
φ̃i = φ̃|X̃i

: X̃i → Y . Each of these morphisms is of degree 1 and since the
curves are projective and smooth, they define an isomorphism between
X̃i and Y .
Since P0 ∈ Y is a ramified point, φ̃−1

1 (P0) = φ̃−1
2 (P0). It follows that

φ̃−1(P0) ∈ X̃1 ∩ X̃2

so that φ̃−1(P0) is singular, which contradicts the hypothesis. ⊓⊔



4.2 Proof of Theorem 2: the case p 6= 2

Let us first start with C k̄-isomorphic to the Fermat quartic in charac-
teristic 3. By Section 2 case 3, all its points are flexes. So if there exists
P ∈ C(k), then the tangent at P cuts C at P and at another unique
point which is again rational over k. Now when q > 23 and q 6= 29, 32, it
is proved in [16] that a genus 3 non-hyperelliptic curve over Fq has always
a rational point and the result follows.
We suppose that C is a smooth plane quartic not k̄-isomorphic to the
Fermat quartic if p = 3. As we assumed that p 6= 2, by Lemma 5, Lemma
2 and Lemma 4, we conclude that XC is an geometrically irreducible
projective curve. Moreover, if we assume that C has no hyperflex, then
XC is smooth and we can compute its genus gXC

using Riemann-Hurwitz
formula for the 2-cover π1 : XC → C ramified over the 2 · 28 bitangency
points. In fact,

2gXC
− 2 = 2(2 · 3− 2) + 56 ,

and thus gXC
= 33. The family of curves XC is flat over the locus of

smooth plane quartics C by [6, Prop.II.32]. As the arithmetic genus πXC

is constant in flat families [14, Cor.III.9.10] and equal to gXC
for smooth

XC [14, Prop.IV.1.1], we get that πXC
= 33 for any curve C. We can now

use Proposition 2 to get the bound q > (2 · 33)2.

4.3 Proof of Theorem 2: the case p = 2

We first need to compute the arithmetic genus of XC . It is not so easy in
this case, as wild ramification occurs. We therefore suggest another point
of view, which can actually be used in any characteristic.

Lemma 6. The arithmetic genus of XC is 33.

Proof. In order to emphasize how general the method is, we will denote
by g = 3 the genus of C and by d = 4 its degree. The map T is a
correspondence with valence ν = 2, i.e. the linear equivalence class of
T (P ) + νP is independent of P . Let denote by E (resp. F ) a fiber of π1
(resp. π2) and ∆ the diagonal of C × C. We get, as in the proof of [12,
p.285], that XC is linearly equivalent to aE + bF − ν∆ for some a, b ∈ Z

to be determined. Then, one computes the arithmetic genus πXC
of XC

thanks to the adjunction formula [14, Ex.V.1.3.a]

2πXC
− 2 = XC .(XC + κC×C)



where κC×C is the canonical divisor on C×C. Using that (see for instance
[12, p.288], [14, Ex.V.1.6])























E.E = F.F = 0,

E.F = ∆.E = ∆.F = 1,

κC×C ≡num (2g − 2)E + (2g − 2)F,

∆2 = (2− 2g),

we find
πXC

= ab− 15.

Now, we determine the values of a and b. One has

XC .E = b− ν = deg π1 = d− 2 = 2

so b = 4. Also, XC .F = a− ν = deg π2. The degree of π2 is equal to the
degree of the dual map C → C∗, where C∗ is the dual curve, which is
d(d− 1). In the case d = 4, we then get a = 12. Plugging the values of a
and b, we find that πXC

= 33. ⊓⊔

Remark 2. In a previous version of this article, we claimed that a = 6
when p = 2. This was due to a confusion between the degree of the dual
curve and the degree of the dual map, which is in this case inseparable.

We can now come back to the proof of Theorem 2.
If XC is absolutely irreducible, then we can argue as in Section 4.2 and
get the bound q > (2 · 33)2.
If XC is not absolutely irreducible, since deg π1 = 2, XC is the union over
Fq2 of two absolutely irreducible curves X1,X2 such that X1 and X2 are
birationally equivalent to C.

Since C is smooth, there are two Fq2-rational morphisms si : C → Xi

such that π1|Xi
◦ si = 1. Hence deg si = 1 and the Xi are geometrically

isomorphic to C and smooth. If the Xi are defined over Fq they have a
rational point because q > 32 and gXi

= 3. This concludes the proof in
this case.
It is then sufficient to prove that the Xi are defined over Fq. Otherwise,
we would have X2 = Xσ

1 , where σ is the Frobenius automorphism of
Gal(Fq2/Fq). Let us consider the morphisms ti = π2|Xi

◦ si : C → C
which map a point P ∈ C to one of the two points in the support of
T (P ). Since gC > 1, these morphisms have to be purely inseparable. Let
P be the generic point on C and Q1, Q2 = Qσ1 the two points in the
support of T (P ). Since degπ2 = 10 = deg π2|X1 + deg π2|X2 and π2 is



purely inseparable, we have, say, deg π2|X1 = 2 and deg π2|X1 = 8. We
then get the following commutative diagram

C
s1 //

s2
  A

AA
AA

AA
A X1

π2|X1 //

Fq

��

C

Fq

��
X2

π2|X2

// C

P
1 //

1 ""E
EE

EE
EE

EE
(P,Q1)

2 //

q

��

Q1

q

��
(P,Q2) 8

// Q2

where the labelling indicates the degree of the maps and Fq is the
Fq-Frobenius morphism. We hence get a contradiction.

Remark 3. Using the first line of the diagram, we see that if XC is not
absolutely irreducible, then there is a purely inseparable degree 2 mor-
phism from C to C. This implies that there is a geometric isomorphism
γ : C(2) → C, where C(2) is the conjugate of C by the Frobenius auto-
morphism of Gal(Fq/F2). Hence, the moduli point corresponding to C is
defined over F2. As the field of moduli is a field of definition over finite
fields, C descends over F2, i.e. there exists a curve C̃/F2 and a geomet-
ric isomorphism ψ : C̃ → C. More specifically, we have the following
commutative diagram

C
t1 //

F2
&&NNNNNNN C

ψ−1

��9
99

99
99

99
9

C(2)
γ

88ppppppp

(ψ−1)(2) **UUUUUUUUUUUUUUU

C̃

ψ

BB����������

C̃

Hence the map ψ−1 ◦t1 ◦ψ : C̃ → C̃ is the F2-Frobenius morphism F2.
Therefore, the Frobenius morphism maps a point P ∈ C̃ to a point on the
tangent at P . Such a (plane) curve C̃ is called Frobenius non-classical.

Using [15, Th.1], we see that C̃ has no rational point. It is then easy to
run a program on plane smooth quartics over F2 with no rational points
and to check if XC is irreducible or not. See for instance

http://iml.univ-mrs.fr/~ritzenth/programme/tangent-char2.mag.

Surprisingly, we find that XC is reducible if and only if C/F2 is iso-
morphic to

x4 + x2y2 + x2yz + x2z2 + xy2z + xyz2 + y4 + y2z2 + z4

or
x4 + x3z + xy3 + xyz2 + y4 + yz3 + z4.



These two curves are twists of the Klein quartic. Hence, the curves C/Fq
such that XC is reducible are the ones isomorphic to the Klein quartic.

5 The case of flexes

The heuristic results and computations of [7] tend to suggest that a ran-
dom plane smooth quartic over Fq has an asymptotic probability of about
0.63 to have at least one rational flex when q tends to infinity. We describe
how to turn the heuristic strategy into a proof.

Let P14 be the linear system of all plane quartic curves over a field K
and I0 = {(P, l), P ∈ l} ⊂ P

2 × P
2∗. Let I4 ⊂ P

14 × I0 be the locus

I4 = {(C, (P, l)), C is smooth and P is a flex ofC with tangent line l}.

Harris proved the following result using monodromy arguments.

Theorem 3 ([13, p.698]). The Galois group of the cover I4 → P
14 over

C is the full symmetric group S24.

Let us assume for a moment that this result is still valid over finite fields.
Then, using a general Chebotarev density theorem for function fields like
in [23, Th.7], this would mean that the probability of finding a rational
flex is within O(1/

√
q) of the probability that a random permutation of

24 letters has a fixed point, which is

p24 := 1− 1

2!
+

1

3!
− . . .− 1

24!
≈ 1− exp(−1) ≈ 0.63.

Unfortunately, it is not easy to transpose Harris’s proof over any field.
And actually, Harris’s result is not true in characteristic 3, as the following
proposition implies.

Proposition 3. Let C : f(x1, x2, x3) = 0 be a smooth plane quartic
defined over an algebraically closed field K of characteristic 3. The flexes
of C are the intersection points of C with a certain curve HC : hC = 0 of
degree less than or equal to 2. The curve HC can be degenerate as in the
case of the Fermat quartic where hC = 0.

Proof. We use the method to compute flexes of a plane curve of degree
d described in the appendix of [7] (see also [25, Th.0.1]). Indeed, when
the characteristic of the field divides 2(d − 1), one cannot use the usual



Hessian and one should proceed as follows.
Let C : f = 0 be the generic plane quartic over K

f(x, y, z) := a00y
4 + y3(a10x+ a01z) + y2(a20x

2 + a11xz + a02z
2)

+y(a30x
3 + a21x

2z + a12xz
2 + a03z

3)

+(a40x
4 + a31x

3z + a22x
2z2 + a13xz

3 + a04z
4),

We define as in [7]

2h̄ = 2f1f2f12 − f21f22 − f22f11,

= f1(f2f12 − f1f22) + f2(f1f12 − f2f11)

where fi or fij are the partial derivatives with respect to ith variable (or
to ith and jth variables). It is then easy to check via a computer algebra
system, see

http://iml.univ-mrs.fr/~ritzenth/programme/flex-char3.mw,

that

2h̄− a20f
2 − f · (ax3 + by3 + cz3)z = h̃C · z2,

with

a := a40a11 + a21a30 − 2a20a31,

b := a10a11 + a00a21 − 2a20a01,

c := 2a212 + a13a11 + a20a04 + a03a21 + a02a22,

where h̃C is a homogeneous polynomial in K [x, y, z] of degree 6, for which
nonzero coefficients appear only for the monomials x6, y6, z6, x3y3, x3z3

and y3z3. Since the map u 7→ u3 is an isomorphism of K, there is a
polynomial hC ∈ K [x, y, z] satisfying h̃C = h3C . If we suppose that there
is no flex at infinity, the flexes are the intersection points of h̄ = 0 and
f = 0, so they are also the intersection points of hC = 0 and f = 0 and
hC = 0 is the equation of a (possibly degenerate) conic HC . ⊓⊔

Remark 4. As h̃C = h3C , we see that the weight of a flex which is not a
hyperflex is 3 in characteristic 3.

Corollary 1. The Galois group of the cover I4 → P
14 over F̄3 is the full

symmetric group S8.



Proof. Note that the Galois group G of the cover is the Galois group
of the x-coordinate of the 8 flexes of the general quartic. Hence, G is
included in S8. To show that G is exactly S8, we are going to specialize
the general quartic to smooth quartics over finite fields with 8 distinct
flexes having different arithmetic patterns. More precisely, to generate S8
we need to produce (see [19, Lem.4.27]):

– a smooth quartic with 8 Galois conjugate flexes over F3:

2x4 + 2x3y + x3z + 2x2z2 + xy3 + 2xy2z + y3z + yz3 = 0;

– a smooth quartic with one rational flex and 7 Galois conjugate flexes
over F3:

x3y + x2z2 + 2xy3 + xy2z + 2xyz2 + 2xz3 + y4 + 2yz3 = 0;

– a smooth quartic with two quadratic conjugate flexes and 6 rational
flexes over F9:

a6x4 + ax3y + a7x3z + a6x2y2 + a2x2z2 + a7xy3 + a7xy2z

+ xyz2 + a5xz3 + a5y4 + a3y3z + a5y2z2 + 2yz3 + a7z4 = 0,

where a2 − a− 1 = 0. ⊓⊔

Corollary 2. Let C be a smooth plane quartic over F3n. The probability
that C has a rational flex tends to

p8 := 1− 1

2!
+

1

3!
− . . .− 1

8!
≈ 0.63

when n tends to infinity.

Remark 5. The fact that the Galois group G in characteristic 3 is S8 and
not S24 was unnoticed in our computations in [7] because |p24−p8| ≤ 10−5.

General reduction arguments show that the Galois group G remains S24
almost all p. We conjecture that p = 3 is the only exceptional case.

Conjecture 1. The Galois group of the cover I4 → P
14 over F̄p is the full

symmetric group S24 if p 6= 3 and S8 otherwise.
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