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Abstract. In this paper, we consider K-class classification problem, a
significant issue in machine learning or artificial intelligence. In this prob-
lem, we are given a training set of samples, where each sample is rep-
resented by a nominal-valued vector and is labeled as one of the prede-
fined K classes. The problem asks to construct a classifier that predicts
the classes of future samples with high accuracy. For K = 2, we have
studied a new visual classifier named 2-class SE-graph based classifier
(2-SEC) in our previous works, which is constructed as follows: We first
create several decision tables from the training set and extract a bipar-
tite graph called an SE-graph that represents the relationship between
the training set and the decision tables. We draw the SE-graph as a two-
layered drawing by using an edge crossing minimization technique, and
the resulting drawing acts as a visual classifier. We can extend 2-SEC
to K-SEC for K > 2 naturally, but this extension does not consider
the relationship between classes, and thus may perform badly on some
data sets. In this paper, we propose SEC-TREE classifier for K > 2,
which decomposes the given K-class problem into subproblems for fewer
classes. Following our philosophy, we employ edge crossing minimization
technique for this decomposition. Compared to previous decomposition
strategies, SEC-TREE can extract any tree as the subproblem hierarchy.
In computational studies, SEC-TREE outperforms C4.5 and is compet-
itive with SVM especially when K is large.

1 Introduction

1.1 Background

We consider a mathematical learning problem called classification, a signifi-
cant research issue from classical statistics to modern research fields on learn-
ing theory and data analysis [1]. For positive integers m, m′ (m ≤ m′), let
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Table 1. A training set S = S1∪S2 with S1 = {s1, s2, s3, s4} and S2 = {s5, s6, s7} over
three attributes with D1 = {yes, no}, D2 = {high, med}, and D3 = {high, med, low}

Att. 1 Att. 2 Att. 3
(headache) (temperature) (blood pressure)

S1 (malignant) s1 yes high high

s2 yes med med

s3 yes high high

s4 no high med

S2 (benign) s5 no med high

s6 yes high med

s7 no med low

[m] = {1, 2, . . . , m} and [m, m′] = {m, m+1, . . . , m′}. A sample s is represented
by an n-dimensional nominal vector for n attributes and belongs to one of the
predefined K classes . We denote the domain of attribute i ∈ [n] by Di, and the
set of K classes by C = {c1, . . . , cK}. In classification, we are given a training set
S = S1 ∪ · · · ∪SK of available samples, where Sk (k ∈ [K]) is the set of available
samples belonging to the class ck. Table 1 shows an example of training set for
K = 2. A classifier is a function from the sample space S = D1 × · · · × Dn to
the class set C. The aim of classification is to construct a classifier that predicts
the class of a future sample s′ ∈ S with high accuracy, where s′ is possibly not
in the training set, i.e., s′ �∈ S.

In our previous research, we have worked on developing a new visual classifier
which can provide us with insights into data, beyond a mathematical function.
Our main idea is to construct a classifier by good visualization of a graph ex-
tracted from the abstract data.

Visualization plays an important role as an effective analysis tool for huge
and complex data sets in many application domains such as financial market,
computer networks, biology and sociology [2]. Due to its popular application for
visualization, graph drawing has been extensively studied over the last twenty
years [3]. To draw graphs automatically and nicely, we need to give a mathemat-
ical definition of aesthetic criteria (e.g., the number of edge crossings) for 2D and
3D drawings. In our companion papers [4, 5], we proposed a new mathematical
measurement of occlusion for 2.5D drawing [6] of pairwise trees, and observed
that, when the samples and the attribute values are represented by pairwise
trees, the minimum occlusion drawing supports visual analyses of classification
and clustering. Independently, it was shown that algorithms for reducing edge
crossings in graph drawings can be used in such data analyses as rank aggre-
gation [7]. Based on these, we hypothesize that good visualization (e.g., visual
objects with low visual complexity) itself can discover essential or hidden struc-
ture of data without relying on data analysis techniques, which can lead to a
novel learning technique.

For 2-class classification (i.e., K = 2), we designed a prototype visual clas-
sifier and demonstrated its effectiveness by empirical studies in our preliminary



Table 2. Decision tables T1 = (A1, �1), T2 = (A2, �2) and T3 = (A3, �3) with attribute
sets A1 = {1, 2}, A2 = {1, 3} and A3 = {3}

T1 = (A1, �1) T2 = (A2, �2) T3 = (A3, �3)
v ∈ D1 ×D2 �1(v) v ∈ D1 ×D3 �2(v) v ∈ D3 �3(v)
yes, high c1 yes, high c1 high c1

yes, med c1 yes, med c1 med c1

no, high c1 yes, low c1 low c2

no, med c2 no, high c2

no, med c1

no, low c2

research [8, 9]. Recently, we found that our visual classifier is a visualization of
2-class generalized majority vote (2-GMV) of multiple decision tables [10, 11].

Table 2 shows three decision tables for the training set in Table 1. Formally, a
decision table T = (A, �) is a classifier defined by a subset A = {i1, . . . , iq} ⊆ [n]
of n attributes and a label function � : Di1 × · · · × Diq → C. The label � is
often defined by decision table majority [12] in the literature, and in this paper,
we do not assume any particular definition of �. For a future sample s ∈ S, a
decision table estimates its class as the label �(v) of the matched entry v = s|A
(where s|A denotes the projection of s onto A). For example, (no, high, high)
is classified as c1 by T1, c2 by T2 and c1 by T3. Let T = {T1, . . . , TN} denote a
set of N decision tables. One can use T as a single classifier by applying such
ensemble technique as majority vote (MV). The MV classifies a future sample
as the majority class among the N outputs given by the N decision tables in T .
For example, MV with T = {T1, T2, T3} in Table 2 classifies (no, high, high) as
c1. GMV is a generalization of MV, and will be mentioned in Sect. 2.

For given S, T and its 2-GMV, our visual classifier in [10, 11] is built on a
bipartite graph called sample-entry graph (SE-graph). In SE-graph, one node
set corresponds to the samples in S, the other set corresponds to the entries of
the decision tables in T , and a sample s and an entry v are joined by an edge
if and only if s matches v. See Fig. 1(a) for an example of SE-graph drawn as
two-layered drawing. The layout of SE-graph is defined by permutations on the
samples and the entries. We fix the permutation of the entry nodes along with
the 2-GMV, and perform edge crossing minimization technique to compute the
permutation on the sample nodes. We then divide the sample nodes into c1 and
c2 sides by choosing a suitable threshold θ. (See θ dividing the sample nodes in
Fig. 1(b).) A future sample s′ will be judged as c1 or c2 by which side it falls on.
We call this visual classifier 2-class SE-graph based classifier (2-SEC).

1.2 New Contribution

In this paper, we extend 2-SEC to K-SEC for K-class problems (K > 2). The
extension itself is not a hard task due to the following two reasons: One reason
is that 2-GMV, the base classifier of 2-SEC, can be extended to K-GMV for
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Fig. 1. Construction of 2-class SEC: (a) A natural SE-graph (b) The SE-graph obtained
by edge crossing minimization

K-class problems naturally. We can visualize K-GMV as K-SEC, and its de-
tails are described in Sect. 2. The other reason is that we already know some
general frameworks to extend any 2-class classifier to multiclass one. One may
find the following three methods in the literature, one-to-all , one-to-one, and
error correcting output codes [13]. These frameworks hardly take into account
the structural relationships of classes, although it must be smarter to decom-
pose the entire problem into subproblems for fewer classes in some application
domains.

There are some studies that attempt to extract hierarchical structure of
classes, which we call a class tree. Most of the previous works concentrate on
extracting a binary tree as the class tree to decompose a K-class problem into
2-class subproblems (e.g., [14, 15]). In a class tree, there are K leaves, and each
leaf corresponds to one of the K classes. (Figure 2 shows a class tree of Glass

data set from UCI Repository [16].) Each inner node corresponds to a meta-
class , representing the set of its descendant classes (i.e., leaves). Let K ′ ≤ K
denote the number of children of an inner node. For this inner node, K ′-class
classifier is constructed, where each child constitutes one class. Starting from
the root, a future sample is passed to one of the K ′ children, which is decided
by the K ′-class classifier of the current node. This procedure is repeated until
the sample reaches a leaf. Finally, the sample is classified into the class of the
reached leaf.
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Fig. 2. Hierarchical structure of classes in Glass data set: a leaf corresponds to a class
and an integer represents the number of samples belonging to each class.

Note that one should extract a nice class tree and decompose the given K-
class problem into easier subproblems. In the context of class tree, K-SEC can be
regarded as a star (i.e., a tree consists only of the root and the K leaves), where
no decomposition is made, in the sense that K classes are treated homogeneously
in classifier construction. However, K-SEC does not seem to work well on such
data sets that have structural relationships between classes. On the other hand,
binary tree based approaches do not always work well because binary tree is not
the universal structure of classes.

In this paper, we propose a new multiclass visual classifier, named SEC-
TREE, that can extract any tree as a class tree. To extract a class tree, we
employ edge crossing minimization on two-layered drawing of a bipartite graph,
following our philosophy described in the previous subsection. We can control
the structure of the resulting class tree by tuning the newly introduced param-
eter. In the extracted class tree, we use K ′-SEC as the classifier of an inner
node with K ′ children. When the number K of classes is large, in the sense of
classification performance (i.e., error rate), SEC-TREE is superior to C4.5 [17],
a standard decision tree classifier, and is competitive with well-tuned support
vector machines (SVMs) for multiclass problems.

The paper is organized as follows. In Sect. 2, we introduce K-SEC and review
2-SEC as a special case of K-SEC. We describe how to construct SEC-TREE in
Sect. 3. We present computational results in Sect. 4. Besides comparison of error
rates, we show that our new method can capture a good class tree and discuss
the effects of the controlling parameter.

Throughout this paper, we assume that a set T of decision tables is given.
We do not focus on how to construct it in this paper. (In the experiments of
Sect. 4, we utilize the decision tables generated by Weka [18].) This issue will be
addressed in our future papers.



2 SE-graph Based Classifier (SEC)

Assume that a set T = {T1, . . . , TN} of N decision tables is given. We denote
Tj = (Aj , �j) (j ∈ [N ]) and the set of all entries of Tj by Dj , i.e., Dj is the
Cartesian product of the domains of the attributes in Aj . For K ≥ 2, K-GMV
is defined by a tuple (λ1, . . . , λN ) of N similarity functions for the N decision
tables. A similarity function λj is such a function λj : Dj × C → [0, 1] that
represents “similarity” or “closeness” between each entry v ∈ Dj and class ck ∈
C. For any entry v ∈ Dj , we assume

∑N
k=1 λj(v, ck) = 1. For a future sample

s ∈ S, K-GMV classifies s into the class ck if barycenter β(s, ck) for ck is
the largest among all K classes c1, . . . , cK , which is defined based on similarity
functions as follows.

β(s, ck) =
1
N

N∑
j=1

λj(s|Aj , ck). (1)

One can readily see that K-MV is a special case of K-GMV as follows; for each
(v, ck) ∈ Dj × C, set λj(v, ck) = 1 if �j(v) = ck, and λj(v, ck) = 0 otherwise.

Let us focus on K = 2. Since λj(v, c1)+λj(v, c2) = 1, it holds that β(s, c1)+
β(s, c2) = 1. Whether s is classified into c1 or c2 is determined by whether
β(s, c2) ≤ 0.5 or not. However, we do not need to stick to this threshold 0.5, and
can replace it with any threshold θ ∈ [0, 1]. For K = 2, let us define 2-GMV by
a tuple (λ1, . . . , λN , θ).

Now we review 2-SEC, which serves as a visualization of 2-GMV [10, 11]. Let
us denote the union of all Dj ’s by D = D1 ∪ · · · ∪ DN . A sample-entry graph
(SE-graph) is a bipartite graph G = (S,D, E), which is defined as follows.

– S and D are node sets in the bipartite graph. Each sample s ∈ S and each
entry v ∈ D are nodes in a topological sense.

– For each j ∈ [N ], a sample s ∈ S and an entry v ∈ Dj are joined by an
edge (s, v) if and only if s matches the entry v. Thus the edge set is given
by E = E1 ∪ E2 ∪ · · · ∪ EN such that Ej = {(s, v) ∈ S ×Dj | s|Aj = v}.

We consider the two-layered drawing of SE-graph in a 2D plane, i.e., one layer
for S and the other for D, as shown in Fig. 1. We order the entries from the same
decision table consecutively, and take the permutation of the N decision tables
arbitrarily. We define a layout of SE-graph by (σ, π1, . . . , πN ), where σ : S → [|S|]
is an ordering on the samples in S, and πj : Dj → [|Dj |] (j ∈ [N ]) is an ordering
on the entries in Dj .

Let Gj = (S,Dj , Ej) denote the subgraph of G induced by S and Dj . We say
that two edges (s, v), (s′, v′) ∈ Ej cross if and only if (σ(s) > σ(s′) and πj(v) <
πj(v′)) or (σ(s) < σ(s′) and πj(v) > πj(v′)). We define x(G; σ, π1, . . . , πN ) as
the sum of the edge crossings over all the N induced subgraphs;

x(G; σ, π1, . . . , πN ) =
N∑

j=1

∣∣{(s, s′) ∈ S × S | σ(s) < σ(s′), πj(s|Aj ) > πj(s′|Aj )}
∣∣.

(2)



From the viewpoint of good visualization, we should determine the lay-
out so that x(G; σ, π1, . . . , πN ) is minimized. (We do not need to consider the
crossings between edges from different Dj ’s since its number becomes a con-
stant, but the reason is omitted due to space limitation.) We can compute
the layout along with a given 2-GMV (λ1, . . . , λN , θ). Consider the one-sided
edge crossing minimization problem (1CM) that asks to decide σ that mini-
mizes x(G; σ, π1, . . . , πN ), where π1, . . . , πN are fixed in the nondecreasing or-
der of similarity function values, i.e., by denoting Dj = {v1, v2, . . . , vB} and
λj(v1, c2) ≤ λj(v2, c2) ≤ · · · ≤ λj(vB, c2), we assign πj(v1) = 1, πj(v2) = 2, . . . ,
πj(vB) = B.

Since the 1CM problem is NP-hard [19], we utilize barycenter heuristic [20].
This heuristic permutes S in the nondecreasing order of barycenter β(s, c2) for
class c2. Computing its layout by barycenter heuristic, we assert that the SE-
graph achieves a good visualization of the 2-GMV in the following sense:

(i) The number of edge crossings is (approximately) minimized. Indeed, barycen-
ter heuristic has been recognized as an effective approximation algorithm in
practice (e.g., [21]).

(ii) The resulting drawing can enable some meaningful analysis on 2-GMV.
For example, the computed string of samples is split into two substrings
according to whether barycenter is larger than θ or not. The samples in the
former (resp., latter) substring are estimated as c2 (resp., c1) by the 2-GMV.

What we call 2-SEC is the visual classifier consisting of 2-GMV and its SE-graph.
For K > 2, a K-GMV (λ1, . . . , λN ) is visualized as K-SEC in a similar way.

We construct K copies G1, . . . , GK of the SE-graph G = (S,D, E), one for each
class ck ∈ C. We draw each Gk by two-layered drawing in a 2D plane. The layout
of Gk is computed as follows: The entries v’s from decision table Tj are ordered
by λj(v, ck), and the samples s’s are ordered by barycenter heuristic based on
β(s, ck).

3 SEC-TREE for Multiclass Classification

Let U denote any set of elements and 2U denote its power set. A family U ⊆ 2U

is called laminar if, for any two sets X, Y ∈ U , at least one of the three sets
X \ Y , Y \ X , X ∩ Y is empty. It is obvious that a laminar family U can be
visualized by a tree, where a node corresponds to X ∈ U and an edge represents
the inclusion relationship. In the sequel, we may refer to a laminar family U as
a tree and an X ∈ U as a node if no confusion arises.

To construct a class tree for the given K-class problem, we compute a laminar
family C ⊆ 2C of subsets of the class set C, and utilize C as the class tree. We
include a subset X ⊆ C in C if our criteria say that X should be treated as a
meta-class in a 2-class (or at least fewer-class) subproblem. For this, we test if
the samples of the classes in X and the samples of the classes in X̄ = C \X can
be separated “effectively” by 2-SEC.
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Fig. 3. Two-sided edge crossing minimization (2CM) on CE-graphs

To test the separability, we introduce class-entry graph (CE-graph), Ĝ =
(C,D, E), which is obtained from SE-graph G = (S,D, E) by contracting each
Sk ⊆ S (k ∈ [K]) into a node ck ∈ C. We define a layout of CE-graph by
(σ̂, π1, . . . , πN ), where σ̂ : C → [|C|] is an ordering on the class set and πj :
Dj → [|Dj |] (j ∈ [N ]) is an ordering on the entry set Dj . The number of edge
crossings of CE-graph in the layout (σ̂, π1, . . . , πN ) is defined analogously with
the case of SE-graph (see (2)).

Recall that 2-SEC is obtained as a result of performing 1CM on SE-graph.
We consider two-sided edge crossing minimization (2CM) on CE-graph that asks
to compute the layout (σ̂, π1, . . . , πN ) to minimize the edge crossings. See Fig. 3.
In this simple example, we assume the number K of classes to be 5 and focus
on one decision table with 4 entries. However, the discussion can be generalized
easily. For convenience, let σ̂(c1) = 1, . . . σ̂(cK) = K.

In the figure, we can expect that the samples of the classes in X = {c1, c2}
and the samples of the classes in X̄ = {c3, c4, c5} can be separated by an appro-
priate construction of 2-SEC. This expectation comes from the observation that
there are few crossings between edges from X and X̄, which may suggest the
separability between X and X̄ , and that there are more edge crossings in inside
of X , which may suggest that the samples of the classes in X match the similar
entries (and thus take close values for barycenter).

Now let us formalize our criteria to decide whether X ⊆ C should be included
as a node in the class tree. For k ∈ [K] and t ∈ [K − k] ∪ {0}, let Xk,t =
{ck, ck+1, . . . , ck+t} denote a consecutive subset of C. We define χ(k, t) to be
the number of crossings between edges from Xk,t and X̄k,t, and define η(k, t) as
follows;

η(k, t) =

{
0 if t = 0,

max[k′,t′]�[k,t]
χ(k,t)

χ(k′,t′) otherwise. (3)

One can see that, if η(k, t) is small, then the crossings between edges from Xk,t

and X̄k,t are relatively fewer than the edge crossings inside Xk,t.
Our algorithm to construct a class tree is described in Algorithm 1. The

smallness of ηk,t is decided by a positive parameter δ > 0. In line 1, since the
2CM problem is NP-hard [22], we employ iterative application of barycenter
heuristic in the experiments of Sect. 4, i.e., repeat fixing one side and permuting
the other side by barycenter heuristic until no change is made on both sides. In



line 2, we can compute all η(k, t)’s efficiently by dynamic programming. However,
the details are omitted due to space limitation.

Algorithm 1 ConstructClassTree

1: Compute the layout (σ̂, π1, . . . , πN ) of CE-graph by 2CM.
2: For each k ∈ [K] and t ∈ [K − k] ∪ {0}, compute η(k, t) by (3).
3: X ← ˘

Xk,t ⊆ C | η(k, t) < δ, k ∈ [K], t ∈ [K − k] ∪ {0}¯.
We denote X = {Xk1,t1 , . . . , Xkb,tb

}, where η(ka, ta) ≤ η(ka+1, ta+1) (∀a ∈ [b−1]).
4: C ← ∅.
5: for a← 1, 2, . . . , b do
6: if C ∪ {Xka ,ta} is laminar then
7: C ← C ∪ {Xka,ta}.
8: end if
9: end for

10: Output C.

For leaves of the class tree, the output C always includes singletons X1,0 =
{c1}, . . . , XK,0 = {cK} for any δ > 0 since η(k, 0) = 0 < δ by (3). It is possible
that C contains more than one maximal subset, i.e., more than one class tree. In
such a case, we have to choose the class tree used for classifying a future sample,
but we omit the details due to space limitation. (In our preliminary experiments,
we hardly observed such a case.)

The parameter δ eventually controls the structure of the output class tree.
Intuitively, if δ → 0 (resp., +∞), then less (resp., more) subsets are likely to be
included in C, and thus the class tree is close to a star (resp., a binary tree). Hence
it is expected that a larger δ decomposes the given K-class problem into more
subproblems for fewer classes. We will observe the effects of δ in the experiments
described in Sect. 4.

For the computed class tree C, let us mention how K ′-SEC is constructed for
an inner node X ∈ C (|X | ≥ 2) with K ′ children. Let Y1, . . . , YK′ ∈ C denote the
children of inner node X . For each decision table Tj ∈ T , let mj(v, Yk) denote
the number of the samples matching entry v ∈ Dj whose class is in Yk, and let
Mj(v) =

∑K′

k=1 mj(v, Yk). Then we employ the similarity function λj(v, Yk) with
the following definition;

λj(v, Yk) =

{
0 if Mj(v) = 0,
mj(v,Yk)

Mj(v) otherwise.

When K ′ = 2, recall that we are free to choose the threshold θ ∈ [0, 1].
Aiming at improving the prediction performance, we set the threshold θ to the
value that minimizes the error rate on the training set. Further, we employ two-
stage 2-SEC as follows; we construct the first 2-SEC (λ1, . . . , λN , θ) from the
training set S, and the second 2-SEC (λ′

1, . . . , λ
′
N , θ′) from the subset S′ ⊆ S,

where S′ is the subset of samples falling “near” the threshold θ of the first 2-SEC.
A future sample is classified by the second 2-SEC if it falls near θ.



Table 3. Data sets from UCI Repository

Data Classes (K) Samples Test Attributes
(Num) (Nom) → (Binary)

Lenses 3 24 (10-CV) 0 4 -
Iris 3 150 (10-CV) 4 0 6.7
Wine 3 178 (10-CV) 13 0 5.8
Balance 3 625 (10-CV) 4 0 16.0
Cmc 3 1473 (10-CV) 2 7 49.1
Car 4 1728 (10-CV) 0 6 -
Nursery 5 12960 (10-CV) 0 8 -
Bridges 6 105 (10-CV) 1 10 15.6
Dermatology 6 366 (10-CV) 1 33 12.1
Anneal 6 798 100 6 32 27.0
Sat 6 4435 2000 36 0 50
Zoo 7 101 (10-CV) 0 17 -
Glass 7 214 (10-CV) 9 0 14.4
Yeast 10 1484 (10-CV) 8 0 38.5
Soybean 19 307 376 0 35 -
Audiology 24 200 26 0 69 -

Finally, SEC-TREE is the visual classifier consisting of the class tree C and
the K ′-SEC’s for the inner nodes. Let us emphasize that our class tree is con-
structed based on edge crossing minimization on CE-graph.

4 Computational Experiments

4.1 Experimental Settings

In the experiments, we use 16 data sets from UCI Machine Learning Repository
[16]. Table 3 shows the summary of the data sets. We construct a classifier from
the training set and evaluate it by the error rate on the test set . Anneal, Sat,
Soybean and Audiology have their own test sets, and we use them for the
evaluation. (For these data sets, the column “Test” shows the number of samples
in the test set.) For the other data sets, we perform 10-fold cross validation [23]
to generate training and test sets.

The columns “(Num)” and “(Nom)” show the numbers of numerical and
nominal attributes, respectively. SEC-TREE is formulated on nominal data sets,
and it cannot handle a data set with numerical attributes; we need to transform
the data set into nominal one by an appropriate algorithm. For this, we employ
the algorithm proposed in our previous work [24], which extracts a set of binary
attributes from a data set with numerical attributes. An extracted binary at-
tribute may take 1 (resp., 0) if some numerical attribute value is (resp., is not)
larger than a computed threshold. We extract a set of binary attributes from
the training set, and then construct SEC-TREE from the binarized training set.
The test set is also binarized by the same set of binary attributes, and is used for



classifier tests. The rightmost column “(Binary)” shows the number of extracted
binary attributes, where the fractional number represents its average in 10-fold
cross validation. Some data sets contain only nominal attributes (which are in-
dicated by hyphen). For such data sets, we can construct SEC-TREE without
binarization.

Let us describe how to construct a set T = {T1, . . . , TN} of N decision tables.
We use N = 10, 20 and 30. We generate the attribute set Aj of each decision
table Tj = (Aj , �j) by DecisionTable package of Weka [18]. This package
generates a “good” attribute set by local search. By choosing the initial solution
at random, we can generate different attribute sets. See [12, 18] for the details.

4.2 Validity of Obtained Class Tree

In this subsection, we illustrate that our new method can find a class tree that
is close to the one inherent in Glass data set. In this data set, a sample corre-
sponds to a type of glass, the attribute values represent information on chemical
ingredients, and the class represents the object where the glass is used. The
manual of the data set says that the 7 classes form a hierarchy, as shown in
Fig. 2.

For simplicity, we concentrate on constructing binary class trees; the param-
eter δ is set to +∞ here. We investigate if the constructed class tree has either
of the two meta-classes, “Window glass” and “Non-window glass.” The class
“Vehicle” under “Non-float” is ignored, since no sample belongs to the class.

For comparison, we introduce two types of binary class trees constructed
in different ways. One is called equally sized class tree, which is constructed
by partitioning the ordered class set (which is obtained by 2CM on CE-graph)
recursively so that the difference in the number of the samples between the two
children becomes so small as possible. The other is random class tree, which is
constructed by partitioning the ordered class set at random recursively.

When N = 10 (resp., 20 and 30), our method finds either cluster by 66%
(resp., 74% and 69%), while the equally sized class tree finds either one by 44%
(resp., 40% and 45%) and the random class tree does by 25% (resp., 26% and
26%), which tells that our method succeeds in capturing nontrivial approxima-
tion of the true hierarchy.

For error rates, we cannot observe significant difference among the three class
trees in our preliminary experiments. However, they are different in the depths
of the nodes where misclassification occurs. We assert that misclassification in a
shallow node costs more than one in a deep node because, in the former case, we
may have to improve not only the K ′-SEC’s of the misclassifying inner nodes but
also the class tree structure. Figure 4 shows the distribution of the misclassified
samples for the depth difference between the misclassifying inner node and the
leaf of the true class. In the proposed class tree, misclassified samples are more
distributed on small differences than the others. Hence it is expected that SEC-
TREE of the proposed class tree can be improved further by detailed tuning only
on deeper nodes, which is left for future work. We remark that this phenomenon
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is also observed in the cases of N = 20 and 30, and in most of the other data
sets.

4.3 Parameter Effects

The parameter δ controls the degree to which the given K-class problem is
decomposed. In Fig. 5, we observe the effects of δ in terms of error rate. The left
figure shows the change of error rate on the training set of Glass, Soybean,
and Audiology. We use N = 20 here. As shown, SEC-TREE with a larger δ
(where the problem is decomposed into more subproblems for fewer classes) fits
to the training set better than a smaller δ, which may meet one’s intuition. On
the other hand, the right figure shows the change of error rate on the test set.
When δ becomes large, the error rate for Audiology increases rapidly, which
shows overfitting, while the error rates for the other two data sets are improved
by 2 to 3%. How the problem should be decomposed must depend on data sets,
and we have to decide the value of δ carefully.



4.4 Comparison with Other Classifiers

We compare SEC-TREE with other classifiers, C4.5 [17], LibSVM [25] and
MCSVM [26], in terms of error rate on test sets. All the classifiers have some
tunable parameters. We try some combinations of parameter values for each
classifier, and evaluate it by the smallest error rate. For SEC-TREE, we set δ to
ε, 1.0, 1.1, 1.2, 1.5, 2.0, 3.0 and +∞, where ε is a sufficiently small positive num-
ber. For C4.5, we test 8 combinations of parameter values: we set confidence
rate to 1%, 25% (default), 50% or 99%, binary split option to true or false
(default), and the other parameters to the default values. For LibSVM, we test
16 combinations: we use 2-class C-SVM and RBF kernel, and set C = 0.5, 1.0
(default), 2.0 or 4.0, γ = 0.0 (default), 0.5, 1.0 or 2.0, and the other param-
eters to the default values. Note that LibSVM employs one-to-one framework
to extend 2-class C-SVM to multiclass one. Since MCSVM is an extension of
2-class C-SVM, LibSVM and MCSVM have similar parameters in common. For
MCSVM, we test the same 16 combinations as LibSVM.

We show the results in Table 4. Boldface for each data set shows the smallest
(i.e., best) error rate among all classifiers. A sign ∗ on SEC-TREE indicates
that the error rate is smaller than C4.5. The effectiveness of SEC-TREE is
outstanding when K is large; for K ≥ 7, SEC-TREE outperforms C4.5 for
all data sets and becomes more competitive with SVMs. In particular, SEC-
TREE is much better than the other classifiers for Audiology, which has the
largest K among the used data sets. For larger K, we may have to decompose
K-class problem more carefully. The experimental results indicate that SEC-
TREE succeeds in extracting class trees which are effective in decreasing error
rates.

Let us describe computation time briefly. We evaluate the actual time needed
to construct a classifier and to classify a test set. All experiments are conducted
by our PC with 2.83GHz CPU. C4.5 takes at most 2 seconds for all data sets.
For SVMs and SEC-TREE, we observe Nursery data set as an extreme case,
since it has the largest number of samples. The computation time of SVMs
heavily depends on parameter values; both LibSVM and MCSVM take from 10
to 350 seconds. We observe that the error rates of SVMs are also sensitive to
parameter values. It must be exhaustive to search appropriate parameter values.
On the other hand, SEC-TREE takes about 21 (resp., 35 and 73) seconds when
N = 10 (resp., 20 and 30) regardless of δ. We note that more than 95% of
the computation time is devoted to generation of T , for which we use Weka as a
subroutine. We expect that the computation time can be improved by developing
a faster algorithm to generate T .

5 Concluding Remarks

In this paper, we proposed a new multiclass visual classifier SEC-TREE as an
extension of our previous 2-class classifier 2-SEC. SEC-TREE can extract any
tree as the class tree by tuning the parameter δ. We presented computational
results to show the effectiveness of the proposed method.



Table 4. Error rates (%) of SEC-TREE, C4.5, LibSVM and MCSVM

Data Classes (K) SEC-TREE C4.5 LibSVM MCSVM
N = 10 20 30

Lenses 3 20.33 20.00 20.17 16.66 21.66 0.00
Iris 3 5.80 5.80 5.80 4.66 3.99 4.67
Wine 3 10.47 10.69 10.74 9.08 9.05 9.05
Balance 3 ∗13.55 ∗13.23 ∗13.13 20.16 8.63 9.17
Cmc 3 ∗45.25 ∗45.10 ∗44.90 45.41 44.05 45.43
Car 4 3.30 3.35 3.46 2.83 0.34 1.24
Nursery 5 0.97 0.73 0.73 0.62 0.04 0.03
Bridges 6 42.71 41.05 40.42 39.09 38.18 39.27
Dermatology 6 ∗14.33 ∗14.27 ∗14.32 14.99 12.53 12.50
Anneal 6 7.90 7.80 7.90 6.00 6.00 4.00
Sat 6 ∗15.71 ∗15.03 ∗15.01 16.70 12.15 12.40
Zoo 7 ∗0.00 ∗0.00 ∗0.00 1.00 1.00 0.00
Glass 7 ∗29.47 ∗28.28 ∗27.37 32.72 25.17 25.36
Yeast 10 ∗41.48 ∗40.98 ∗40.64 41.91 40.22 42.50
Soybean 19 ∗10.77 ∗9.23 ∗9.76 12.76 7.44 9.19
Audiology 24 ∗15.00 ∗12.69 ∗11.92 15.38 34.61 23.08

Our main future work is described as follows: (i) We have assumed that a set
T of decision tables is given and generated it by Weka in the experiments. We
need to develop a faster algorithm to generate a better T . (ii) In the experiments,
we used a binarization algorithm to deal with a data set with numerical attributes
since our formulation is limited to nominal data sets. We should consider an
extended formulation that can treat numerical attributes directly. (iii) We also
have to find application areas where our visual classifier is effective for data
analysis and knowledge discovery.
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