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Abstract. The design of complex fusion systems requires experimental analy-
sis, following the classical structure of experiment design, data acquisition, ex-
periment execution and analysis of the obtained results. We present here a 
framework with simulation capabilities for sensor fusion in aerial vehicles. 
Thanks to its abstraction level it only requires a few high level properties for 
defining a whole experiment. Its modular design offers flexibility and makes 
easy to complete its functionality. Finally, it includes a set of tools for fast de-
velopment and more accurate analysis of the experimental results. 
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1   Introduction 

The research of fusion solutions to real-world complex problems is a time costly 
process, plagued by accessory tasks which demand a great effort to be done. The 
market offers powerful tools for accelerating some of the more generic parts, as data 
analysis or visualization. Nonetheless, as we focus in a more reduced and specialized 
field, it is common to find that one has to perform the expensive task of implementing 
its own tools. 

Counting with an effective piece of software really makes a difference. Apart from 
the time saving, having a good toolbox for data representation/visualization can sup-
pose detecting an otherwise ignored problem, or knowing how to improve the ana-
lyzed algorithms. This paper presents a generic framework for experimentation on 
unmanned air vehicles (UAV) sensor fusion. Bearing in mind the way in which such a 
tool is used, the whole system has been implemented in MATLABTM to make it flexi-
ble, easily modifiable, as well as speeding up data visualization [1]. 

With illustrative purposes, this document shows its application to the multisensory 
navigation subsystem of a vehicle that is performing maneuvers related with air traffic 
management (ATM)[2]. Nonetheless, it can manage any other type of flight trajecto-
ries and even other kind of vehicles (such as maritime or terrestrial). 

The structure of the simulator will be reviewed, with special attention to the design 
and functioning details of each module. We will also present our simulation and expe-
rimentation methodology, illustrating the process with some of the figures generated 
for results analysis and validation. 
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2   Simulator Architecture 

The simulator is composed by three modules for data generation (see Fig. 1), plus an 
additional module for fusion algorithms and another one for performance evaluation. 
Data generation begins creating the specification of a vehicle trajectory. The resulting 
data is then feed to the aerodynamic model, generating the flight simulation. That 
process results in a set of values related with the dynamics of the UAV (such as posi-
tion, attitude or accelerations), that can be easily used to synthesize realistic sensor 
measurements. 

The fusion module takes the outputs of the selected sensors and processes them se-
quentially using the desired technique among the available library of implemented 
algorithms: (Extended) Kalman Filters, Particle Filters, etc.  
Agustín. 

Fig. 1. Framework schematic view. Specification for a desired trajectory (1), sensors measure-
ment models (2), fusion process (3), performance evaluation (4). 

2.1   Trajectory Generation 

This module is composed by several scripts and functions. They are focused on gene-
rating the input for the aerodynamic simulation from a high level specification of the 
trajectory.  

The framework is provided with a set of functions for simple maneuvers such as 
straight flight at constant speed or with longitudinal accelerations/decelerations, or 
turns around a single axis of the vehicle local coordinate system. These basic pieces 
can be combined and concatenated then to generate more complex trajectories. In the 
case of ATM trajectories, we have created scripts for typical scenarios as the 
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racetrack (performed during the waiting time before landing of an aircraft in order to 
fit with the time scheduled. They have the shape of a hippodrome, a rectangle with 
two semicircles attached to its shorter sides (Fig. 2). 

Fig. 2. 3D view of simulated racetrack+landing trajectory 

The output of the system consists in six arrays of pairs instant-value. The three first 
arrays contain the forces in the body-fixed frame of reference of the vehicle 
,௫ܨ) ,௬ܨ  ௭), which determine the translation. The three remaining are the momentsܨ
 .in the same frame, which determine the vehicle rotations (௭௭ܯ,௬௬ܯ,௫௫ܯ)

2.2   Aerodynamic Simulation 

The following step is the simulation of the vehicle dynamics. The selected model in 
our case has been, for the sake of simplicity, a rigid body with six degrees of freedom 
(6DoF in advance). Our reference implementation uses the aerospace MATLABTM 
Aerosim Aeronautical Simulation Block Set(1)[3][4], that provides a complete set of 
tools for rapid development of detailed 6DoF nonlinear generic aerial vehicle models 
and also a graphical view to check the behavior of system under test. 

This generic motion model can be substituted by a more detailed scheme. The only 
requirement for the replacement is to generate all the real data needed to synthesize 
the measurements on the next phase. In our example we store the position, speed, 
attitude (in quaternion and Euler angles), accelerations and angular rates of the body. 
This information is enough for simulating all the common sensors. 

As Fig. 3, the 6DoF dynamic model integrated both ideal segments to compose the 
simulated trajectory, and the simulated noisy sensor data (in its lower part). This is 
especially useful for online simulations, but is not recommended for experiments 
because the result will be sensitive to the particular generation of random noise in-
jected in the data. 

The “real” data of the flight is stored in separate files for later use. This is useful for 
creating persistent datasets and for saving computation time, because the simulation of a 
flight is usually a costly process implying complex numerical operations. Even in the 
case of a standard 6DoF system, it is required to solve some differential equations at 
each time step –and typical time step resolution is in the order of a few milliseconds. 
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Fig. 3. Simulation of ideal tra
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Once the whole trajectory has been filtered, we obtain a different interpretation of 
the flight trajectory. It can be directly compared with both real data and sensor mea-
surements because the three sets provide values for the same sequence of time in-
stants. Back to our illustrative example, we have performed several experiments of 
interest, as shown in the next subsections. A centralized processing architecture is the 
selected option for all the single-vehicle problems, given the coupling requirements to 
estimate sensor corrections together with trajectory parameters: a single algorithm of 
loosely coupled type will track the whole UAV state using the information from all 
the available sensors. 

Typically, it is interesting to generate the measures in the same script the fusion is 
performed, because it allows to experiment also with sensor features, as the noise 
models to be used. One of the problems of dealing with noisy data is that a certain 
scenario can be particularly favorable (or unfavorable) for the applied algorithm, 
leading to non representative results. To avoid this, the whole trajectory is not filtered 
once per experiment. We will follow a Monte Carlo approach instead. 

This means that for the same trajectory, several sets of measures will be generated. 
The noise used in the synthesis of each set of measures is, by definition, random and 
different on each generation, so the final set will be unique. The random number ge-
nerator seed can be stored for assuring experiment reproducibility. With the simulated 
data sets, the Monte Carlo methodology allows for different experiments which can 
be run in order  to perform rigorous statistical analysis on the output (root mean 
squared errors, t-test for performance comparison, integrity analysis, etc.). 

4   Results Analysis and Validation 

Evaluating the performance of a solution can be complex task. In order to facilitate it, 
our framework provides tools for supervising the process while it is executed, and to 
analyze the results one the trajectory has been filtered. 

As an example of a tool of the first category, Fig. 5 shows a 3D plot obtained for a 
Particle Filter (PF) during the tracking of a trajectory using a GPS, an accelerometer 
and a gyroscope as sensors. Each particle (the faded cloud in the right of the figure) is 
drawn as an arrow, with color intensities and sizes directly proportional to the weights 
of the particles. Note how only a few particles in the bottom are considered important 
after the last GPS measure is received (just over the X axis, near the -3590 meters 
mark), while the vast majority of the population is represented in a very light pale 
tone. The estimation of the filter is the wide arrow with triangles in the extremes. 

Intermediate figures of this kind have multiple uses, such as visualizing with high 
detail on each step to diagnose the causes of a previously detected problem. For in-
stance, we can supervise if the resampling stage is introducing enough variability in 
the population of particles. 

The overall performance of a certain solution, however, can only be evaluated after 
the experiment is finished. MATLABTM makes very easy the calculation of different 
statistics and plotting the desired variables. The real dare is to select the appropriate 
quality indicators. Next figures are some examples obtained using our framework. 
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whole experiment, starting with the generation of a simulated flight trajectory and 
ending with graphical descriptions of the results. 

Using this software, we have reduced the implementation time of an already de-
signed experiment to just a few minutes. Evaluating how a change in a variable af-
fects the result is trivial, as well as changing the value of any set of configuration 
parameters. If required, the functionality can be completed by adding new algorithms, 
measure models or trajectory definitions.  
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