
This document is published in:

“Corchado, E. et al. (eds.) (2010) Hybrid Artificial Intelligent
Systems: 5th International Conference, HAIS 2010, San
Sebastián, Spain, June 23-25, 2010. Proceedings, Part II.
(Lecture Notes in Computer Science, 6077) Springer, pp. 460-
467. DOI: http://dx.doi.org/10.1007/978-3-642-13803-4_57”

© 2010 Springer-Verlag Berlin Heidelberg

http://dx.doi.org/10.1007/978-3-642-13803-4_57

A Simulation Framework for UAV Sensor Fusion

Enrique Martí, Jesús García, and Jose Manuel Molina

Group of Applied Artificial Intelligence, Universidad Carlos III de Madrid, Av. de la
Universidad Carlos III, 22, 28270 Colmenarejo, Madrid (Spain)

emarti@inf.uc3m.es, jgherrer@inf.uc3m.es, molina@ia.uc3m.es

Abstract. The design of complex fusion systems requires experimental analy-
sis, following the classical structure of experiment design, data acquisition, ex-
periment execution and analysis of the obtained results. We present here a
framework with simulation capabilities for sensor fusion in aerial vehicles.
Thanks to its abstraction level it only requires a few high level properties for
defining a whole experiment. Its modular design offers flexibility and makes
easy to complete its functionality. Finally, it includes a set of tools for fast de-
velopment and more accurate analysis of the experimental results.

Keywords: sensor fusion, simulation framework, unmanned air vehicle.

1 Introduction

The research of fusion solutions to real-world complex problems is a time costly
process, plagued by accessory tasks which demand a great effort to be done. The
market offers powerful tools for accelerating some of the more generic parts, as data
analysis or visualization. Nonetheless, as we focus in a more reduced and specialized
field, it is common to find that one has to perform the expensive task of implementing
its own tools.

Counting with an effective piece of software really makes a difference. Apart from
the time saving, having a good toolbox for data representation/visualization can sup-
pose detecting an otherwise ignored problem, or knowing how to improve the ana-
lyzed algorithms. This paper presents a generic framework for experimentation on
unmanned air vehicles (UAV) sensor fusion. Bearing in mind the way in which such a
tool is used, the whole system has been implemented in MATLABTM to make it flexi-
ble, easily modifiable, as well as speeding up data visualization [1].

With illustrative purposes, this document shows its application to the multisensory
navigation subsystem of a vehicle that is performing maneuvers related with air traffic
management (ATM)[2]. Nonetheless, it can manage any other type of flight trajecto-
ries and even other kind of vehicles (such as maritime or terrestrial).

The structure of the simulator will be reviewed, with special attention to the design
and functioning details of each module. We will also present our simulation and expe-
rimentation methodology, illustrating the process with some of the figures generated
for results analysis and validation.

1

2 Simulator Architecture

The simulator is composed by three modules for data generation (see Fig. 1), plus an
additional module for fusion algorithms and another one for performance evaluation.
Data generation begins creating the specification of a vehicle trajectory. The resulting
data is then feed to the aerodynamic model, generating the flight simulation. That
process results in a set of values related with the dynamics of the UAV (such as posi-
tion, attitude or accelerations), that can be easily used to synthesize realistic sensor
measurements.

The fusion module takes the outputs of the selected sensors and processes them se-
quentially using the desired technique among the available library of implemented
algorithms: (Extended) Kalman Filters, Particle Filters, etc.
Agustín.

Fig. 1. Framework schematic view. Specification for a desired trajectory (1), sensors measure-
ment models (2), fusion process (3), performance evaluation (4).

2.1 Trajectory Generation

This module is composed by several scripts and functions. They are focused on gene-
rating the input for the aerodynamic simulation from a high level specification of the
trajectory.

The framework is provided with a set of functions for simple maneuvers such as
straight flight at constant speed or with longitudinal accelerations/decelerations, or
turns around a single axis of the vehicle local coordinate system. These basic pieces
can be combined and concatenated then to generate more complex trajectories. In the
case of ATM trajectories, we have created scripts for typical scenarios as the

SI
M

U
LA

TO
R

Low level
trajectory

spec.

Trajectory
generation

Aerodynamic
model

Sensor
model

High level
trajectory

spec.

Simulated
flight data
(ideal)

Sensor
measurements
for input
trajectory

FU
SI

O
N

2

3

4

1

Analyzed
algorithms
(KF, PF…)

Performance
evaluation

2

racetrack (performed during the waiting time before landing of an aircraft in order to
fit with the time scheduled. They have the shape of a hippodrome, a rectangle with
two semicircles attached to its shorter sides (Fig. 2).

Fig. 2. 3D view of simulated racetrack+landing trajectory

The output of the system consists in six arrays of pairs instant-value. The three first
arrays contain the forces in the body-fixed frame of reference of the vehicle
,௫ܨ) ,௬ܨ ௭), which determine the translation. The three remaining are the momentsܨ
 .in the same frame, which determine the vehicle rotations (௭௭ܯ,௬௬ܯ,௫௫ܯ)

2.2 Aerodynamic Simulation

The following step is the simulation of the vehicle dynamics. The selected model in
our case has been, for the sake of simplicity, a rigid body with six degrees of freedom
(6DoF in advance). Our reference implementation uses the aerospace MATLABTM
Aerosim Aeronautical Simulation Block Set(1)[3][4], that provides a complete set of
tools for rapid development of detailed 6DoF nonlinear generic aerial vehicle models
and also a graphical view to check the behavior of system under test.

This generic motion model can be substituted by a more detailed scheme. The only
requirement for the replacement is to generate all the real data needed to synthesize
the measurements on the next phase. In our example we store the position, speed,
attitude (in quaternion and Euler angles), accelerations and angular rates of the body.
This information is enough for simulating all the common sensors.

As Fig. 3, the 6DoF dynamic model integrated both ideal segments to compose the
simulated trajectory, and the simulated noisy sensor data (in its lower part). This is
especially useful for online simulations, but is not recommended for experiments
because the result will be sensitive to the particular generation of random noise in-
jected in the data.

The “real” data of the flight is stored in separate files for later use. This is useful for
creating persistent datasets and for saving computation time, because the simulation of a
flight is usually a costly process implying complex numerical operations. Even in the
case of a standard 6DoF system, it is required to solve some differential equations at
each time step –and typical time step resolution is in the order of a few milliseconds.

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

0
200

400
600

800

50100150200

Y coordinate

X coordinate

Ideal Trajectory

Z
 c

oo
rd

in
at

e

3

Fig. 3. Simulation of ideal tra

2.3 Generating Realistic

It is commonly known that
suffer from different effect
rences from external entitie
altered with an added rando

Sensor measures can be
cause all the aforementione
operations –for instance, ad

We can find an example
crosses in the bottom part)
barometric altimeter. The p

• Simulate noise, by pert
Gaussian distribution. Th

• Add a constant value
mainly caused by differe
by the device and its re
result.

• The last effect to be sim
meter do not provide co
step is 50 meters). The fi

Thus, the reason for separa
is quite simple: it simplifie
for the same trajectory, and

ajectory and IMU measures with MATLAB Aerospace blocks

Sensor Data

t sensors do not provide perfect information because t
ts such as inappropriate calibration, time drifts or inte
es. Instead, their measures of real magnitudes are usua
om noise, and systematic effects as biases.
e generated from “ideal” data quite straightforwardly,
ed effects can be subsequently incorporated through sim
ddition or matrix multiplication.
 in Fig. 4, where the ideal flight altitude (ascending line
 is taken as starting point for simulating the measure o
rocess consists in three consecutive steps:

turbing each value with a random sample drawn from
he result is shown in hollow circles, also in the bottom.

to mimic the altimeter bias. The bias is an eff
ences between the sea level atmospheric pressure assum
eal value. The hollow triangles in the upper part are

mulated is the quantization step. Altimeters based in a ba
ontinuous measures: output values are quantized (here,
inal measures are the solid squares.

ating flight simulation from sensor measurement synthe
es the production of several generations of measureme

d swapping among different sensor models.

set

they
rfe-
ally

be-
mple

e of
of a

m a

ffect
med

the

aro-
the

esis
ents

4

Fig. 4. Example of measurem
starting point is the original ide

The implemented framew
able sample of unaltered d
values are individually mar
realistic) set of measures. T
date ratio, and the emulation

Each sensor model is i
flight data and the paramet
values.

3 Sensor Fusion

After generating all the nec
consists on defining the se
model and update ratio), t
used.

Once the architecture is
run using a fixed scheme.
script templates. The next s
able tracking techniques ha
inputs. The result at each tim

The integration of GPS
research attention [6]. Plen
robustness have been applie
puting paradigms [7][8][9]
direct integration in Matlab
Extended Kalman Filter, U
references show, we have a
that its inclusion in the code

ment generation using the model of a barometric altimeter.
eal flight altitude.

work applies the noise model of each sensor to every av
data, disregarding its temporal resolution. The produ
rked with a timestamp, resulting in a very dense (and
This will allow later selection and tuning of the sensor
n of more advanced effects such as measurement loss.
mplemented as a separate function. It receives the id
ters of the measurement model, and returns the simula

cessary data, experiments can be performed. The first s
et of available sensors and their features (including no
the fusion architecture and the concrete algorithms to

defined [5], the great majority of the experiments can
All our experiments have been implemented over a f

step is to configure the fusion algorithms. One of the av
as to be selected and configured to make use of the selec
me step is registered together with its timestamp.
S with inertial sensors attract a considerable number
nty of classical and advanced techniques to increase
ed, such as unscented Kalman, particle filters or soft co
. There are many available algorithms available for th

b. At this moment, our framework includes Kalman Fil
nscented Kalman Filter and Particle Filter [10][11]. As

adapted existing libraries to work with our framework, s
e consists in a few lines.

The

vail-
uced

un-
up-

deal
ated

step
oise

o be

n be
few

vail-
cted

r of
the

om-
heir
lter,
the
uch

5

Once the whole trajectory has been filtered, we obtain a different interpretation of
the flight trajectory. It can be directly compared with both real data and sensor mea-
surements because the three sets provide values for the same sequence of time in-
stants. Back to our illustrative example, we have performed several experiments of
interest, as shown in the next subsections. A centralized processing architecture is the
selected option for all the single-vehicle problems, given the coupling requirements to
estimate sensor corrections together with trajectory parameters: a single algorithm of
loosely coupled type will track the whole UAV state using the information from all
the available sensors.

Typically, it is interesting to generate the measures in the same script the fusion is
performed, because it allows to experiment also with sensor features, as the noise
models to be used. One of the problems of dealing with noisy data is that a certain
scenario can be particularly favorable (or unfavorable) for the applied algorithm,
leading to non representative results. To avoid this, the whole trajectory is not filtered
once per experiment. We will follow a Monte Carlo approach instead.

This means that for the same trajectory, several sets of measures will be generated.
The noise used in the synthesis of each set of measures is, by definition, random and
different on each generation, so the final set will be unique. The random number ge-
nerator seed can be stored for assuring experiment reproducibility. With the simulated
data sets, the Monte Carlo methodology allows for different experiments which can
be run in order to perform rigorous statistical analysis on the output (root mean
squared errors, t-test for performance comparison, integrity analysis, etc.).

4 Results Analysis and Validation

Evaluating the performance of a solution can be complex task. In order to facilitate it,
our framework provides tools for supervising the process while it is executed, and to
analyze the results one the trajectory has been filtered.

As an example of a tool of the first category, Fig. 5 shows a 3D plot obtained for a
Particle Filter (PF) during the tracking of a trajectory using a GPS, an accelerometer
and a gyroscope as sensors. Each particle (the faded cloud in the right of the figure) is
drawn as an arrow, with color intensities and sizes directly proportional to the weights
of the particles. Note how only a few particles in the bottom are considered important
after the last GPS measure is received (just over the X axis, near the -3590 meters
mark), while the vast majority of the population is represented in a very light pale
tone. The estimation of the filter is the wide arrow with triangles in the extremes.

Intermediate figures of this kind have multiple uses, such as visualizing with high
detail on each step to diagnose the causes of a previously detected problem. For in-
stance, we can supervise if the resampling stage is introducing enough variability in
the population of particles.

The overall performance of a certain solution, however, can only be evaluated after
the experiment is finished. MATLABTM makes very easy the calculation of different
statistics and plotting the desired variables. The real dare is to select the appropriate
quality indicators. Next figures are some examples obtained using our framework.

6

Fig. 5. Auxiliary plot to

Fig. 6. Comparison between p
raw GPS error. Gyroscope out

Fig. 7. Gyroscope bias estima
based solution of GPS+IMU fu

5 Conclusions

A framework for experimen
Apart from detailing its str

50 100 150

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

time (s)

an
gu

la
r

ra
te

 b
ia

s
(r

ad
/s

)

estimated gyroscope bia

 help visualizing current system state during fusion process

position estimation accuracy of a filtering algorithm against
put shows context about turns and straight segments.

ation for an EKF-
usion

Fig. 8. Unstable gyroscope bias estima
for an EKF-based solution of a GPS+I
fusion

nting on sensor fusion has been presented in this docum
ructure, we have shown how it can be used for creatin

0 50 100 150 200 250 3
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

time (s)

an
gu

la
r

ra
te

 b
ia

s
(r

ad
/s

)

estimated gyroscope biases

roll
pitch
yaw

200 250 300

ases

roll
pitch
yaw

t the

ation
IMU

ent.
ng a

300

7

whole experiment, starting with the generation of a simulated flight trajectory and
ending with graphical descriptions of the results.

Using this software, we have reduced the implementation time of an already de-
signed experiment to just a few minutes. Evaluating how a change in a variable af-
fects the result is trivial, as well as changing the value of any set of configuration
parameters. If required, the functionality can be completed by adding new algorithms,
measure models or trajectory definitions.

Acknowledgements

This work was supported in part by Projects ATLANTIDA, CICYT TIN2008-06742-
C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM CONTEXTS
S2009/TIC-1485 and DPS2008-07029-C02-02.

References

[1] Gade, K.: NAVLAB, a Generic Simulation and Post-processing Tool for Navigation. Eu-
ropean Journal of Navigation 2(4), 51–59 (2004)

[2] Rodriguez, A.L., et al.: Real time sensor acquisition platform for experimental UAV re-
search. In: IEEE/AIAA 28th DASC 2009, pp. 5.C.5-1–5.C.5-10 (October 2009)

[3] Aerospace Toolbox - MATLAB. The MathWorks,
http://www.mathworks.com/products/aerotb/ (Cited: 03 15, 2010)

[4] Kurnaz, S., Cetin, O., Kaynak, O.: Fuzzy Logic Based Approach to Design of Flight Con-
trol and Navigation Tasks for Autonomous Unmanned Aerial Vehicles. Journal of Intelli-
gent and Robotic Systems 54(1-3), 229–244 (2009)

[5] García, J., et al.: Data fusion architectures for autonomous vehicles using heterogeneous
sensors. In: 1st ESA NAVITEC. Noordwikj, Holland (December 2006)

[6] Wagner, J.F., Wienekeb, T.: Integrating satellite and inertial navigation—conventional
and new fusion approaches. Control Engineering Practice 11(5), 543–550 (2003)

[7] van der Merwe, R., Wan, E., Julier, S.: Sigma Point Kalman Filters for Nonlinear Estima-
tion and Sensor Fusion: Applications to Integrated Navigation. In: AIAA Guidance, Na-
vigation and Controls Conference, Providence, USA (August 2004)

[8] Crassidis, J.: Sigma-Point Kalman Filtering for Integrated GPS and Inertial Navigation.
IEEE Trans. on AES 42(2) (April 2006)

[9] Chiang, K.W., Huang, Y.W.: An intelligent navigator for seamless INS/GPS integrated
land vehicle navigation applications. Applied Soft Computing 8(1), 722–733 (2008)

[10] Hartikainen, J., Sarkka, S.: Optimal filtering with Kalman filters and smoothers-a Manual
for Matlab toolbox EKF/UKF (2007),
http://www.lce.hut.fi/research/mm/ekfukf/

[11] Chen, L., et al.: PFLib - An Object Oriented MATLAB Toolbox for Particle Filtering.
Department of Statistics - Colorado State University (2007),
http://www.stat.colostate.edu/~chihoon/
paper-6567-25-revised.pdf (Cited: 03 14, 2010)

8

	Página en blanco

