
On the Use of a Hybrid Approach to Contrast
Endmember Induction Algorithms

Miguel A. Veganzones and Carmen Hernández

Computational Intelligence Group, UPV/EHU
Facultad Informatica, Paseo Manuel de Lardizabal

San Sebastian, Spain
www.ehu.es/ccwintco

Abstract. In remote sensing hyperspectral image processing, identifying the con-
stituent spectra (endmembers) of the materials in the imageis a key procedure for
further analysis. The contrast between Endmember Inductions Algorithms (EIAs)
is a delicate issue, because there is a shortage of validation images with accurate
ground truth information, and the induced endmembers may not correspond to
any know material, because of illumination and atmosphericeffects. In this pa-
per we propose a hybrid validation method, composed on a simulation module
which generates the validation images from stochastic models and evaluates the
EIA through Content Based Image Retrieval (CBIR) on the database of simulated
hyperspectral images. We demonstrate the approach with twoEIA selected from
the literature.

1 Introduction

The high spectral resolution provided by current hyperspectral imaging devices facil-
itates identification of fundamental materials that make upa remotely sensed scene
[1, 6]. In the field of hyperspectral image processing, identify the constituent spectra
(endmember) of the materials in the image is a key procedure for further analysis, i.e.,
unmixing, thematic map building, target detection, unsupervised segmentation. A li-
brary of known pure ground image spectra or laboratory sample spectra could be used.
However, this poses several problems, such as the effects ofthe illumination on the ob-
served spectra, the difference in sensor intrinsic parameters and thea priori knowledge
about the material composition of the scene. Besides the methodological questions, this
approach is not feasible when trying to process large quantities of image data. Current
approaches try to induce automatically the endmembers fromthe image data itself, the
so called Endmember Induction Algorithms (EIA). They try either to select some im-
age pixel spectra as the best approximation to the endmembers in the image (i.e. [4]),
or to compute estimations of the endmembers on the basis of the transformations of the
image data (i.e. [5, 10]).

The comparison among the relative performances of these algorithms is a delicate
issue. In essence, these algorithms are unsupervised: theyexplore the data or transfor-
mations of the unlabeled data. Therefore, validation approaches based on the quality
of some classification performance measure may be inaccurate. Besides, there are big
difficulties in obtaining good quality labeled hyperspectral test images. In this work



we propose a hybrid approach for validation. The first part ofthe approach is a hyper-
spectral image simulation module based on random field generation approaches. This
module is used to generate the test images, with known endmembers and realistic abun-
dance spatial distribution ground truth, that will be used for the comparison between al-
gorithms. The second part of the approach consists of a Content Based Image Retrieval
(CBIR) [9, 3] scheme based on a distance defined on the set of endmembers induced
from the image. We do not impose classification like schemes as the performance mea-
sures, but we evaluate the ability of the algorithms to uncover the underlying mixtures.
We apply this methodology to compare the Endmember induction Heuristic Algorithm
(EIHA) [4], with respect to the well known geometrical algorithm N-FINDER [10].

The structure of the paper is as follows: In section 2 we detail the proposed EIAs
contrast methodology based on CBIR systems. Section 3 givesa short review of the the
algorithms compared in this demonstration of the approach.In section 4 we define the
experiments and present the results. Finally, we give some conclusions in section 5.

2 Contrast of EIAs Based on CBIR

In this section we will first describe the details of the simulation module that provides
the test images, then we present the similarity measure between hyperspectral images
and finally we describe the comparison methodology as a whole.

2.1 Synthetic Hyperspectral Image Module

The hyperspectral images used for the algorithm contrast are generated as linear mix-
tures of a set of spectra (the ground-truth endmembers) withsynthesized abundance
images. The ground-truth endmembers were randomly selected from a subset of the
USGS spectral library.

The synthetic ground-truth abundance images were generated in a two-step proce-
dure. First, we simulate each abundance as a gaussian randomfield with Matern corre-
lation function of parametersθ1 = 10 andθ2 = 1. We applied the procedure proposed
by [7] for the efficient generation of a big domain of gaussianrandom fields. Second,
to ensure that there are regions of almost pure endmembers, we selected for each pixel
the abundance coefficient with the greatest value and we normalize the remaining co-
efficients to ensure that the normalized abundance coefficients sum up to one. It can
be appreciated on the abundance images that each endmember has several regions of
almost pure pixels, viewed as brighter regions in the images.

We have synthesized a total of 6000 hyperspectral images divided in three datasets
of 2000 images each. Each dataset is defined by the number of endmembers in the
repository of ground-truth endmembers. We defined three repositories of ground-truth
endmembers with 5, 10 and 20 endmembers each, representing an increasing diversity
in the materials present in the dataset. The size of the images is 256x256 pixels with
269 spectral bands each. For each dataset we have generated collections of 500 images
by the following procedure:

– First, we randomly decide the number of endmembers in the image, between 2 and
5.



– Second, we select the image ground-truth endmembers from the corresponding
repository of ground-truth endmembers.

– Third, we generate the synthetic abundance images corresponding to each endmem-
ber, applying the corrections commented before.

Figure 1 shows a subset of the collection of ground-truth endmembers. Figure 2 shows
an example of the selected endmembers and the generated images of abundances to
synthesize an hyperspectral image.
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Fig. 1. Subset of endmembers selected from the USGS library to synthesize the hyperspectral
images datasets.

2.2 Dissimilarity Between Hyperspectral Images

A CBIR system is based on the definition of a similarity measure between the images.
For hyperspectral images, two kind of informations can be used to build such a dissim-
ilarity measure: the spectral and the spatial informations. Because we are interested in
exploiting the spectral information, each hyperspectral imageH is characterized by a
set of induced endmembersE. A dissimilarity measure between two hyperspectral im-
ages,S (Hξ, Hγ), is defined in terms of the distances between their corresponding sets
of endmembers.

Let it beEξ =
{

e
ξ
1
, e

ξ
2
, . . . , eξ

pξ

}

the set of endmembers induced from the image

Hξ in the database, wherepξ is the number of induced endmembers from theξ-th
image. Given two images,Hξ, Hγ , we compute the following matrix whose elements
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Fig. 2. Example of the endmembers and abundance images used to generate a synthetic hyper-
spectral image. This example corresponds to a 10-endmembers dataset image using 3 endmem-
bers.

are the distances between the pairs of endmembers built as all the possible combination
of endmember from each image:

Dξ,γ = [di,j ; i = 1, . . . , pξ; j = 1, . . . , pγ ] , (1)

wheredi,j is any defined distance between the endmemberse
ξ
i andeγ

j , i.e. the Euclidean
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. Then the dissimilarity between the images is given as a

function of the distance matrix (1) by the following equation:

S (Hξ, Hγ) = (‖mr‖ + ‖mc‖) (|pξ − pγ | + 1) , (2)

wheremr andmc are the vectors built of the minimal values of the distance matrix,
Dξ,γ , computed across rows and columns respectively. That is, the elements of the the
row vector of minima are computed as follows:

mr,i = min
j

{dij} ; i = 1, . . . , pξ.

Note that the endmember induction algorithm can give different number of end-
members for each image. The proposed dissimilarity function can cope with this asym-
metry avoiding the combinatorial problem of trying to decide which endmembers can
be matched and what to do in case that the number of endmembersis different from one
image to the other.



2.3 Methodology for the Contrast of EIAs

We propose here the summary methodology for the comparison among EIAs which
hybridizes hyperspectral image simulation and CBIR performance measurements. The
CBIR approach is based on the dissimilarity measure (2) presented in the previous
section. The comparison methodology consists on the following steps:

1. Build a database of synthetic hyperspectral images usinga set of ground truth end-
members and simulated abundance images.

2. Compute the dissimilarity between each image pair in the database on the basis of
the image ground truth endmembers. For each image rank the remaining images in
the database with respect to theirground truth dissimilarity to it.

3. For each image in the dataset compute its endmembers usingthe EIAs. We will
obtain as many endmember sets per image as EIAs are to be compared.

4. Compute the dissimilarity between each image pair in the database on the basis of
the induced endmembers. For each image rank the remaining images in the database
with respect to theirinduced dissimilarity to it.

5. Compare the rankings obtained by the use of ground truth endmembers and induced
endmembers.

First step involves the generation of in-lab controlled hyperspectral datasets. Although
the ground-truth endmembers used to generate the syntheticimages are going to be
used to validate the EIA performance, we are not interested in compare them directly
with the induced endmembers. The induced endmembers could have great differences
respect to the real ones, but still they could retain enough discriminative information
for the problem we are trying to solve, being of high relevance.

Second step computes the dissimilarity measures between each image in the dataset
using the ground-truth endmembers. This provide us the expected results for a given
query, and so, the point of reference to define the performance measures.

Third step makes use of an EIA to induce the endmembers from each image in
the dataset. In the fourth step, those induced endmembers will be used to obtain the
disimilarites between each image in the dataset, using the same dissimilarity function
than in the step two. In figure 3 we illustrate how the dissimilarity ranking can vary
when computed on the ground truth endmembers (blue line) or the induced endmembers
(red line). An error measure of the induced endmembers couldbe the area between
both lines, however we are not interested in such kind of measures, we prefer a more
qualitative evaluation in terms of the recalling power of the CBIR system built over the
above dissimilarity measure.

From a CBIR point of view, the objective is to retrieve thek more similar im-
ages from a dataset given a query image. This methodology compares the results of
a set of queries using the induced endmembers to the results using the ground-truth
endmembers. This would indicate the ability of the used EIA to retrieve spectral in-
formation relevant for CBIR purposes. Step five use precision and recall measures to
compare the EIAs on the basis of CBIR performance. Precisionis defined as the frac-
tion of the retrieved images that are relevant to the query, and recall as the fraction of
the total number of relevant images (contained in the archive) that are retrieved [2]:
precisionK = |R∩T |

|T | andrecallK = |R∩T |
|R| , whereT is the set of returned images and

R is the set of images relevant to the query of sizeK.
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Fig. 3. Dissimilarity respect to one image in the database, based onground truth endmembers
(blue line) and based on induced endmembers (red line). Images are ordered according to in-
creasing ground truth dissimilarity.

3 Endmember Induction Algorithms

Following the definition of the linear mixing model [6], the hyperspectral images are
defined as the result of the linear combination of the pure spectral signature of ground
components, so-called endmembers. LetE = [e1, . . . , ep] be the pure endmember sig-
natures (normally corresponding to macroscopic objects inscene, such as water, soil,
vegetation, ...) where eachei ∈ R

L is anL-dimensional vector. Then, the hyperspectral
signaturer at each pixel on the image is defined by the expression:r =

∑p

i=1
eiφi +n,

where the hyperspectral signaturer is formed by the sum of the fractional contribu-
tions of each endmember and an independent additive noise componentn. φ is the
p-dimensional vector of fractional abundances at a given pixel . This equation can be
extended to the full image as follows:H = EΦ + n, whereH is the hyperspectral
image andΦ is a matrix of fractional abundances. Therefore, the linearmixing model
assumes that the endmembers are the vertices of a convex set that covers the image data.
Because the distribution of the data in the hyperspace is usually tear-shaped most of the
geometrical EIAs look for the minimum simplex that covers all the data.

The N-FINDER [10] is one of the algorithms following this approach. It works by
inflating a simplex inside the data, beginning with a random set of pixels. Previously,
data dimensionality has to be reduced ton− 1 dimensions, beingn the number of end-
members searched for. The algorithm starts by selecting an initial random set of pixels
as endmembers. Then for each pixel and each endmember, the endmember is replaced
with the spectrum of the pixel and the volume recalculated. If the volume increases, the
endmember is replaced by the spectrum of the pixel. The procedure ends when no more
replacements are done. The algorithm needs of some random initializations to avoid
local maxima.



The second algorithm tested is Endmember Induction Algorithm (EIHA) was fully
described in [4], so that here we will only recall some of its main features. The algorithm
is based on the equivalence between Strong Lattice Independence and Affine Indepen-
dence [8]. Strong Lattice Independence is a concept born in the field of Morphological
Associative Memories, which became the field of Lattice Associative Memories. A set
of vectors is said to be Lattice Independent if no one of them is a Linear Minimax com-
bination of the remaining ones. It is Strong Lattice Independent if moreover there is min
or max dominance defined on the set. One way to find sets of Strong Lattice Indepen-
dent vectors is to progressively build Lattice Auto-Associative Memories (LAAM) with
the detected endmembers. Because of the convergence properties of the Lattice Auto-
Associative Memories, lattice dependent vectors will be recall-invariant, so lattice in-
dependent vectors can be detected as non-recall-invariantvectors. The EIHA proposed
in [4] includes a noise filter that discards candidate vectors which are too close to the
already detected endmembers.

4 Experimental Results

Figure 4 shows theprecisionk(H) andrecallk(H) results of the N-FINDER and EIHA
(denoted LAM in the figures) algorithms respect to three defined synthetic hyperspectral
image databases, generated from a collection of 10 basic endmembers selected from the
USGS library of spectral signatures, for all possible values of the size of the response
K using the dissimilarity function 2. It can be appreciated that the behavior of both al-
gorithms is quite similar. The recall is very low when the size of ground truth repository
is 5, increases with the repository size, meaning that a greater variety of ground truth
endmembers improves the probability of recalling relevantimages. Contrary to that,
the precision is greater for the smaller repository, and increasing the repository size de-
creases the precision of the responses. The precision of theEIHA in always better for
small query size and for very big query sizes. There is some intermediate query size
region where the precision of N-FINDER improves that of EIHA. Overall, both algo-
rithms performance is comparable, and the selection of the most appropriate depends
on the application setting. The query size may be the criterion for the selection.

5 Conclusions

We propose a hybrid approach for the evaluation and comparison of Endmember Induc-
tion Algorithms (EIA). First a simulation module generatestailored databases of real-
istic hyperspectral images. Instead of the conventional classification performances we
propose the use of CBIR based performance measures, where the CBIR is based on the
spectral information of the images, that is, the dissimilarity between images is computed
based on the distances between the sets of endmembers that characterize spectrally the
image. We have show some results comparing two EIA from the literature. This com-
parison allows to identify some problem dependent parameters that would justify the
selection of one algorithm over the other: query size, ground truth endmember variety.
Further work may be addressed to test new EIA in this framework.
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Fig. 4.Precision and recall results for each dataset: (a) 5 endmembers dataset (b) 10 endmembers
dataset (c) 20 endmembers dataset
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