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Abstract. Inremote sensing hyperspectral image processing, igemithe con-
stituent spectra (endmembers) of the materials in the insaakey procedure for
further analysis. The contrast between Endmember Inche#idgorithms (EIAS)
is a delicate issue, because there is a shortage of vahdatages with accurate
ground truth information, and the induced endmembers mayomwespond to
any know material, because of illumination and atmospheffiects. In this pa-
per we propose a hybrid validation method, composed on alaiion module
which generates the validation images from stochastic faatel evaluates the
EIA through Content Based Image Retrieval (CBIR) on thelslzde of simulated
hyperspectral images. We demonstrate the approach witkEbvselected from
the literature.

1 Introduction

The high spectral resolution provided by current hyperspétnaging devices facil-
itates identification of fundamental materials that makeaugmotely sensed scene
[1,6]. In the field of hyperspectral image processing, idgrihe constituent spectra
(endmember) of the materials in the image is a key procedurifther analysis, i.e.,
unmixing, thematic map building, target detection, unsuiged segmentation. A li-
brary of known pure ground image spectra or laboratory sasectra could be used.
However, this poses several problems, such as the effettie dfumination on the ob-
served spectra, the difference in sensor intrinsic pararmend the priori knowledge
about the material composition of the scene. Besides thkeadetogical questions, this
approach is not feasible when trying to process large gtiesbf image data. Current
approaches try to induce automatically the endmemberstienmage data itself, the
so called Endmember Induction Algorithms (EIA). They trther to select some im-
age pixel spectra as the best approximation to the endmeritbtére image (i.e. [4]),
or to compute estimations of the endmembers on the basig tfahsformations of the
image data (i.e. [5, 10]).

The comparison among the relative performances of thesgithims is a delicate
issue. In essence, these algorithms are unsupervisedexpéyre the data or transfor-
mations of the unlabeled data. Therefore, validation agghies based on the quality
of some classification performance measure may be inaecBasides, there are big
difficulties in obtaining good quality labeled hyperspattest images. In this work



we propose a hybrid approach for validation. The first pathefapproach is a hyper-
spectral image simulation module based on random field génarapproaches. This
module is used to generate the testimages, with known entiersrand realistic abun-
dance spatial distribution ground truth, that will be usaidthe comparison between al-
gorithms. The second part of the approach consists of a 6oB&sed Image Retrieval
(CBIR) [9, 3] scheme based on a distance defined on the setdofiembers induced
from the image. We do not impose classification like schermes@aperformance mea-
sures, but we evaluate the ability of the algorithms to uective underlying mixtures.
We apply this methodology to compare the Endmember indu¢dieuristic Algorithm
(EIHA) [4], with respect to the well known geometrical aliibm N-FINDER [10].

The structure of the paper is as follows: In section 2 we H#taiproposed EIAs
contrast methodology based on CBIR systems. Section 3 gigkert review of the the
algorithms compared in this demonstration of the approlckection 4 we define the
experiments and present the results. Finally, we give samnelgsions in section 5.

2 Contrast of EIAs Based on CBIR

In this section we will first describe the details of the siatidn module that provides
the test images, then we present the similarity measuredeetivyperspectral images
and finally we describe the comparison methodology as a whole

2.1 Synthetic Hyperspectral Image Module

The hyperspectral images used for the algorithm contrasgenerated as linear mix-
tures of a set of spectra (the ground-truth endmembers) syitthesized abundance
images. The ground-truth endmembers were randomly sdléam a subset of the
USGS spectral library.

The synthetic ground-truth abundance images were gexdratetwo-step proce-
dure. First, we simulate each abundance as a gaussian rdistibmith Matern corre-
lation function of parameteiy = 10 andf; = 1. We applied the procedure proposed
by [7] for the efficient generation of a big domain of gaussiamdom fields. Second,
to ensure that there are regions of almost pure endmembesglacted for each pixel
the abundance coefficient with the greatest value and we al@erthe remaining co-
efficients to ensure that the normalized abundance coefficeum up to one. It can
be appreciated on the abundance images that each endmeashb&veral regions of
almost pure pixels, viewed as brighter regions in the images

We have synthesized a total of 6000 hyperspectral imagédedivn three datasets
of 2000 images each. Each dataset is defined by the numbedofeznbers in the
repository of ground-truth endmembers. We defined threesiggries of ground-truth
endmembers with 5, 10 and 20 endmembers each, representingaasing diversity
in the materials present in the dataset. The size of the im&g256x256 pixels with
269 spectral bands each. For each dataset we have generidetians of 500 images
by the following procedure:

— First, we randomly decide the number of endmembers in thgémaetween 2 and
5.



— Second, we select the image ground-truth endmembers frenedfresponding
repository of ground-truth endmembers.

— Third, we generate the synthetic abundance images comdsppto each endmem-
ber, applying the corrections commented before.

Figure 1 shows a subset of the collection of ground-truthegrdbers. Figure 2 shows
an example of the selected endmembers and the generatedsimiigbundances to
synthesize an hyperspectral image.
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Fig. 1. Subset of endmembers selected from the USGS library to esizth the hyperspectral
images datasets.

2.2 Dissimilarity Between Hyperspectral Images

A CBIR system is based on the definition of a similarity measwetween the images.
For hyperspectral images, two kind of informations can tezlus build such a dissim-
ilarity measure: the spectral and the spatial informati@ezause we are interested in
exploiting the spectral information, each hyperspectreldeH is characterized by a
set of induced endmembefs A dissimilarity measure between two hyperspectral im-
ages,S (H¢, H,), is defined in terms of the distances between their correipgrsets
of endmembers.

Letitbe B = {eﬁ, eg, e ,egg} the set of endmembers induced from the image

H¢ in the database, wheng is the number of induced endmembers from gath
image. Given two images],, H ., we compute the following matrix whose elements
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Fig. 2. Example of the endmembers and abundance images used tatgeaeynthetic hyper-
spectral image. This example corresponds to a 10-endmerdat&aset image using 3 endmem-
bers.

are the distances between the pairs of endmembers builtthe abssible combination
of endmember from each image:

Df,’y:[di,j;izla"'apﬁ;jzlw"ap’y]’ (1)
whered; ; is any defined distance between the endmen’éfeaede}, i.e. the Euclidean
2
distanced; ; = ef — e;TH . Then the dissimilarity between the images is given as a

function of the distance matrix (1) by the following equatio

S (He, Hy) = (| + [Jmell) (Ipe = pyl + 1), )

wherem, andm, are the vectors built of the minimal values of the distancérima
D¢ ., computed across rows and columns respectively. Thatésltments of the the
row vector of minima are computed as follows:

My :Injln{dw}, 1= 1,...,p§.

Note that the endmember induction algorithm can give dffiémumber of end-
members for each image. The proposed dissimilarity funatan cope with this asym-
metry avoiding the combinatorial problem of trying to dexighich endmembers can
be matched and what to do in case that the number of endmersldéferent from one
image to the other.



2.3 Methodology for the Contrast of EIAs

We propose here the summary methodology for the comparismmg EIAs which
hybridizes hyperspectral image simulation and CBIR penfommce measurements. The
CBIR approach is based on the dissimilarity measure (2)eptes in the previous
section. The comparison methodology consists on the faligsteps:

1. Build a database of synthetic hyperspectral images @ass&g of ground truth end-

members and simulated abundance images.

2. Compute the dissimilarity between each image pair in #talthse on the basis of
the image ground truth endmembers. For each image rankrenieg images in
the database with respect to thgiound truth dissimilarity to it.

3. For each image in the dataset compute its endmembers tharglAs. We will
obtain as many endmember sets per image as EIAs are to be @mpa

4. Compute the dissimilarity between each image pair in Hialthse on the basis of
the induced endmembers. For each image rank the remainaggtin the database
with respect to theimduced dissimilarity to it.

5. Compare the rankings obtained by the use of ground trutmembers and induced
endmembers.

First step involves the generation of in-lab controlled éngpectral datasets. Although
the ground-truth endmembers used to generate the syntimetges are going to be
used to validate the EIA performance, we are not interestedinpare them directly
with the induced endmembers. The induced endmembers cauéddgreat differences
respect to the real ones, but still they could retain enougtrichinative information
for the problem we are trying to solve, being of high relevanc

Second step computes the dissimilarity measures betwebnreage in the dataset
using the ground-truth endmembers. This provide us theaepaesults for a given
query, and so, the point of reference to define the performareasures.

Third step makes use of an EIA to induce the endmembers frain paage in
the dataset. In the fourth step, those induced endmemb#rseniised to obtain the
disimilarites between each image in the dataset, usingaime glissimilarity function
than in the step two. In figure 3 we illustrate how the dissamiy ranking can vary
when computed on the ground truth endmembers (blue linpdntduced endmembers
(red line). An error measure of the induced endmembers doellthe area between
both lines, however we are not interested in such kind of omeas we prefer a more
qualitative evaluation in terms of the recalling power @& BIR system built over the
above dissimilarity measure.

From a CBIR point of view, the objective is to retrieve thanore similar im-
ages from a dataset given a query image. This methodologpams the results of
a set of queries using the induced endmembers to the resiftg the ground-truth
endmembers. This would indicate the ability of the used ElAdtrieve spectral in-
formation relevant for CBIR purposes. Step five use pregisiod recall measures to
compare the ElAs on the basis of CBIR performance. Precisidefined as the frac-
tion of the retrieved images that are relevant to the queny,racall as the fraction of
the total number of relevant images (contained in the aejtivat are retrieved [2]:

precision = 2 andrecall = ‘Rg‘ﬂ , whereT is the set of returned images and

R is the set of images relevant to the query of kze
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Fig. 3. Dissimilarity respect to one image in the database, basegt@amd truth endmembers
(blue line) and based on induced endmembers (red line).dmage ordered according to in-
creasing ground truth dissimilarity.

3 Endmember Induction Algorithms

Following the definition of the linear mixing model [6], theerspectral images are
defined as the result of the linear combination of the puretsplesignature of ground
components, so-called endmembers.Eet [eq, ..., ep] be the pure endmember sig-
natures (normally corresponding to macroscopic objectsé@ne, such as water, soll,
vegetation, ...) where eael € R” is anL-dimensional vector. Then, the hyperspectral
signaturer at each pixel on the image is defined by the expressiend_""_, ei$; +n,
where the hyperspectral signaturés formed by the sum of the fractional contribu-
tions of each endmember and an independent additive noispaizentn. ¢ is the
p-dimensional vector of fractional abundances at a giverlpiXhis equation can be
extended to the full image as followkl = E® + n, whereH is the hyperspectral
image and® is a matrix of fractional abundances. Therefore, the limeixing model
assumes that the endmembers are the vertices of a conveatsatvers the image data.
Because the distribution of the data in the hyperspace &liysaar-shaped most of the
geometrical EIAs look for the minimum simplex that coverdiad data.

The N-FINDER [10] is one of the algorithms following this appch. It works by
inflating a simplex inside the data, beginning with a randetnod pixels. Previously,
data dimensionality has to be reducedite 1 dimensions, being the number of end-
members searched for. The algorithm starts by selectingiial random set of pixels
as endmembers. Then for each pixel and each endmemberdimeetber is replaced
with the spectrum of the pixel and the volume recalculatiithd volume increases, the
endmember is replaced by the spectrum of the pixel. The duveeends when no more
replacements are done. The algorithm needs of some randtatizations to avoid
local maxima.



The second algorithm tested is Endmember Induction AlgoriEIHA) was fully
described in [4], so that here we will only recall some of i@inmfeatures. The algorithm
is based on the equivalence between Strong Lattice Indeperdind Affine Indepen-
dence [8]. Strong Lattice Independence is a concept botmeiffield of Morphological
Associative Memories, which became the field of Lattice Asstive Memories. A set
of vectors is said to be Lattice Independent if no one of thealiinear Minimax com-
bination of the remaining ones. It is Strong Lattice Indegent if moreover there is min
or max dominance defined on the set. One way to find sets oftrattice Indepen-
dent vectorsis to progressively build Lattice Auto-Asstige Memories (LAAM) with
the detected endmembers. Because of the convergencetispéthe Lattice Auto-
Associative Memories, lattice dependent vectors will bealleinvariant, so lattice in-
dependent vectors can be detected as non-recall-invagatars. The EIHA proposed
in [4] includes a noise filter that discards candidate vextdnich are too close to the
already detected endmembers.

4 Experimental Results

Figure 4 shows therecision, (H) andrecall),(H) results of the N-FINDER and EIHA
(denoted LAM in the figures) algorithms respect to three @efsynthetic hyperspectral
image databases, generated from a collection of 10 basima&mndtiers selected from the
USGS library of spectral signatures, for all possible valokthe size of the response
K using the dissimilarity function 2. It can be appreciateat the behavior of both al-
gorithms is quite similar. The recall is very low when theesif ground truth repository
is 5, increases with the repository size, meaning that atgreariety of ground truth
endmembers improves the probability of recalling relevardges. Contrary to that,
the precision is greater for the smaller repository, andsiasing the repository size de-
creases the precision of the responses. The precision &k in always better for
small query size and for very big query sizes. There is sortegrirediate query size
region where the precision of N-FINDER improves that of EIHBverall, both algo-
rithms performance is comparable, and the selection of thst mppropriate depends
on the application setting. The query size may be the ooitefior the selection.

5 Conclusions

We propose a hybrid approach for the evaluation and congraoSEndmember Induc-
tion Algorithms (EIA). First a simulation module generataored databases of real-
istic hyperspectral images. Instead of the conventioraasification performances we
propose the use of CBIR based performance measures, wediBtR is based on the
spectral information of the images, that is, the dissintifdretween images is computed
based on the distances between the sets of endmembersdtettehize spectrally the
image. We have show some results comparing two EIA from thealiure. This com-
parison allows to identify some problem dependent paramébat would justify the
selection of one algorithm over the other: query size, gdonuth endmember variety.
Further work may be addressed to test new EIA in this framkwor
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Fig. 4. Precision and recall results for each dataset: (a) 5 endesndlataset (b) 10 endmembers
dataset (c) 20 endmembers dataset
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