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Abstract tics. Annotated objects occur in multiple application do-

_ _ _ ~ mainsincluding language (http://wordnet.princeton/gdu
With the growing focus on semantic searches and int@iology (http://www.geneontology.crg), medical doc-
pretations, an increasing number of standardized vocaliients |(http://www.nim.nih.gov/imesh/), web content
laries and ontologies are being designed and used to (ftp://www.semanticweb.org/), etc. In all these cases, a
scribe data. We investigate the querying of objects deotations are derived from a structured vocabulary or on-
scribed by a tree-structured ontology. Specifically, wlogy. An ontology uses a number of different relation-
consider the case of finding the tapbest pairs of ob- ships (e.qg., is-a, is-part-of) to organize concepts ornier
jects that have been annotated with terms from such @ies.
ontology when the ob_ject descrip?ions are available onlyTpis paper investigates the analysis of large sets of ob-
at runtime. We consider three distance measures. J&&s that have been annotated with terms from a common
first one defines the object distance as the minimum pgfitology. The basic problem we consider is as follows:
wise distance between the sets of terms describing theffy,en two sets of objects annotated with terms from a

and the second one defines the distance as the avegemon ontology, how to find the toppairs of objects
pairwise term distance. The third and most useful diémong the two sets that are most similar.

tance measure—earth mover’s distance—finds the be

bounds that b ted vel 4 util and then to extend this notion to distabetéween two
thoun ts a (;an ;aggregf; ? théogr_e s?ve y an h utl otated objectsT he distance between two terms can be
em to speed up the search for topbject pairs when measured by the shortest path distance on the ontology.

the earth mover’s distance is used. For the minimum_l_h b f definiti for dist
pairwise distance, we devise an algorithm that runs in ere are a number of definitions for distance (or con-

O(D + Tklog k) time, whereD is the total information \{ersely, similarity) between objects. Two obvious defini-

size andl’ is the total number of terms in the ontology. waons are based on the minimum pairwise distance and the
yerage pairwise distance between the annotations. The

also develop a novel best-first search strategy for the a\% q is th th 's distanEe 121 that takes int
age pairwise distance that utilizes lower bounds genera gd one IS he earth movers dis ancel[12] that takes nto
count the relative positions of the terms that describes

in an ordered manner. Experiments on real and synth f

datasets demonstrate the practicality and scalabilityiof € objects. We investigate querying based on these three
algorithms. distance measures.

In this paper, we consider that the object descriptions
are submitted in an online fashion, i.e., they are available
1 Introduction onlyat run-time. As suchopre-processing or index con-
struction or any other offline processing can be used, and
We are witnessing an unprecedented growth in annotatdidthe computation costs are paid at run-time. Even if
information. This growth has been motivated by a needttee distance function used is a metric, the online nature
share information and, more recently, by a need to seaoftthe problem renders the use of index structures like the
and analyze objects based on their structure and semdrtree [3] infeasible due to their high index construction
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The edge weights on the tree decrease exponentially
as the level increases. Concepts closer to the root of
the ontology are less similar than concepts that share
some common ancestors. For example, broader concepts
such as “sports” and “politics” should be more dissimi-
lar than relatively narrower concepts such as “football”
and “cricket”. The exponentially decreasing edge weights
capture this notion. We highlight the fact that the expo-
nential edge weighting function is an example, and not a
ortty  outotptats Optatsteo Optets necessity for the algorithms to work. They produce cor-
rect answers for all edge weights.

We denote the number of objects By, the number
) ) ) . of terms byT, the total information size (i.e., the total
times. In a way, this problem is reminiscent of the COMiimber of describing terms for all the objects) Byand

putation of spatial joins on objects embedded in the B, [\ mber of object pairs queried byIn Figurel,N =
clidean space: the spatial datasets are delivered onlthe gy _ 1 andp = 11.

we need to compute the best spatial matches [16]. Onlyour
that, in the case of ontologies, the primitive distance is no
Euclidean, but computed on a tree. 1. First, we propose the problem of finding tbprost
The problem we consider here can be extended easily similar object pairs that are annotated with terms in
to the case when objects are annotated with multiple in-  a hierarchyin an online fashion. The terms may de-
dependent ontologies. We can compute the per-ontology fine concepts in an ontology and objects may be de-
distance and combine them using an aggregate ranking scribed using the concepts.
technique such as the threshold algorithin [7]. The prob-
lem of f|nd|ng Objects similarto a given query Object (i_e_, 2. Then, we define and motivate three different distance
the k-NN problem) reduces to the special case of a join of ~functions (equivalently, similarity measures) that can
the database with a singleton set, the query object. Simi- be used to describe the similarity between a pair of
larly, range queries can be solved by choosing only those Objects. Theminimum pairwise distances useful
pairs having a distance less than the query range. While for searching objects sharing a similar term (con-
these and other kinds of queries can also be considered in cept). Theaverage pairwise distancean be used
our setting, the problem of topjoins exposes the compu- 1o query objects that are described using multiple at-
tational and data management complexities of this domain tributes. Theearth mover’s distancEMD) finds the

Figure 1: Example of an ontology tree with objects.

contributions in this paper are as follows:

well, making it the right problem to consider. best way of matching the terms from two objects and
Formally, our problem can be stated as: finds the distance corresponding to this best match-
ing.

Problem 1. Given a set of objects each of which is defined
by a set of terms from an ontology and a distance functior3. Finally, we develop efficient algorithms to solve the

d(0;, O;) between two objects; andO;;, find k pairs of problem using the above distances. We use lower
objectsP such that for anyO;, O;) € P and(Og4,O},) ¢ bounds based of; on reduced number of terms to
P, d(0;,0;) < d(Og4,On). speed up the computation of EMD. Tlig distance,

. ) ) . in turn, is computed progressively using a modified
Figure[l illustrates a particular instance of the problem. | arsion of the threshold algorithm. For the minimum

The ontology tree consists of terms. There argobjects _ pairwise distance, we show that the thigruery runs
t_hat are dgscrlbed by these terms. The object descrip- O(Tklog k) time, wherel is the size of the ontol-
tions are given byO, = {t1,t7}, Oy = {to,t1,ta, 5}, ogy. For the average pairwise distance, we devise an
O3 = {ta, 13,19}, Os = {ls,s}. Aninverted index, i.e., efficient best-first search algorithm that avoids dis-

mapping a term to set of objects can be maintained on the  tance computations by generating lower bounds in an
ontology itself (as shown in the figure). Thus, each node 54ered manner. Experimental evaluations demon-

in the tree statically maintains a lit of the objects that strate the scalability and practicality of our algo-
are described using the term corresponding to the node. |t ms.

For example, the list of objects fap is (O2). We will
usetermandnodeinterchangeably to denote the node in The rest of the paper is organized as follows. Se¢fion 2
which the term resides. describes the related work. Sectigh 3 defines the term



distance and the different object distances. Secfibhk 4, There are a number of similar efforts in the area
and® present the different algorithms for finding the topf information retrieval where the similarity between
k pairs of objects using those distances. Experimental dacuments is measured by considering the overlap of
sults are discussed in Sectidn 7. Secfibn 8 concludestivens. The term-frequency inverse-document-frequency
paper. (tf-idf) measures consider the frequency of terms in docu-
ments[[17]. Work on text matching showed that hierarchy-
based measures using tf-idf outperform lexical similarity
2 Related Work measures [15]. Latent Semantic Indexing (LS]) [6] trans-
forms documents into an Euclidean space indexed by la-
Heterogeneous and high-throughput data is becomiagt semantic dimensions. EMD has been shown to be
commonplace in the sciences and there is consensus dfer than other measures in finding document similari-
integration of this information is needed for new brealges using the WordNet ontologly [119].
throughs. In all these cases, annotations are derivgd fror%mbedding an ontology into an Euclidean space [9] and
a structured vocabL_JIary or Qntology. Th? Semantic W Pocessing gueries in the embedding space is another al-
(http://www.semant|cw1.-:‘b.org/) has defined a speci Ernative. However, an object description will then span
Iangu_age, OWL _(http.//wva.w3.org/2004/O\NL/)_, formultiple points leading to possibly large MBRs. Further,
describing ontologies. In biology, genes are described

S h ffer f high distorti f th -
ing Gene Ontology (GO) (http://www.geneontology.brg eed:ipr)goac may sufier from high distortion of the em
that annotates genes and gene products by three kinds '

of terms reflecting molecular functions, biological !N thiS paper, we tackle the computational challenge of
processes, and cellular components. Millions of apnswering queries efficiently using distances defined on

stracts in Pubmed (http://www.pubmed.gov/) are indexBifrarchical structures like ontologies.
using MESH terms | (http://www.nIm.nih.gov/mesh)/).
WordNet (http://wordnet.princeton.edu/) is a lexical
database that groups English words into cognit

i . .
synonyms (orsynsets Hundreds of other ontologies\g Distance Definitions
have been proposed over diverse application domains

such as plant structures (http://www.plantontology)}org8.1 Distance between Terms
description and publication of digital documents

(http://www.dublincore._org/), and earth and the envipe distancel(t;, ¢;) between two terms; andt; is de-
ronment (http://sweet.jpl.nasa.gov/ontology/). A goQthed as the length of the path between them on the ontol-
compendium of different ontologies is maintained Jgy tree. Since there is only one path between two terms

http://www.ontologyonline.ory/. _ ~in atree, from the properties of the shortest path, this dis-
A given ontology uses a number of different relationgnce is a metric]4].

ships to organize concepts or hierarchical relationships
Ofthese, “is-a” and “is-part-of” relationships are the rlno§ne term distances decre onentiallyat each level
prevalent. The former describes a subsumption relati%l ’

. . . . e distance between two terms at the leaves of two sub-
ship while the latter rep_resents how objects combine 1;loées can be approximated by the distance between the
gether to form composite objects. Both of these lead {9ots of the subtrees. Eor example, in Fige 1 where
hierarchical structures in which the proximity between . ' ’ :

~fhe edge distances are halved at each level, the distance
terms (concepts) grows as we descend down the hie al ee i, andt, (= 3) can be approximated by that be-
chy.

There have been numerous works on gene ontolotweent1 andt, (= 2). Using this term distance, we next
9 $efine different distance measures between the objects.

ranging from gene fu_ngtlon_pr_edl_cnon using InfOrmaOnce more, we emphasize the fact that our algorithms are
tion theory [18] to defining similarity among genes us-

. ‘general enough to work correctly with all edge weights,
ing the full gra_ph structure of QO [5]. In|8], a compariz not just the exponential function.
son of three different gene similarity measures were pre- ] )

sented. Probabilistic approaches have also beenlused [13]Ve next define the three distance measuréss,
Biologists have used average and minimum pairwi€evs @nddems—between two objectd.

distances between genes based on GO for comparing

co-evolutionary rates of yeast genes|[14] and for cO-iye use the termé,,;,, and MinDist,dy.q and AvgDist d,,q and
clustering with gene expression ddta [2] respectively. EMD interchangeably in the paper.

An interesting and important point to note is that when
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Min 04 O O3 Oy EMD | O O Os3 Oy
0O, |00 00 05 10 01 - 125 175 1.75
O, 0.0 1.0 15 2 - 217 2.50
O3 0.0 05 O3 - 2.00
Oy 0.0 Oy -

Table 1: Minimum pairwise distances for the example in Table 3: EMDs for the example in Figuré 1.
Figure[d.

Avg| O 0O, O3 Oy noted byAvgDist, is defined as:

O | 125 150 2.08 1.75 1

0, 0.75 2.17 250 dang (05, 0;) = —— At t;) (2
o) 111 2.00 e |Oi|-|0-f|tieo§eoj ’

Oy 0.50

o ) where|O;| and|O;| denote the number of terms describ-
Table 2: Average pairwise distances for the examplejigy o, andO); respectively.

Figured.

i L . The AvgDist is useful in cases where the objects are
3.2 Minimum Pairwise Distance not precisely defined. For example, it has been success-
Definition 1 (Minimum Pairwise Distance)The mini- fully used for gene function prediction using GO terms
mum pairwise distance between two obje@tsand O;, for yeast genes [14] as well as in the domain of web ser-

denoted bMinDist, is defined as: vices [11]. The MinDist measure fails in such cases.
Table[2 shows the AvgDist measures among the objects
Admin(0;,0;) = t.eémtneo- {d(t:, t;)} (1) in Figure[1. AvgDist is not a metric, as it fails to satisfy

the identity property, i.e.dqvq(x, z) can be greater than

This distance is useful when searching objects that h&/&€.9..davg (01, O1) = 1.25). However, since it follows
similar terms. For example, even though a single biolog¥mmetry and triangular inequafftyit can be considered
ical document may contain references to different terr@§ apseudo-metridistance.
like photoreceptor cells and ganglion cells, it is useful
to k_Je able to retrieve it Whgn anot_her document that d§.-4 Earth Mover's Distance
scribes photoreceptor cells is queried.

This distance is of particular use keyword search- Apart from the property of not being a true metric,
ing, where the query document consists of only the sipygDist also suffers from the fact that each term in one
gle keyword, and all documents having that keyword Wiflpject is matched with every other term in the other ob-
be returned with a distance of 0. MinDist, in general, eJect. For example, consider two documents with the
tends this idea by finding additional documents that cogrms {war, sport$ and {war, footbal}. Even though
tain terms most similar to the queried keyword. it is obvious that the distance between these two docu-

The MinDist measure is heavily used in hierarchicghents should be small, the average distance unnecessarily
bottom-up clustering methods where in each step, tWempares “war” in the first document with “football” in
clusters with the minimum pairwise distance are mergafle other. The earth mover's distance (EMD)I[12] rec-
It has also been successfully used for finding the distangs this shortcoming by comparing only the like terms
between two genes, where a gene is annotated with atRedugh finding the best matching between the terms of
of terms from GOI[[2]. the two documents. For this example, EMD will match

Table[1 shows the MinDist measures among the ofar” with “war” and “sports” with “football” and aggre-
jects in Figurd1l. MinDist isot a metric distance as itgate these distances only. EMD has been shown to be
does not maintain the triangular inequality. For examplgetter than other distances in finding similar documents
dinin(O1,04) + dmin(O1,02) = 1.0+ 0.0 < 1.5 = ysing the WordNet ontology [19].

dimin (02, Oy). Formally, each object is considered to be composed of
“mass” at the specific spatial locations (corresponding to
3.3 Average Pairwise Distance the terms that describe the object) in the ontology. The

o o . total mass of each object is consequently, the mass at
Definition 2 (Average Pairwise Distance)lhe average

pairwise distance between two objecis and O;, de- 2See Appendix for the proof.




(1) () Object Before After

/ / {to,t1,ta,t3,ta,t5,te, t7, ts, to} | {to,t1,t2,t3}

() (1) Olad® O, {0,3,0,0,0,0,0,5,0.0} 0.3.3.0}
b dd FS S G - B SR e S 0 3 ¥
Qo e Lo B S R 03 {0507%7 %7070710507(1)3%} {0705%7%}

O4 {0,0,0,0,0,0,3,0, 1,0} {0,0,1,0}

Figure 2: Reduction of terms. Table 4: Reduction of terms using Figlife 2 for example
in Figure[1.

each term location is inverse of the number of terms de-
scribing the object. For exampl@; in Figure[d will have The corresponding numbers for AvgDist distance vasre
mass% corresponding to termg andt;. and6 respectively. The MinDist returnéi5 object pairs

The EMD between two objectd and B is themini- with distance) as many objects shared one or more terms.
mumwork required to transform to B, where one unit Consequently, the topists returned were arbitrary. This
of work is equal to moving one unit of mass through ormnvinced us of the quality of the EMD and its usefulness
unit of distance in the ontology. Finding the best “flowsih finding the topk similar pairs of objects described by
(i.e., how much mass needs to be moved from one tetenms on tree ontologies. Nevertheless, the two other dis-
in A to another term inB) is a linear programming (LP) tance measures have been proved to be useful in specific
problem. contexts|[2, 14].

o ] We next design algorithms to efficiently compute the

Definition 3 (Earth Mover’s Distance)The earth mover’s top-k pairs using these distances. We start with the EMD

distance between two objecfs; and O;, denoted by s it is the most interesting and useful measure.
EMD, is defined as:

dema(O3; 05) =min > > emfpa 3 4 The Algorithm for EMD
tp€0; t4€0;
s.t., eachf,, >0, When the two sets contail objects each, the problem of
finding top+ pairs of objects can be solved by perform-
Vi,c0i D foa = OiypandVy,c0,, D fog =0, ing O(N?) EMD computations. However, the prohibitive
ta€0; €0 time required by each EMD computation makes the en-
tire runnin%time O(N?) x O(EMD) + O(N?log N))

wherec,, is theground distancbetween the termig and . :
impractica

t, as per the ontology tree an@;,, is the mass of, in O;.

EMD is a metric when the ground distance is a me ;
ric (proof in [12]). TabldB shows the EMDs among thé-'l (I)'fo_\li\éer:nsound using Reduced Number

objects in Figuréll.
When the ontology tree has a size®f the ground dis-
3.5 Comparison of the Distance Measures tance matrix is of siz€™. However, we need not con-
sider all the terms as we can prune the terms that are ab-
To compare the usefulness of the three distance meant in either of the object descripti(ﬂﬁ_hus, the num-
sures, we performed the following experiment. We use@r of flow variables is quadratic in the size of the object
WordNet (http://wordnet.princeton.edu/) as the ontologiescriptions. This is still impractical: the average time
and the “bag-of-words” dataset from the UCI repositotgken to computé.., for objects of siz& was found to
(http://archive.ics.uci.edu/ml/datasets/Bag+of+Véprds pe 54 m&]
the set of objects. We chose the first documents  Since the complexity of EMD depends mainly on the
from the categoriegnron and kos of the bag-of-words number of flow variables, which is quadratic in the num-

dataset. Each document was described using nouns figep of terms by which each object is described, the run-
the WordNet ontology, and the ontology was converted

into a tree. The tof0 pairs were obtained using all the The sorting ofV pairs require an additiona (N log NV) time.
three distances. For EMD. on an average there wgre 4The row and column sqmsf(_)rt_h(_ese terms in the flow matrix veill b

. ) . ! 0 and hence all the flows will be individually as well.
pairs where both the objects were from the same categorys the times reported in the paper are based on a 3 GHz machine
Also, all 10 out of the top10 pairs were of this nature.with 2GB of RAM running Fedora Linux 9.
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The L, distance between two objects is a sum of the

0 3 4 6 . . . .
distances between the corresponding values in each di-
H: 003,3; 0305,1; 0504,2; 0402,6 C: 0305,1 . . . . .
mension; therefore, if the distances for all the objectpair
H: 003,3; 040,6; 0304,3 C: 005,15 0504,2

are obtained and sorted for each dimension, the thresh-
old algorithm (TA) [7] can be applied to obtain the object
Figure 3: Example of ordered generation of object paisairs with the least sum of distances or the Idastis-
for one dimension. tance in a progressive manner. The order of obtaining in-
creasingl; distances can then be used as a guide to order
ning time can be reduced if the size of the object descrippe EMD computations of the object pairs.
tions is reduced. Figuig 2 shows how such reduction can
be accomplished. The ontology tree is pruned at heighfObtaining a sorted list of object pairs for each dimen-
1; only the root term and its immediate children remai§ion require®)(N? log N) time. TA, however, also works
When a term thus deleted appears in an object descripti¥A€n the next object pair in the list can be output in a
it is replaced by its ancestor that is retained. Hence, all #orted manner whenever needed. This avoid<ih¥?)
terms in the dashed subtrees in the figure are removed &@@putations. Hence, now our problem is reduced to
replaced by the root of the subtrees. The size of an objégfputting the next smallest pairwise distance whenever
description is now upper bounded by the branching fac¥ked for in a particular list (or dimension).
of the root. Table shows th(_e reduced object d(:TSC”ptlonsFor this, we maintain two data structures for each di-
The EMD bet\_/veen two objects calculated using the rj’fension: (i) a min-heapl that outputs the next best pair,
duced ontol’o yis alower bound ofthg EMD using the fu nd (i) a listC that stores all the pairs that have been
ontology [12. The number of terms in the reduced Ondutputted fromi
tology is generally much less (say« T), thus reducing '
the number of flow variables . Since the complexity Initially, the N objects are sorted and &j — 1 consec-
of linear programming is at least super-linear in the numtive object pairs (not necessariyO;, 1) corresponding
ber of flow variables, the running time of EMD decreases N — 1 differences are inserted infd. Figurd 3 shows
by a large factor of? /2. The number of distance com-an example. The 5 objects are sorted according to their
putations, however, still remair8(N?). Next, we show values for the dimension that is being processed. Initially
how to reduce the number of distance computations. F contains the 4 object pairs corresponding to the 4 dif-
ferences in the sorted list. Whenever the next pair is asked
for by TA, the minimum object pair fron#/ is extracted
4.2 L, Lower Bound and returned. It is also inserted inf4 In this example,

TheL, distance, when scaled by the sum of the total ma&&er the first call0;Os is extracted fromff and inserted
can be used as a lower bound for EVMD [1]. Hence, 0 C- Similarly, in the next call0; Oy is extracted.

L, distance between two objects computed usinglall - 1,4 injtial pairs are not sufficient though. There may
terms, when divided by, serves as a lower bound for‘be a non-initial pair (e.9.050,) with a value §) less

EMD between the objects. From now on, Whenever We,  ihat of an initial pair@, 0, with valuet). However,
mentionL,, we mean the scal_ed Version of it which is the important point to note is that any non-initial pair is a
lower bound. L, on all terms, in tumn, is lower bounded, , ,inatiorof some of the initial pairs. Two pairs which

by Ly on reduced number of terms. The proof uses the e an overlapping object can be fused together to gener-
fact thatla; — bi| + |a; — b;| = |(a; +a;) = (bi + )|, ate a new pair. For exampi®;0, can be generated from
ie., when the values are comblnedz the difference of €05 andO50, sinceOs is overlapping. Further, a pair
sums is more than the sum of the differences. Therefo&gn never be the least pair until and unless the pairs from
L1,(0,0) < L1,(0i,0;) < EMD1(0;,0;), Where \pich it has been generated have been chosen (i.e., output
the subscripts denote the number of terms used. Sl@&ﬁn H). Therefore, in the exampl&);0, is added to

L, is much faster to compute (farterms, it takes only H only after bothO;05 andO50, have been chosen. In
0.002ms), we can calculate a lower bound on EMD f?;reneral when a paid, 0, is chosen, the contents Gf
’ Ty ’

each object pai.r and then use it as a filtering step to pruj} s.anned and new pairs are generated if possibfe. If
many of the pairs. has pairs of the forrv),,O, andO, 0., new pairsO,, O,

A lower bound can be obtained by pruning the tree at any heig ndOﬁ 0: ?re gefznﬁ_rated respe.Ct“;]ely and afrehlnse:ted Inth
However, there is a trade-off between the tightness and atatipnal T € value o t. IS New pair is the sum ot the values o
efficiency of the lower bound. the pairs from which it is generated.




4.3 Algorithm _
Algorithm EMD
Figure[4 summarizes the entire EMD algorithm that usednput: Reduced object lisb with ¢ terms
TA with the lower bounding strategy. First, tlig lower | Output: Object pair listP
bound using reduced number of terms is extracted from. for dimensionj = 1tot
the heap (line 14). If it is less than the currdft es- | 2. SortO;; (only j dimension)
timate P.dist in P (line 15), the bound is improved by 3.  InsertN — 1 differences into heafl[;]
computing thelL; using all the terms (line 16). If it still| 4. ListC[j] := @
less (line 17), the exact EMD is computed (line 18) and5.  Thresholds[;j] :=0
the top# list is modified, if necessary (line 21). For each 6. end for
suchL,-reduced computation, the threshold distan@g (| 7. P := ® (. P.dist (i.e., k" distance inP) := c0)
is increased. Whetk > k™ distance inP, no other ob- | 8. ThresholdR := sum of all~[j] (therefore R := 0)
ject pair can havé.;-reduced distance less than the fopr 9. :=0
pairs already found. Therefore, the EMD distances will 10. while R < P.dist
also be greater. Hence, the algorithm is then halted. 11. Extract minimum paip from H ;]
12. T[] := difference for paip
4.4 Analysis of Time Complexity 13. if p is not seen earlier
14. dy := L, ont terms ofp
For each of the dimensions, we incur the following cost, 15. if di < P.dist
Initially, sorting takesO(N log N) time[l Thereafter, | 16. do := Ly on all terms ofp
inserting theN — 1 elements in the heap tak€3(V) 17. if do < P.dist
time. With each call to the heap, an extract operatipn18. dz := EMD on all terms ofp
takesO(log N). At the i iteration, at most elements | 19. if d3 < P.dist
are added to the heap again. This takeslog N) time. 20. Insertp into P
Thus, if we have:’ calls (thisk’ is generally larger thah 21. UpdateP.dist as newk™ distance
as many object pairs with low lower bound but high EMD 22. end if
are examined), the time per dimensionQ$k’? log V) 23. end if
which leads to a total time of;_, O(k/?log N) or | 24. end if
O(tk}? ., log N) wherek,, ... is the maximum of alk’s. 25. end if
26. UpdateR using[j]
Space Complexity: Heap;j requiresO(N + k;?) space | 27. ScarC[j] with p to generate new paii3
wherek;- is the number of calls made on columirHence, | 28. AddT to H[j]
the total space required @(t(N + k/2,,)) wherek!, .. | 29. j:=(+1) modt
is the maximum of/’s. 30. end while
5 The Algorithm for MinDist Figure 4: The EMD algorithm.

Unlike the d.,,q distance, whenever two terms corre- A pre-processing step is required to build the inverted

sponding to two objects are encountered, the MinDist fpéts of objects at each node. The inverted index is needed

the object pair can be estimated. If it is better than the c¢d- be built for the minimum and average pairwise dis-

rent estimate, it is retained; otherwise, itneverneeded tances but not the earth mover’s distance. For each object

again. We next explain the MinDist algorithm that e>@i, when a tern’tj appears in it0;is inserted into the

ploits this property. inverted list oft;. The list is accessed using hashing, and
Any object pair(O;, O;) having a lesser distance thafhe object is inserted at the top of list.

(Og, On) must have aterm pait; € O;,1; € O;) which g, describes the entire algorithm. For a node, the

has a lesser distance than any term ggjrc Og,tn € \jinDist algorithm computes the top-object pairs that

Op). Hence, we only need to identify such term pairge jescribed by at least one term pair in its subtree. Any

(ts, t_j) that are close and process their inverted lists, i.g;,ch object pair must either (i) be in the tbpist of the

the list of objects. children, or (i) contains terms from different subtrees of
7An alternative approach using hashing that may reduceithisis  the children. The recursive definition of the first kind al-

discussed in Appendix. lows us to employ a divide-and-conquer approach. For the




are not in any of the subtrees.

TP is finally merged with the pair list€ P[i],i =
1...c from the children to produce the final pair ligt
using a heap in the same manner as above (line 9).

Algorithm MinDist
Input: Nodet
Output: Pair list P of sizek;
Object list B of sizeO(Vk)

1. T'B := list of objects int of sizeO(V'k) _ _ _

2. ¢ := number of children of 5.1 Analysis of Time Complexity

3.fori=1to

4 zC’B[i] CC’P[i] = MinDist(t.child]i]) In this section, we analyze the time and space complexi-
5.  Addt.edgeli] cost to each object i6'BJi] ties of t-he MinDist algorlt[hm. ) )

6. end for We first analyze the time required to compute the in-
7. B := MergeCBI[l], ..., CB[c], TB) verted index. The object descriptions are read once, and
8. TP = GenPairsB)’ ' ’ for each term in an object, the corresponding list is ac-
9. P :=MergeCPIl], ..., CP[, TP) cessed inD(1) time using hashing, and the object is in-

serted at the top of list in anothél(1) time. The total
time required for this phase is, therefof¥,D).
Figure 5: The MinDist algorithm. We next analyze the running time for the main phase of
the algorithm. Selecting’ objects inT' B requiresO(k’)
second kind, we need a list of objects that are close to tirae. Adding the child edge costs to each objecCiB
subtree of the children nodes. The lists can then be joirliats takesO(k'c) time.
to generate the necessary object pairs. Thus, the MinDispt every step of the merging operation, the object with
algorithm computed at the root of the ontology returns thige minimum distance is extracted from the heap and an-
top-k pairs. other object is inserted. The size of the heap is, therefore,
As shown in Figuréls, each nodenaintains two lists: never more tha®(c). Extracting the minimum element
(i) a list of pairs of objects” ordered by theitl,,.;, dis- and inserting another object into the heap takekg c)
tances; and (ii) a list of object8 ordered by their min- time. Since the operation is repeatédtimes, the total
imum distances!; to the nodet. The length ofP is at running time of the merging procedure@¥%’ log c).
mostk. The length ofB should be enough to ensure that |f, however, the objects in the child lists are not unique,
k distinct pairs of objects can be generated frBmThe 1’ operations may not be enough to seleatifferent ob-
number of terms required to do thatis= O([vk])B  jects. Thus, a hashtable is used to ensure that an object
When MinDist is called on a nodgit selects:’ objects s inserted into the heap only once. First, all the lists are
fromits list L into T'B. L is the list of objects associatedscanned ir0(k'c) time. If an object appears for the first
with that term. MinDist is then called on each of its time, it is inserted into the hashtable with the object iden-
children. The cost of the edge fronto its child is added tifier as the key and the distance as the value. If an ob-
to the objects in the corresponding child’s object listéliniect appears twice, the one with the minimum distance is
5). Thisis done to ensure that the distances are maintaifgfintained in the hashtable. Before any object is inserted
correctly. Thec sorted object lists and the list of objectsnto the heap, the hashtable is checked. If this object is
in ¢ are then merged to produce the sorted/ist different from the one maintained in the hashtable, then
The merging (line 7) is done using a heap data strugere exists another copy of this object with a smaller dis-
ture [4]. The heap is initialized witk 4 1 elements at tance. Hence, this object does not need to be considered.
position1 of each of the child lists and the li§tB. The This limits the number of heap operations@k’). As-
minimum element is then extracted ink Since all the suming that the hashtable operations take constant time,
individual lists are sorted, the properties of heap gu@@nthe running time then i (k' log ¢).
that the object extracted has the ledgst,, distance from Sortingk local object pairs require®(k log k) time.
this node. The object at the next position of the list from Finally, the sorted pair lists at the node and the children
where this minimum object came is then inserted into thes merged irO(kc + klogc) time using a heap and a
heap. This is repeated times. hashtable in a similar manner as before.
All the possiblek pairs are then generated from e ;5. the total running time of the MinDist algorithm
objects inB (method GenPairs in line 8). This li§tP 4 4 node with: children isO(ke + klog k).
computes the: best distances of the object pairs Which 1,4 5orithm is run once at each node of the ontology.

8sincek’ (k' — 1)/2 > k, the actual number of terms required igASSUMINg that there arE terms in the ontology, the total
K =[1/2 +/1/4 + 2k]. number of children forll the nodes i$)(T"). Hence, the




amortized cost i) (T'k + Tklogk) = O(Tklogk). 6.1 Lower Bounds for Across-Tree Costs

The total running time of the MinDist algorithm is

'The estimates of the across-tree distances of a pair of
thereforeO(D + Tklogk).

objectsO; andO; at a node depend on the occurrences
of their describing terms. Thepan of an object is
Space Complexity: Each node in the ontology containgefined to be the number of subtrees of the root where its
an object list of sizeD(k") and a pair list of siz&)(k). constituent terms occur. It can be either single, i.e., its
Once these lists are sent to the parent, they are no longems occur in only one subtree, or multiple, i.e., its terms
required. Thus, at any time, the space requirement ac&ur in multiple subtrees. Based on these, 3 different
node isO(c(k’ + k)). The total space complexity, theregases need to be considered. In each case, we would like
fore, isO(cmas (k+K")) Wherecy,q, is the largest branch-to write the bounds at a node in terms of the parameters
ing factor of a node in the tree. The inverted index requirgfintained forO; and O; at the node, i.e., in terms of
O(D) space for storage. (O, ni, wi) and Oy, nj, w;).

Case 1: Both the objects have single spans. Two sub-
6 The Algorithm for AngiSt cases need to be considered.

Sub-case 1(a)The objects are in the same subtree. The

one term pair for each object pair, thig,, distance needstheir distance in the subtree without descending deeper
to remember all the possible term-pair distances. Congfip the subtree. Hence, the lower bound is

quently, it runs in two phases: (i) tHeuild phase, when
pertinent information about objects are collected at the dip =0 (4)

root in a bottom-up manner, and (ii) th@uery phase, ) o
when such information is used to identify the togairs Sub-case 1(b):The objects are in different subtrees. In
in a top-down order. this case, the across-tree distance can be estimated ex-

citly. The distance between a tetjre O; andt; € Oy is
ti,t) + d(t;,t) wheret is the node at which this lower
gynd is being computed. Thetal across-tree distance
eobtained by adding all such combinations of terms:

For any pair of objects, there are two types of costs t
need to be accumulated. The first is #oross-treecosts,
i.e., the distances between the describing terms that B
cur in different subtrees of the root, and the second is "

within-tree costs, i.e., the distances between the describ- 1051104 |0:] 1051

ing terms that are within the same child of the root. For d(ti,t) + d(t;,t)
example, in Figurgll, the total pairwise term distances for ; ; ; ; !
(O1,0,) can be broken into 2 parts: (i) the across-tree 04 04
distances between of O, andtg, ts qf O4 In the__dn‘- :nj.Zd(ti,t) +ni.Zd(tj,t)
ferent subtrees undef andt, respectively, and (ii) the pa P

within-tree distances betweeénof O, andtg, tg of Oy in
the same subtree under

To estimate the across-tree distances for object pairJhus, the average distance is
a node, the following information need to be calculated ws
for each object: (i) thenumber of termsn the subtree dp =d=—+
that describe the object, and (ii) thetal distanceof all i
such terms to this node. This information is accumulatgghce the within-tree distance for this paitisthis is the
at the root of the ontology by the build phase AvgDistyxact distance.
Build, which we describe in Sectign 6.4. After this phase,

the root has collected the following tuple for each objeatase 2: Both the objects have multiple spans. The min-
(Oi, niy w;). imum across-tree distance can be estimated in a manner
Before describing the two phases of the algorithm, veémilar to that in Case 1(b). There are at least two pair-
explain how lower bounds for the across-tree costs of ays of terms of0; andO; that are in different subtrees.
object pair can be computed using the above informatitising Eq.[[(5), theéotal across-tree costs for these pairings
and how such lower bounds can be generated ilran arew;, .n;, + wj,.n;, andw;,.n;, + wj, .n,,, wheren,_,
deredmanner. w;, etc. are the number of terms Of in one subtree and

=Nj.W; + N Wj (5)
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its total distance te from that subtree. The valueswof,, The lower bound for Case 2 is not easily separable in

n,, nj,, andn;, are at least. Thus, the total across-tregerms of parameters @; andO;. It is, however, sep-

distance is at least;, +w;, +w;, +w;, = w; +w;. The arable if for an object pair, the number of terms for the

lower bound for the average pairwise distance, then, isobjects (i.e.n;, n;) are known a priori. To do that, the
list of objects with multiple spans is partitioned such that

_ Wi +wy ) each partition contains objects with a particular Pair-

ng.Ny ing O; andO; and knowing which partitions they come

from immediately defines the denominator of the lower

Case 3: One objectO; has a single span, and the oth&jound. Thus, if there are partitions, sorting each par-

objectO; has a multiple span. Similar to Case 2, there igjon by w; and performing-? pairings in the same way

at least one subtree containing terms(gfbut not con- as done for Case 1(b) orders the pairs according to their

taining terms o0f0;. Thetotal across-tree cost is then thggwer bounds.

minimum ofw;.nj, + wj, .n; @andw;.nj, + wj, ;. SiM- Case 3 is handled similarly. The single-span list is bro-

ilar to Case 2, there is at least one termigfthat is not yen intoc + 1 lists and the multiple-span list into par-

in the same subtree @f;. Thus,n;, andn;, are atleast titions. Generating alt(c + 1) pairings gives the lower

1. However, without knowing where the terms@f oc- pgunds in an ordered manner.

cur, nothing can be concluded abauf andw;,. Sincé e next describe how the Query phase of the AvgDist

the terms may occur at the node itself, the estimates fg§orithm uses these lower bounds.

wj;, andw;, are0. Hence, the total distance is at least

producing a lower bound of

6.3 Query Phase

(8) The AvgDist-Query procedure (Figurk 6) is run at the root
of the ontology. It outputs a lisP of top-k object pairs.
When the size oP is less thark, P.dist is co; otherwise,

6.2 Generating Ordered Pairs it is maintained as the™ largest distance i®.

The list L of objects is broken inte 4+ 1 + r lists cor-

Though the above mentioned lower bounds can be comsponding to single and multiple spans as explained in

puted for a given pair, the cost of computing them for evhe earlier section. From these lists, the initial pairswit

ery pair isO(N?). We would like to avoid such costlythe lower bounds are generated (method GenlnitialPairs in
online operations. The trick is to separate the parametgfie 6) and put into a heafi. See Sectioh 612 for details

of O; andO; in each lower bound such that they can bgn how to generate these pairs.

systematically generated in anderedmanner whenever  The top-down searching for object pairs proceeds in a

needed. The order of generation will guarantee that at @i¥nner where at every stage, only the current “best” pair

point of time, the lower bounds of the pairs not exams examined[[10]. Thus, this search strategy is called the
ined will be greater than or equal to the lower bounds pést-first search

the pairs already generated. In this section, we will dis-The algorithm progresses by extracting the curbesst

cuss ways to achieve this for each of the cases mentiopeg from the heap, i.e., the pajrwith the current best

above. lower bound (line 8). If the lower bound is an estimate
To identify pairs of objects in the same subtree (Cafisr p and not an exact distance as in Case 1(b), the bound
1(a)),c + 1 different lists are maintained at the root correzan be improved in two ways (line 11). First, the within-
sponding to itself and its children. tree costs at the subtrees in the next level can be estimated
To handle Case 1(b), each of these 1 lists of objects again using Eqs[{4}8) by descending into the subtree (de-
are sorted by the average distanggn,. Given two such noted as AvgDist-NextEstimate). The descent is made in
sorted child lists, it is guaranteed that the lower bourdbreadth-first order on the treThe second way is to

(which is the sum of the distances) for an object pair @dmpute the term-wise distances fully without resorting

positionsp; in the first list and; in the second list is lower to recursion (denoted as AvgDist-Complete). This, how-

than the estimate of every pair whose positions>arg; ever, disregards the structure of the ontology.

and> p;. Thus, every time a pair at positiofs;, p;) If the exact distance af is computed, the lisP is ex-

is inspected, only its immediate success@rs+ 1,p;) amined. If thek™ distance inP is more than that of (line

and (pi’pj - 1) need to be considered. Since there dngny order, e.g., depth-first order, will also work. Howeviérthe

c+ 1 child lists, the number of possible ways of pairing igyge distances decrease exponentially, breadth-firstingderoduces
cle+1)/2. better bounds.

wj

dpy, =

.1y
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Name Number of | Number of

Algorithm AvgDist-Query GO Terms{) | Genes V)
Input: Noderoot Process 13762 3437
Output: Pair list P of sizek Function 7803 1958
1. L := list of object mappings imoot Localization 1990 645
2. P := ® (therefore P.dist := o)
3. ¢ := number of children of oot Table 5: The Gene Ontology (GO) datasets.
4. r := number of partitions of objects
5. DivideL intoc+ 1 + r lists B
6. A := GenlnitialPairsB)
7. Insert eacla € A into heapH 6.4 Build Phase
8.p :=PopH) )
9. while p.dist < P.dist
10. if Donep) = false
1L p-= UpdateEstimate) In this section, we describe how AvgDist-Build computes
1; ﬁngoll;e@) - true the information Q;, n;, w;) for an objeckd Each node

: . i . t maintains an inverted lisL. of objectsO; described
1‘51 i ]fﬁilesqun]t)c')d]’ft usingt. First, it convertsl into B by makingn; = 1 and
16. P dist = 1 distance inP w; =0 fpr eag:hOi € L. Then, !t calls Av.gD|st—_BU|Id for
17' end. i : each of its children. For_each listB thgt it receives from
18. olse a child, and for each obje€; € CB, it modifiesw; by

' : adding to it the distance to the child node multiplied by
;g enlcf;isfeftp into H the number of time®); occurs in the child subtree, i.e.,

’ o . w; = w; + dist x n;, wheredist is the edge distance
g; ﬁ.s_erct;zch;XetTIi?t(ég from ¢ to its c_hild_. This ensures t_hat the total distance
23' —p from ¢ is maintained correctly, since each of the

: p- op{H) objects have to traverse the distadcet.
24.end while

Figure 6: TheQueryphase of the AvgDist algorithm. Analysis of Space and Time ComplexitiesAssume the
total size of the object description to hewhich is at most
N x T whereN is the total number of objects, afitithe
total number of terms. The inverted index requi€sd)

14), p is inserted intaP and P.dist is modified. The size ime and space to construct. We next analyze the space
of P is maintained to be at mostby removing the pair @nd time complexity of AvgDist-Build in terms of these
with the largest distance. parameters.

If, however, the lower bound of is still an estimate, Each object’s information is stored at the terms describ-
p is re-inserted back into the hedp (line 19). The next ing it. The information stored in a term is repeated along
pairs are generated from ther 1 + r lists (method Gen- all its ancestors. Since the size of the descriptiojs
NextPairs in line 21 as described in Section 6.2) and i@nd there ar®(log T') ancestors (assuming the ontology
serted into the heap (line 22). to be balanced), the storage costigD log T').

In the next iteration, the pair which is now thestis The running time can be analyzed similarly. At the leaf
examined (line 23). If this pair has a distance more th&vel of the tree, there ar® describing terms. When this
the k™ distance inP (i.e., P.dist), it is guaranteed that all O(D) information is sent up to the next level, the time
the pairs currently in the heap and all the pairs that are metjuired to combine the information is stdl(D) since
generated will have a greater distance. This is due to #ech object description is read only once and is matched
properties of the heap and the ordered nature of generatising a hashtable to the information already computed.
the pairs from the: + 1 + r lists. Thus, the algorithm is Assuming the height of the tree to B¥log T'), the total
then terminated correctly. running time isO(D log T').
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7 Experlments not reported since, in the best case, it can only dave
reduced computations, which are very fast anyway. In all

7.1 Datasets the experiments, it was actually worse thiapreduced.

. When the distance function between the objects is

fined as theminimum pairwise distancbetween the

rms, the following schemes were considered:

We have experimented with real as well as synthe
datasets. The real dataset is that of Gene Ontology (
http://www.geneontology.org/). There are three ontolo-
gies in GO, corresponding to biological process, molec-
ular function and cellular component (localization) of
terms. The details of the three ontologies are given in Ta-
ble[3. The datasets were curated by hashing gene descrip.-
tions using their bit-vector representations of the terms
and removing the identical genes.

The synthetic datasets were generated by controlling
the number of objects, the number of terms, the aver-
age branching factor of the ontology tree and the average
number of terms per object. The ontologies and the object

datasets are created separately. Ontologies have a fj BPN — 10*, the topk computation using the brute-force

size and an average branching factor. Starting from @orithmfinishes inv300s. Since the MinDist has a bet-

root_, we generate a random number O_f c_h|ldren bY P&Ly running time, we report the experiments for MinDist
turbing the average branching factor within some limit

We continue with this at all successive nodes. The object, : . . .

. . : : hen the distance function between the objects is de-
dataset is generated with a fixed number of objects an - .

) . ined as thewverage pairwise distandeetween the terms,

an average number of terms per object. Again, a randgm . .

. . ﬂ'{e following schemes were evaluated:
number is generated from the average by perturbing It.
Then, terms are picked from the ontology randomly with-
out replacement for the required number of terms. This
process is repeated for all objects.

e MinDist: This is the scheme described in Secfion 5
that has a running time @p(7T'k log k).

Brute-force: In this scheme, all th@(N?) pairs
are computed and then the téppairs are returned.
Maintaining a heap of size at moktgives the run-
ning time of this scheme to b@(N?log k). Due to
the exorbitant online costs of it, this scheme is not
practically useful.

e AvgDist-NextEstimate: In this variant of AvgDist,
the estimate for the best-pair is improved by progres-
sively descending into the subtrees and estimating
the across-tree costs at the roots of those subtrees.

7.2 Experimental Setup

AvgDist-Complete: This is the other variant of

AvgDist where the exact distance is computed at one

go by computing all the pairwise term distances.

When the distance function between the objects is defined
as theearth mover’s distancthe following schemes were

evaluated:
e L,-reduced: In this scheme (Sectioh 4), theon  ® Brute-force: In this scheme, all th@(N?) pairs are
reduced number of terms is used. computed and then the tdppairs are returned.

e L;-full: In this scheme, thd;, on all terms is used. The performance of the brute-force scheme (300 $66r
The tree is not pruned at a height dataset) is much higher than that for AvgDist schemes.
) Consequently, it is not discussed any further.
o EMD-reduced: All theO(N*) EMDs on reduced  geciiong713 t6717 report experiments on EMD while

number of terms are computed. These are then u%eéi:tionst__T]S 16710 aid 7111[f0 7.14 report on MinDist
to prune those object pairs for which the reduceg 4 AvgDist respectively.

EMD is greater than the™" best EMD already found.

e Brute-force: In this scheme, all th@(N?) pairs are
computed and then the tdppairs are returned. 7.3 Effectofkon EMD

The performance of the brute-force scheme (267s F)llgure[] shows the effect dfon the running time of GO

. . . . lization dataset. Wheh is increased, more number
N = 100 objects) is too impractical to be of any use and°2 - '
) ) b y of L; computations are needed before the TA can halt.

Consequently, more number of EMD calculations are also
1Origure[IT in Appendix outlines the algorithm. required.

are, therefore, not reported. Also, the timedgffull are
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EMD: GO Localization EMD: Synthetic dataset, T=2.5x10%, k=5
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Figure 8: Effect ofNV on EMD.
Figure 10: Effect ot on EMD.

7.4 Effect of N on EMD
L, and EMD-reduced depends only on the reduced num-

Figure[8 shows that the scalability of our algorithm witBer of terms, the effect &F is minimal (graph not shown).
N is better than quadratic. Even though the number of

objects increases quadratically, dudtolower bounding,
many of the object pairs are pruned. Consequently, the/ Effect of t on EMD

number of full EMD computations increases by a lower . o
factor. Also. even folV — 350 which translates t6 x 10 As the number of children of root, i.et,increases, the

object pairs, our algorithm finishes in only 55s. complex?ty Of. the TA incre{;\ses Iinearlly. Figire 10 S.hOWS
the running times for varying. The size of each object
description is limited tol0. Whent < 10, the time in-
7.5 Number of Object Pairs for EMD creases. The EMD-reduced behaves in the opposite man-
] . ner. This is due to the interaction of two opposing effects:
To check the effect of increasiny, we measured the ra-35; increases, each computation takes more time, but the
tio of object pairs for which full EMD computation wasiower bound gets tighter as more number of terms are
done. The ratio was measured as number of pairs inveg{ken into account resulting in less number of full EMD
gated to the total number of possible pails((V — 1)/2)  computations. However, when> 10, since there are at
and is denoted by. As Figurd 9 shows; decreases whenmost1( terms in each object, the object description size
N is increased. FoN = 250, the number of EMD com- 4o not get reduced and each EMD-reduced computation
putations becomes lower than 10 %. takes as much time as the full EMD computation. Since
O(N?) of these computations are performed, the running
7.6 Effect of T on EMD time sh_oots_up. Thé,-reduced, on the other hand, shows
only a little increase.
The next experiment measures the effect of the total numThe next set of experiments measure the effect of dif-
ber of terms on the EMD computations. Since both tlierent parameters on the MinDist algorithm.
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MinDist: Gene Ontology (GO) datasets AvgDist: Gene Ontology (GO) datasets
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Figure 11: Effect ok on MinDist. Figure 13: Effect ok on AvgDist.
MinDist: Synthetic dataset, N=10° 710 EffeCt Of N on MlnD|St
100 tfé * T The running time analysis of the MinDist algorithm shows
80 | k=10 - . that it is independent of the number of objedfs When
) k=25 e ; . .
© k=50 --=-- S the number of term§’ is kept constant, the experiments
E 60 (k=100 ---o--- Py e . ) ' ) '
= y confirm that the running time is practically constant even
£ a0} A whenN is increased from03 to 10® (graph not shown).
T ol yd The next set of experiments evaluate the performance
of the two variants of AvgDist.
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'og10 T 7.11 Effect of k on AvgDist
Figure 12: Effect ofl’ on MinDist. The first experiment on AvgDist illustrates the effectof

on the running time of the Build phase and the two differ-
L ent variants—NextEstimate and Complete—for the two

7.8 Effect of k on MinDist larger GO datasets. All the six curves in Figuré 13 are rel-

atively flat, showing that the effect @fis minimal. Intu-
The first set of experiments measure the effect of the nuively, the running time of AvgDist depends on the actual
ber of top pairs queried:§, on the running time of the number of object pairs investigated. For the GO datasets,
MinDist algorithm. As shown in Figure_11, the scalaeven for even larggé’s up to100, this remains almost con-
bility of MinDist with % is linear. The analysis done instant. Moreover, the Build phase takes negligible time in
Sectiori 5.1 shows that for small valuesiothis is the ex- comparison to the Query phase.
pected behavior. The largest real dataset—GO process—

finishes in less than 1s far < 50, demonstrating the7.12 Number of Object Pairs for AvgDist

effectiveness of the algorithm.
We further investigated the effect afby measuring the
number of object pairs that are examined in the Query
phase of the AvgDist algorithm. For this, we increased
7.9 Effect of T on MinDist k up t010000. Figure[I# shows thaj (i.e., the ratio to
the total number of possible pairs) increases very slowly
We next report the effect of the number of terffison with k. The results are robust across different values of
the running time. Figure_12 shows that increasingn- (as shown in the figure) and’ (not shown). This is the
crements the running time of MinDist linearly, indepereason why the running time is also constant ackoss
dent of the value ok. We also note the practicality of The NextEstimate method examines less than 2% of
the MinDist algorithm. For a very large dataset of sizthe total number of pairs. The Complete method inves-
N = 10° and a very large tree of siZE = 10°, a top- tigates more object pairs (about 7%) than the NextEsti-
100 query finishes in about 100s. For smalkés and for mate method. Computing a distance for the current best-
smallerT"s, the running time is in seconds. pair guarantees that only those pairs which have a bound
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_ 000y ‘ E%gg‘ Ngﬁggmg{g N The next set of experiments measure the effect of the num-
o 008 T=10,: Complete =+~ 1 ber of termsI” on the different components of the AvgDist
< o007t T=10": Complete @ . . .
z algorithm. Figur€ 16 shows the time taken to complete the
s 006 Build phase. Note that this phase takes the same amount
g 0057 of time regardless of the choice of the method for estimat-
5 004 ing the distance of a pair. Since the build procedure is run
£ 003 1 at each node, the effect @fis linear. Further, as can be
@ 002f e : _
O — Ry seen from the plot, when the number of objects increase,
T 10 100 1000 10000 more information needs to be processed at each node and
k the running time increases linearly.
Figure 14: Effect of on number of pairs examined for The next experiment measures the number of pairs in-
AvgDist. vestigated against different valuesiof As shown in Sec-
tion[7.13, the number of pairs depends primarily on the
AvgDist: Synthetic dataset, k=1 distribution of the objects on the tree—mainly the num-
1410 ‘ ‘ ber o_f objects falling in the single span Iis_ts—and not on
1e+09 ¢ T=107: NextEstimate - ] the size of the tree. Consequently, the size of the Tree
1e+08 =10%: Complete > 4 A T )
T=10" Complete = ] has no appreciable effect. Similar to the previous set of

1e+07 |

1e+06 |

100000 F

10000 F
1000 f..i
100 5

25 3 35 a4 a5 s 8 Conclusions

log;o N

experiments, this effect df’ (or rather the lack of it) is
directly reflected in the running time as well. The running
time is essentially independent’6f(graph not shown).

Number of object pairs investigated

In this paper, we proposed the problem of finding top-
Figure 15: Effect ofV on number of pairs examined formost similar object pairs annotated with terms from an
AvgDist. ontology The terms represent concepts and the objects
are described using these concepts. The join problem ex-
lower than this distance will be analyzed. For the NextEgosed the computational aspects of the domain well.
timate method, the distance of the best-pair is computedVe then defined and motivated three object distances
progressively, thereby saving on full AvgDist computdhat can be used to define the dissimilarity (or, equiva-
tions as compared to the Complete method, which fingatly similarity) between a pair of objects. The@nimum
the actual distance of the best-pair. pairwise distanceés useful in order to search objects that
share a similar term. Thaverage pairwise distanczap-
tures the notion of similarity when the object definitions
7.13 Effect of N on Angist are imprecise or when objects need to be compared on
multiple attributes. The third onearth mover’s distange
We next discuss the experimental results when the numigparticularly useful as it finds the best way of matching
of objects is varied. We first measure the effect of numbiefms in one object with those in the other by capturing
of objects on the Build phase. From the analysis donethe term-to-term relationships, and measures the distance
Sectior 6.#, we expect the running time to grow linearlyorresponding to this best matching.
with the size of the input information. Assuming that the Finally, we designed algorithms to efficiently solve the
number of describing terms for an object is constant, theoblem using all the above distance measures. The al-
size of the informationis directly proportional to the numgorithm for EMD usesd.; distance as a lower bound and
ber of objects. The experiment shows that the scalabilgyen avoids all.; computations by modifying the thresh-
is indeed linear (graph not shown). old algorithm. The algorithm that solves the problem for
The next experiment (Figukel15) shows that the numkitee minimum pairwise distance runs@ D + Tk log k)
of pairs investigated grows at most quadratically with time. For the average pairwise distance, we devised a
Since the objects are generated using the same randast-first search strategy that avoids all pairs investigat
process, this is expected. by generating lower bounds in an ordered manner. Ex-
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Figure 16: Effect ofl" on Build phase of AvgDist. [10]

perimental evaluations demonstrated the practicality and
scalability of our algorithms. [11]

In future, we would like to design algorithms for other
distance measures and lower bounds. We would also like
to develop methods that use term statistics to improve
the expected running time and further explore the opti-
mal height of pruning the ontology tree for EMD. Lastl ,12]
algorithms fork-NN and range queries should be simple
extensions of the proposed algorithms.
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Appendix

A Average pairwise distance follows
triangular inequality

Lemma 1. The average pairwise distandg,, as defined
in Eqg. (@) follows the triangular inequality property.

Proof. Assume any three objects, B andC. We need

to prove thatly,g (A, B) + davg (B, C) > dawvg(C, A).
Consider any termu; € A, b; € B, and¢, € C.

Since the term distance function is a metric, we can write

d(a;, b;) +d(bj, k) > d(ck,a;). Adding the|Al.|B|.|C]

equations together yields

|AL,IB|,IC| |AL,|B|,IC|
> dlaib)+ > d(by,cr)
o e Algoritim AvgDist-Buid
nput: Nodet
2 i Z}C_I dlcx, az) Output: Object listB
LB Bl 7 ; é:: Iliat ?;Obieds int
' ' . B := Modi
or,[C]. D dlaiby)+ Al Y d(bj,cx) 3.c:= numb:}/r(of)children of
hi=1 k=1 4.fori=1toc
cLlAl 5. CB[i] := AvgDist-Build(t.child[i])
>|B|. > d(ck,ai)| 6. foreachco € CBIi]
k=1 7. if Jo := Find(co.id, B)
Dividing by |A|.|B|.|C|, we get 8 o.dist := o.dist + co.dist
+co.count x t.edgeli]
d‘“’g(A’ B) + davg (B, C) 2 davg (e A) 9. o.count := o.count + co.count
n 10. end if
11. endfor
) 12.end for
B Hashing

If L, is computed on all the terms in the TA phase of theFigure 17: TheBuild phase of the AvgDist algorithm.
EMD algorithm, then the time required for sorting if
objects in the initial phase can be saved. The key is to
observe that all values for an object will be of the form
1/c wherec is the count of the number of terms in the
object. Sincee is at mostT’, a hashtable of siz& with
keys1,...,1 can be maintained. Th& object values
will be hashed into it. The heafd will be filled up with
values of the form; — — only. This requires a running
time of O(N + T') instead ofO(N log N).

When reduced number of terms are used, the values
will be of the formi—;, wherel <t <Tandl <t <T.

This requires a running time ¢¥( N + 7).

C Algorithm AvgDist-Build
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