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Abstract

With the growing focus on semantic searches and inter-
pretations, an increasing number of standardized vocabu-
laries and ontologies are being designed and used to de-
scribe data. We investigate the querying of objects de-
scribed by a tree-structured ontology. Specifically, we
consider the case of finding the top-k best pairs of ob-
jects that have been annotated with terms from such an
ontology when the object descriptions are available only
at runtime. We consider three distance measures. The
first one defines the object distance as the minimum pair-
wise distance between the sets of terms describing them,
and the second one defines the distance as the average
pairwise term distance. The third and most useful dis-
tance measure—earth mover’s distance—finds the best
way of matching the terms and computes the distance
corresponding to this best matching. We develop lower
bounds that can be aggregated progressively and utilize
them to speed up the search for top-k object pairs when
the earth mover’s distance is used. For the minimum
pairwise distance, we devise an algorithm that runs in
O(D + Tk log k) time, whereD is the total information
size andT is the total number of terms in the ontology. We
also develop a novel best-first search strategy for the aver-
age pairwise distance that utilizes lower bounds generated
in an ordered manner. Experiments on real and synthetic
datasets demonstrate the practicality and scalability of our
algorithms.

1 Introduction

We are witnessing an unprecedented growth in annotated
information. This growth has been motivated by a need to
share information and, more recently, by a need to search
and analyze objects based on their structure and seman-

tics. Annotated objects occur in multiple application do-
mains including language (http://wordnet.princeton.edu/),
biology (http://www.geneontology.org), medical doc-
uments (http://www.nlm.nih.gov/mesh/), web content
(http://www.semanticweb.org/), etc. In all these cases, an-
notations are derived from a structured vocabulary or on-
tology. An ontology uses a number of different relation-
ships (e.g., is-a, is-part-of) to organize concepts or hierar-
chies.

This paper investigates the analysis of large sets of ob-
jects that have been annotated with terms from a common
ontology. The basic problem we consider is as follows:
Given two sets of objects annotated with terms from a
common ontology, how to find the top-k pairs of objects
among the two sets that are most similar.

The above problem statement requires us to formalize
the notion of distancebetween two termsin a given ontol-
ogy and then to extend this notion to distancebetween two
annotated objects. The distance between two terms can be
measured by the shortest path distance on the ontology.

There are a number of definitions for distance (or con-
versely, similarity) between objects. Two obvious defini-
tions are based on the minimum pairwise distance and the
average pairwise distance between the annotations. The
third one is the earth mover’s distance [12] that takes into
account the relative positions of the terms that describes
the objects. We investigate querying based on these three
distance measures.

In this paper, we consider that the object descriptions
are submitted in an online fashion, i.e., they are available
onlyat run-time. As such,nopre-processing or index con-
struction or any other offline processing can be used, and
all the computation costs are paid at run-time. Even if
the distance function used is a metric, the online nature
of the problem renders the use of index structures like the
M-tree [3] infeasible due to their high index construction
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Figure 1: Example of an ontology tree with objects.

times. In a way, this problem is reminiscent of the com-
putation of spatial joins on objects embedded in the Eu-
clidean space: the spatial datasets are delivered online and
we need to compute the best spatial matches [16]. Only
that, in the case of ontologies, the primitive distance is not
Euclidean, but computed on a tree.

The problem we consider here can be extended easily
to the case when objects are annotated with multiple in-
dependent ontologies. We can compute the per-ontology
distance and combine them using an aggregate ranking
technique such as the threshold algorithm [7]. The prob-
lem of finding objects similar to a given query object (i.e.,
thek-NN problem) reduces to the special case of a join of
the database with a singleton set, the query object. Simi-
larly, range queries can be solved by choosing only those
pairs having a distance less than the query range. While
these and other kinds of queries can also be considered in
our setting, the problem of top-k joins exposes the compu-
tational and data management complexities of this domain
well, making it the right problem to consider.

Formally, our problem can be stated as:

Problem 1. Given a set of objects each of which is defined
by a set of terms from an ontology and a distance function
d(Oi, Oj) between two objectsOi andOj , findk pairs of
objectsP such that for any(Oi, Oj) ∈ P and(Og , Oh) /∈
P , d(Oi, Oj) ≤ d(Og, Oh).

Figure 1 illustrates a particular instance of the problem.
The ontology tree consists of10 terms. There are4 objects
that are described by these terms. The object descrip-
tions are given byO1 = {t1, t7}, O2 = {t0, t1, t4, t5},
O3 = {t2, t3, t9}, O4 = {t6, t8}. An inverted index, i.e.,
mapping a term to set of objects can be maintained on the
ontology itself (as shown in the figure). Thus, each node
in the tree statically maintains a listL of the objects that
are described using the term corresponding to the node.
For example, the list of objects fort0 is (O2). We will
usetermandnodeinterchangeably to denote the node in
which the term resides.

The edge weights on the tree decrease exponentially
as the level increases. Concepts closer to the root of
the ontology are less similar than concepts that share
some common ancestors. For example, broader concepts
such as “sports” and “politics” should be more dissimi-
lar than relatively narrower concepts such as “football”
and “cricket”. The exponentially decreasing edge weights
capture this notion. We highlight the fact that the expo-
nential edge weighting function is an example, and not a
necessity for the algorithms to work. They produce cor-
rect answers for all edge weights.

We denote the number of objects byN , the number
of terms byT , the total information size (i.e., the total
number of describing terms for all the objects) byD, and
the number of object pairs queried byk. In Figure 1,N =
4, T = 10, andD = 11.

Our contributions in this paper are as follows:

1. First, we propose the problem of finding top-k most
similar object pairs that are annotated with terms in
a hierarchyin an online fashion. The terms may de-
fine concepts in an ontology and objects may be de-
scribed using the concepts.

2. Then, we define and motivate three different distance
functions (equivalently, similarity measures) that can
be used to describe the similarity between a pair of
objects. Theminimum pairwise distanceis useful
for searching objects sharing a similar term (con-
cept). Theaverage pairwise distancecan be used
to query objects that are described using multiple at-
tributes. Theearth mover’s distance(EMD) finds the
best way of matching the terms from two objects and
finds the distance corresponding to this best match-
ing.

3. Finally, we develop efficient algorithms to solve the
problem using the above distances. We use lower
bounds based onL1 on reduced number of terms to
speed up the computation of EMD. TheL1 distance,
in turn, is computed progressively using a modified
version of the threshold algorithm. For the minimum
pairwise distance, we show that the top-k query runs
in O(Tk log k) time, whereT is the size of the ontol-
ogy. For the average pairwise distance, we devise an
efficient best-first search algorithm that avoids dis-
tance computations by generating lower bounds in an
ordered manner. Experimental evaluations demon-
strate the scalability and practicality of our algo-
rithms.

The rest of the paper is organized as follows. Section 2
describes the related work. Section 3 defines the term

2



distance and the different object distances. Sections 4, 5
and 6 present the different algorithms for finding the top-
k pairs of objects using those distances. Experimental re-
sults are discussed in Section 7. Section 8 concludes the
paper.

2 Related Work

Heterogeneous and high-throughput data is becoming
commonplace in the sciences and there is consensus that
integration of this information is needed for new break-
throughs. In all these cases, annotations are derived from
a structured vocabulary or ontology. The Semantic Web
(http://www.semanticweb.org/) has defined a specific
language, OWL (http://www.w3.org/2004/OWL/), for
describing ontologies. In biology, genes are described us-
ing Gene Ontology (GO) (http://www.geneontology.org/)
that annotates genes and gene products by three kinds
of terms reflecting molecular functions, biological
processes, and cellular components. Millions of ab-
stracts in Pubmed (http://www.pubmed.gov/) are indexed
using MESH terms (http://www.nlm.nih.gov/mesh/).
WordNet (http://wordnet.princeton.edu/) is a lexical
database that groups English words into cognitive
synonyms (orsynsets). Hundreds of other ontologies
have been proposed over diverse application domains
such as plant structures (http://www.plantontology.org/),
description and publication of digital documents
(http://www.dublincore.org/), and earth and the envi-
ronment (http://sweet.jpl.nasa.gov/ontology/). A good
compendium of different ontologies is maintained at
http://www.ontologyonline.org/.

A given ontology uses a number of different relation-
ships to organize concepts or hierarchical relationships.
Of these, “is-a” and “is-part-of” relationships are the most
prevalent. The former describes a subsumption relation-
ship while the latter represents how objects combine to-
gether to form composite objects. Both of these lead to
hierarchical structures in which the proximity between
terms (concepts) grows as we descend down the hierar-
chy.

There have been numerous works on gene ontology
ranging from gene function prediction using informa-
tion theory [18] to defining similarity among genes us-
ing the full graph structure of GO [5]. In [8], a compari-
son of three different gene similarity measures were pre-
sented. Probabilistic approaches have also been used [13].
Biologists have used average and minimum pairwise
distances between genes based on GO for comparing
co-evolutionary rates of yeast genes [14] and for co-
clustering with gene expression data [2] respectively.

There are a number of similar efforts in the area
of information retrieval where the similarity between
documents is measured by considering the overlap of
terms. The term-frequency inverse-document-frequency
(tf-idf) measures consider the frequency of terms in docu-
ments [17]. Work on text matching showed that hierarchy-
based measures using tf-idf outperform lexical similarity
measures [15]. Latent Semantic Indexing (LSI) [6] trans-
forms documents into an Euclidean space indexed by la-
tent semantic dimensions. EMD has been shown to be
better than other measures in finding document similari-
ties using the WordNet ontology [19].

Embedding an ontology into an Euclidean space [9] and
processing queries in the embedding space is another al-
ternative. However, an object description will then span
multiple points leading to possibly large MBRs. Further,
the approach may suffer from high distortion of the em-
bedding.

In this paper, we tackle the computational challenge of
answering queries efficiently using distances defined on
hierarchical structures like ontologies.

3 Distance Definitions

3.1 Distance between Terms

The distanced(ti, tj) between two termsti andtj is de-
fined as the length of the path between them on the ontol-
ogy tree. Since there is only one path between two terms
in a tree, from the properties of the shortest path, this dis-
tance is a metric [4].

An interesting and important point to note is that when
the term distances decreaseexponentiallyat each level,
the distance between two terms at the leaves of two sub-
trees can be approximated by the distance between the
roots of the subtrees. For example, in Figure 1 where
the edge distances are halved at each level, the distance
betweent4 andt6 (= 3) can be approximated by that be-
tweent1 andt2 (= 2). Using this term distance, we next
define different distance measures between the objects.
Once more, we emphasize the fact that our algorithms are
general enough to work correctly with all edge weights,
and not just the exponential function.

We next define the three distance measures—dmin,
davg anddemd—between two objects.1

1We use the termsdmin and MinDist,davg and AvgDist,demd and
EMD interchangeably in the paper.
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Min O1 O2 O3 O4

O1 0.0 0.0 0.5 1.0
O2 0.0 1.0 1.5
O3 0.0 0.5
O4 0.0

Table 1: Minimum pairwise distances for the example in
Figure 1.

Avg O1 O2 O3 O4

O1 1.25 1.50 2.08 1.75
O2 0.75 2.17 2.50
O3 1.11 2.00
O4 0.50

Table 2: Average pairwise distances for the example in
Figure 1.

3.2 Minimum Pairwise Distance

Definition 1 (Minimum Pairwise Distance). The mini-
mum pairwise distance between two objectsOi andOj ,
denoted byMinDist, is defined as:

dmin(Oi, Oj) = min
ti∈Oi,tj∈Oj

{d(ti, tj)} (1)

This distance is useful when searching objects that have
similar terms. For example, even though a single biolog-
ical document may contain references to different terms
like photoreceptor cells and ganglion cells, it is useful
to be able to retrieve it when another document that de-
scribes photoreceptor cells is queried.

This distance is of particular use inkeyword search-
ing, where the query document consists of only the sin-
gle keyword, and all documents having that keyword will
be returned with a distance of 0. MinDist, in general, ex-
tends this idea by finding additional documents that con-
tain terms most similar to the queried keyword.

The MinDist measure is heavily used in hierarchical
bottom-up clustering methods where in each step, two
clusters with the minimum pairwise distance are merged.
It has also been successfully used for finding the distance
between two genes, where a gene is annotated with a set
of terms from GO [2].

Table 1 shows the MinDist measures among the ob-
jects in Figure 1. MinDist isnot a metric distance as it
does not maintain the triangular inequality. For example,
dmin(O1, O4) + dmin(O1, O2) = 1.0 + 0.0 < 1.5 =
dmin(O2, O4).

3.3 Average Pairwise Distance

Definition 2 (Average Pairwise Distance). The average
pairwise distance between two objectsOi and Oj , de-

EMD O1 O2 O3 O4

O1 - 1.25 1.75 1.75
O2 - 2.17 2.50
O3 - 2.00
O4 -

Table 3: EMDs for the example in Figure 1.

noted byAvgDist, is defined as:

davg(Oi, Oj) =
1

|Oi|.|Oj |
∑

ti∈Oi,tj∈Oj

d(ti, tj) (2)

where|Oi| and |Oj | denote the number of terms describ-
ingOi andOj respectively.

The AvgDist is useful in cases where the objects are
not precisely defined. For example, it has been success-
fully used for gene function prediction using GO terms
for yeast genes [14] as well as in the domain of web ser-
vices [11]. The MinDist measure fails in such cases.

Table 2 shows the AvgDist measures among the objects
in Figure 1. AvgDist is not a metric, as it fails to satisfy
the identity property, i.e.,davg(x, x) can be greater than
0 (e.g.,davg(O1, O1) = 1.25). However, since it follows
symmetry and triangular inequality2, it can be considered
as apseudo-metricdistance.

3.4 Earth Mover’s Distance

Apart from the property of not being a true metric,
AvgDist also suffers from the fact that each term in one
object is matched with every other term in the other ob-
ject. For example, consider two documents with the
terms{war, sports} and {war, football}. Even though
it is obvious that the distance between these two docu-
ments should be small, the average distance unnecessarily
compares “war” in the first document with “football” in
the other. The earth mover’s distance (EMD) [12] rec-
tifies this shortcoming by comparing only the like terms
through finding the best matching between the terms of
the two documents. For this example, EMD will match
“war” with “war” and “sports” with “football” and aggre-
gate these distances only. EMD has been shown to be
better than other distances in finding similar documents
using the WordNet ontology [19].

Formally, each object is considered to be composed of
“mass” at the specific spatial locations (corresponding to
the terms that describe the object) in the ontology. The
total mass of each object is1; consequently, the mass at

2See Appendix for the proof.
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Figure 2: Reduction of terms.

each term location is inverse of the number of terms de-
scribing the object. For example,O1 in Figure 1 will have
mass1

2
corresponding to termst1 andt7.

The EMD between two objectsA andB is themini-
mumwork required to transformA to B, where one unit
of work is equal to moving one unit of mass through one
unit of distance in the ontology. Finding the best “flows”
(i.e., how much mass needs to be moved from one term
in A to another term inB) is a linear programming (LP)
problem.

Definition 3 (Earth Mover’s Distance). The earth mover’s
distance between two objectsOi and Oj , denoted by
EMD, is defined as:

demd(Oi, Oj) = min
f

∑

tp∈Oi

∑

tq∈Oj

cpqfpq (3)

s.t., eachfpq ≥ 0,

∀tp∈Oi
,
∑

tq∈Oj

fpq = Oip , and∀tq∈Oj
,
∑

tp∈Oi

fpq = Ojq

wherecpq is theground distancebetween the termstp and
tq as per the ontology tree andOip is the mass oftp in Oi.

EMD is a metric when the ground distance is a met-
ric (proof in [12]). Table 3 shows the EMDs among the
objects in Figure 1.

3.5 Comparison of the Distance Measures

To compare the usefulness of the three distance mea-
sures, we performed the following experiment. We used
WordNet (http://wordnet.princeton.edu/) as the ontology
and the “bag-of-words” dataset from the UCI repository
(http://archive.ics.uci.edu/ml/datasets/Bag+of+Words) as
the set of objects. We chose the first59 documents
from the categoriesenron and kos of the bag-of-words
dataset. Each document was described using nouns from
the WordNet ontology, and the ontology was converted
into a tree. The top-50 pairs were obtained using all the
three distances. For EMD, on an average, there were45
pairs where both the objects were from the same category.
Also, all 10 out of the top-10 pairs were of this nature.

Object Before After
{t0, t1, t2, t3, t4, t5, t6, t7, t8, t9} {t0, t1, t2, t3}

O1 {0, 1
2
, 0, 0, 0, 0, 0, 1

2
, 0, 0} {0, 1

2
, 1

2
, 0}

O2 { 1

4
, 1

4
, 0, 0, 1

4
, 1

4
, 0, 0, 0, 0} { 1

4
, 3

4
, 0, 0}

O3 {0, 0, 1
3
, 1

3
, 0, 0, 0, 0, 0, 1

3
} {0, 0, 1

3
, 2
3
}

O4 {0, 0, 0, 0, 0, 0, 1
2
, 0, 1

2
, 0} {0, 0, 1, 0}

Table 4: Reduction of terms using Figure 2 for example
in Figure 1.

The corresponding numbers for AvgDist distance were23
and6 respectively. The MinDist returned505 object pairs
with distance0 as many objects shared one or more terms.
Consequently, the top-k lists returned were arbitrary. This
convinced us of the quality of the EMD and its usefulness
in finding the top-k similar pairs of objects described by
terms on tree ontologies. Nevertheless, the two other dis-
tance measures have been proved to be useful in specific
contexts [2, 14].

We next design algorithms to efficiently compute the
top-k pairs using these distances. We start with the EMD
as it is the most interesting and useful measure.

4 The Algorithm for EMD

When the two sets containN objects each, the problem of
finding top-k pairs of objects can be solved by perform-
ingO(N2) EMD computations. However, the prohibitive
time required by each EMD computation makes the en-
tire running time (O(N2) × O(EMD) + O(N2 logN))
impractical.3

4.1 Lower Bound using Reduced Number
of Terms

When the ontology tree has a size ofT , the ground dis-
tance matrix is of sizeT 2. However, we need not con-
sider all the terms as we can prune the terms that are ab-
sent in either of the object descriptions.4 Thus, the num-
ber of flow variables is quadratic in the size of the object
descriptions. This is still impractical: the average time
taken to computedemd for objects of size7 was found to
be 54 ms.5

Since the complexity of EMD depends mainly on the
number of flow variables, which is quadratic in the num-
ber of terms by which each object is described, the run-

3The sorting ofN2 pairs require an additionalO(N2 logN) time.
4The row and column sums for these terms in the flow matrix will be

0 and hence all the flows will be0 individually as well.
5All the times reported in the paper are based on a 3 GHz machine

with 2 GB of RAM running Fedora Linux 9.
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o1

0 3 4 6 12

Figure 3: Example of ordered generation of object pairs
for one dimension.

ning time can be reduced if the size of the object descrip-
tions is reduced. Figure 2 shows how such reduction can
be accomplished. The ontology tree is pruned at height
1; only the root term and its immediate children remain.
When a term thus deleted appears in an object description,
it is replaced by its ancestor that is retained. Hence, all the
terms in the dashed subtrees in the figure are removed and
replaced by the root of the subtrees. The size of an object
description is now upper bounded by the branching factor
of the root. Table 4 shows the reduced object descriptions.

The EMD between two objects calculated using the re-
duced ontology is a lower bound of the EMD using the full
ontology [12]6. The number of terms in the reduced on-
tology is generally much less (sayt ≪ T ), thus reducing
the number of flow variables tot2. Since the complexity
of linear programming is at least super-linear in the num-
ber of flow variables, the running time of EMD decreases
by a large factor ofT 2/t2. The number of distance com-
putations, however, still remainsO(N2). Next, we show
how to reduce the number of distance computations.

4.2 L1 Lower Bound

TheL1 distance, when scaled by the sum of the total mass,
can be used as a lower bound for EMD [1]. Hence, the
L1 distance between two objects computed using allT
terms, when divided by2, serves as a lower bound for
EMD between the objects. From now on, whenever we
mentionL1, we mean the scaled version of it which is a
lower bound.L1 on all terms, in turn, is lower bounded
by L1 on reduced number of terms. The proof uses the
fact that|ai − bi| + |aj − bj| ≥ |(ai + aj) − (bi + bj)|,
i.e., when the values are combined, the difference of the
sums is more than the sum of the differences. Therefore,
L1t(Oi, Oj) ≤ L1T (Oi, Oj) ≤ EMDT (Oi, Oj), where
the subscripts denote the number of terms used. Since
L1 is much faster to compute (for3 terms, it takes only
0.002 ms), we can calculate a lower bound on EMD for
each object pair and then use it as a filtering step to prune
many of the pairs.

6A lower bound can be obtained by pruning the tree at any height.
However, there is a trade-off between the tightness and computational
efficiency of the lower bound.

TheL1 distance between two objects is a sum of the
distances between the corresponding values in each di-
mension; therefore, if the distances for all the object pairs
are obtained and sorted for each dimension, the thresh-
old algorithm (TA) [7] can be applied to obtain the object
pairs with the least sum of distances or the leastL1 dis-
tance in a progressive manner. The order of obtaining in-
creasingL1 distances can then be used as a guide to order
the EMD computations of the object pairs.

Obtaining a sorted list of object pairs for each dimen-
sion requiresO(N2 logN) time. TA, however, also works
when the next object pair in the list can be output in a
sorted manner whenever needed. This avoids theO(N2)
computations. Hence, now our problem is reduced to
outputting the next smallest pairwise distance whenever
asked for in a particular list (or dimension).

For this, we maintain two data structures for each di-
mension: (i) a min-heapH that outputs the next best pair,
and (ii) a listC that stores all the pairs that have been
outputted fromH .

Initially, theN objects are sorted and allN −1 consec-
utive object pairs (not necessarilyOiOi+1) corresponding
to N − 1 differences are inserted intoH . Figure 3 shows
an example. The 5 objects are sorted according to their
values for the dimension that is being processed. Initially,
H contains the 4 object pairs corresponding to the 4 dif-
ferences in the sorted list. Whenever the next pair is asked
for by TA, the minimum object pair fromH is extracted
and returned. It is also inserted intoC. In this example,
after the first call,O3O5 is extracted fromH and inserted
intoC. Similarly, in the next call,O5O4 is extracted.

The initial pairs are not sufficient though. There may
be a non-initial pair (e.g.,O3O4) with a value (3) less
than that of an initial pair (O4O2 with value6). However,
the important point to note is that any non-initial pair is a
combinationof some of the initial pairs. Two pairs which
have an overlapping object can be fused together to gener-
ate a new pair. For example,O3O4 can be generated from
O3O5 andO5O4 sinceO5 is overlapping. Further, a pair
can never be the least pair until and unless the pairs from
which it has been generated have been chosen (i.e., output
from H). Therefore, in the example,O3O4 is added to
H only after bothO3O5 andO5O4 have been chosen. In
general, when a pairOxOy is chosen, the contents ofC
are scanned and new pairs are generated if possible. IfC
has pairs of the formOwOx andOyOz, new pairsOwOy

andOxOz are generated respectively and are inserted into
H . The value of this new pair is the sum of the values of
the pairs from which it is generated.

6



4.3 Algorithm

Figure 4 summarizes the entire EMD algorithm that uses
TA with the lower bounding strategy. First, theL1 lower
bound using reduced number of terms is extracted from
the heap (line 14). If it is less than the currentkth es-
timateP.dist in P (line 15), the bound is improved by
computing theL1 using all the terms (line 16). If it still
less (line 17), the exact EMD is computed (line 18) and
the top-k list is modified, if necessary (line 21). For each
suchL1-reduced computation, the threshold distance (R)
is increased. WhenR > kth distance inP , no other ob-
ject pair can haveL1-reduced distance less than the top-k
pairs already found. Therefore, the EMD distances will
also be greater. Hence, the algorithm is then halted.

4.4 Analysis of Time Complexity

For each of thet dimensions, we incur the following cost.
Initially, sorting takesO(N logN) time.7 Thereafter,
inserting theN − 1 elements in the heap takesO(N)
time. With each call to the heap, an extract operation
takesO(logN). At the ith iteration, at mosti elements
are added to the heap again. This takesO(i logN) time.
Thus, if we havek′ calls (thisk′ is generally larger thank
as many object pairs with low lower bound but high EMD
are examined), the time per dimension isO(k′2 logN)
which leads to a total time of

∑t
j=1

O(k′2j logN) or
O(tk′2max logN) wherekmax is the maximum of allk′js.

Space Complexity: Heapj requiresO(N + k′2j ) space
wherek′j is the number of calls made on columnj. Hence,
the total space required isO(t(N + k′2max)) wherek′max

is the maximum ofk′j ’s.

5 The Algorithm for MinDist

Unlike the demd distance, whenever two terms corre-
sponding to two objects are encountered, the MinDist for
the object pair can be estimated. If it is better than the cur-
rent estimate, it is retained; otherwise, it isneverneeded
again. We next explain the MinDist algorithm that ex-
ploits this property.

Any object pair(Oi, Oj) having a lesser distance than
(Og, Oh) must have a term pair(ti ∈ Oi, tj ∈ Oj) which
has a lesser distance than any term pair(tg ∈ Og, th ∈
Oh). Hence, we only need to identify such term pairs
(ti, tj) that are close and process their inverted lists, i.e.,
the list of objects.

7An alternative approach using hashing that may reduce this time is
discussed in Appendix.

Algorithm EMD
Input: Reduced object listO with t terms
Output: Object pair listP
1. for dimensionj = 1 to t
2. SortOij (only j th dimension)
3. InsertN − 1 differences into heapH [j]
4. ListC[j] := Φ
5. Thresholdsτ [j] := 0
6. end for
7. P := Φ (∴ P.dist (i.e.,kth distance inP ) := ∞)
8. ThresholdR := sum of allτ [j] (therefore,R := 0)
9. j := 0
10. while R < P.dist
11. Extract minimum pairp fromH [j]
12. τ [j] := difference for pairp
13. if p is not seen earlier
14. d1 := L1 on t terms ofp
15. if d1 ≤ P.dist
16. d2 := L1 on all terms ofp
17. if d2 ≤ P.dist
18. d3 := EMD on all terms ofp
19. if d3 ≤ P.dist
20. Insertp intoP
21. UpdateP.dist as newkth distance
22. end if
23. end if
24. end if
25. end if
26. UpdateR usingτ [j]
27. ScanC[j] with p to generate new pairsΓ
28. AddΓ toH [j]
29. j := (j + 1) mod t
30. end while

Figure 4: The EMD algorithm.

A pre-processing step is required to build the inverted
lists of objects at each node. The inverted index is needed
to be built for the minimum and average pairwise dis-
tances but not the earth mover’s distance. For each object
Oi, when a termtj appears in it,Oiis inserted into the
inverted list oftj . The list is accessed using hashing, and
the object is inserted at the top of list.

Figure 5 describes the entire algorithm. For a node, the
MinDist algorithm computes the top-k object pairs that
are described by at least one term pair in its subtree. Any
such object pair must either (i) be in the top-k list of the
children, or (ii) contains terms from different subtrees of
the children. The recursive definition of the first kind al-
lows us to employ a divide-and-conquerapproach. For the
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Algorithm MinDist
Input: Nodet
Output: Pair listP of sizek;

Object listB of sizeO(
√
k)

1. TB := list of objects int of sizeO(
√
k)

2. c := number of children oft
3. for i = 1 to c
4. CB[i], CP [i] := MinDist(t.child[i])
5. Addt.edge[i] cost to each object inCB[i]
6. end for
7. B := Merge(CB[1], . . . , CB[c], TB)
8. TP := GenPairs(B)
9. P := Merge(CP [1], . . . , CP [c], TP )

Figure 5: The MinDist algorithm.

second kind, we need a list of objects that are close to the
subtree of the children nodes. The lists can then be joined
to generate the necessary object pairs. Thus, the MinDist
algorithm computed at the root of the ontology returns the
top-k pairs.

As shown in Figure 5, each nodet maintains two lists:
(i) a list of pairs of objectsP ordered by theirdmin dis-
tances; and (ii) a list of objectsB ordered by their min-
imum distancesdi to the nodet. The length ofP is at
mostk. The length ofB should be enough to ensure that
k distinct pairs of objects can be generated fromB. The
number of terms required to do that isk′ = O(⌈

√
k⌉).8

When MinDist is called on a nodet, it selectsk′ objects
from its listL into TB. L is the list of objects associated
with that term. MinDist is then called on each of itsc
children. The cost of the edge fromt to its child is added
to the objects in the corresponding child’s object list (line
5). This is done to ensure that the distances are maintained
correctly. Thec sorted object lists and the list of objects
in t are then merged to produce the sorted listB.

The merging (line 7) is done using a heap data struc-
ture [4]. The heap is initialized withc + 1 elements at
position1 of each of the child lists and the listTB. The
minimum element is then extracted intoB. Since all the
individual lists are sorted, the properties of heap guarantee
that the object extracted has the leastdmin distance from
this node. The object at the next position of the list from
where this minimum object came is then inserted into the
heap. This is repeatedk′ times.

All the possiblek pairs are then generated from thek′

objects inB (method GenPairs in line 8). This listTP
computes thek best distances of the object pairs which

8Sincek′(k′ − 1)/2 ≥ k, the actual number of terms required is
k′ = ⌈1/2 +

√

1/4 + 2k⌉.

are not in any of the subtrees.
TP is finally merged with the pair listsCP [i], i =

1 . . . c from the children to produce the final pair listP
using a heap in the same manner as above (line 9).

5.1 Analysis of Time Complexity

In this section, we analyze the time and space complexi-
ties of the MinDist algorithm.

We first analyze the time required to compute the in-
verted index. The object descriptions are read once, and
for each term in an object, the corresponding list is ac-
cessed inO(1) time using hashing, and the object is in-
serted at the top of list in anotherO(1) time. The total
time required for this phase is, therefore,O(D).

We next analyze the running time for the main phase of
the algorithm. Selectingk′ objects inTB requiresO(k′)
time. Adding the child edge costs to each object inCB
lists takesO(k′c) time.

At every step of the merging operation, the object with
the minimum distance is extracted from the heap and an-
other object is inserted. The size of the heap is, therefore,
never more thanO(c). Extracting the minimum element
and inserting another object into the heap takesO(log c)
time. Since the operation is repeatedk′ times, the total
running time of the merging procedure isO(k′ log c).

If, however, the objects in the child lists are not unique,
k′ operations may not be enough to selectk′ different ob-
jects. Thus, a hashtable is used to ensure that an object
is inserted into the heap only once. First, all the lists are
scanned inO(k′c) time. If an object appears for the first
time, it is inserted into the hashtable with the object iden-
tifier as the key and the distance as the value. If an ob-
ject appears twice, the one with the minimum distance is
maintained in the hashtable. Before any object is inserted
into the heap, the hashtable is checked. If this object is
different from the one maintained in the hashtable, then
there exists another copy of this object with a smaller dis-
tance. Hence, this object does not need to be considered.
This limits the number of heap operations toO(k′). As-
suming that the hashtable operations take constant time,
the running time then isO(k′ log c).

Sortingk local object pairs requiresO(k log k) time.
Finally, the sorted pair lists at the node and the children

are merged inO(kc + k log c) time using a heap and a
hashtable in a similar manner as before.

Thus, the total running time of the MinDist algorithm
at a node withc children isO(kc+ k log k).

The algorithm is run once at each node of the ontology.
Assuming that there areT terms in the ontology, the total
number of children forall the nodes isO(T ). Hence, the
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amortized cost isO(Tk + Tk log k) = O(Tk log k).

The total running time of the MinDist algorithm is,
therefore,O(D + Tk log k).

Space Complexity: Each node in the ontology contains
an object list of sizeO(k′) and a pair list of sizeO(k).
Once these lists are sent to the parent, they are no longer
required. Thus, at any time, the space requirement at a
node isO(c(k′ + k)). The total space complexity, there-
fore, isO(cmax(k+k′)) wherecmax is the largest branch-
ing factor of a node in the tree. The inverted index requires
O(D) space for storage.

6 The Algorithm for AvgDist

Unlike the MinDist algorithm that needs to maintain only
one term pair for each object pair, thedavg distance needs
to remember all the possible term-pair distances. Conse-
quently, it runs in two phases: (i) theBuild phase, when
pertinent information about objects are collected at the
root in a bottom-up manner, and (ii) theQuery phase,
when such information is used to identify the top-k pairs
in a top-down order.

For any pair of objects, there are two types of costs that
need to be accumulated. The first is theacross-treecosts,
i.e., the distances between the describing terms that oc-
cur in different subtrees of the root, and the second is the
within-treecosts, i.e., the distances between the describ-
ing terms that are within the same child of the root. For
example, in Figure 1, the total pairwise term distances for
(O1, O4) can be broken into 2 parts: (i) the across-tree
distances betweent1 of O1 and t6, t8 of O4 in the dif-
ferent subtrees undert1 and t2 respectively, and (ii) the
within-tree distances betweent7 of O1 andt6, t8 of O4 in
the same subtree undert2.

To estimate the across-tree distances for object pairs at
a node, the following information need to be calculated
for each object: (i) thenumber of termsin the subtree
that describe the object, and (ii) thetotal distanceof all
such terms to this node. This information is accumulated
at the root of the ontology by the build phase AvgDist-
Build, which we describe in Section 6.4. After this phase,
the root has collected the following tuple for each object:
(Oi, ni, wi).

Before describing the two phases of the algorithm, we
explain how lower bounds for the across-tree costs of an
object pair can be computed using the above information
and how such lower bounds can be generated in anor-
deredmanner.

6.1 Lower Bounds for Across-Tree Costs

The estimates of the across-tree distances of a pair of
objectsOi andOj at a nodet depend on the occurrences
of their describing terms. Thespan of an object is
defined to be the number of subtrees of the root where its
constituent terms occur. It can be either single, i.e., its
terms occur in only one subtree, or multiple, i.e., its terms
occur in multiple subtrees. Based on these, 3 different
cases need to be considered. In each case, we would like
to write the bounds at a node in terms of the parameters
maintained forOi andOj at the node, i.e., in terms of
(Oi, ni, wi) and (Oj , nj , wj).

Case 1: Both the objects have single spans. Two sub-
cases need to be considered.

Sub-case 1(a):The objects are in the same subtree. The
across-tree cost is0 and nothing can be concluded about
their distance in the subtree without descending deeper
into the subtree. Hence, the lower bound is

dlb = 0 (4)

Sub-case 1(b):The objects are in different subtrees. In
this case, the across-tree distance can be estimated ex-
actly. The distance between a termti ∈ Oi andtj ∈ Oj is
d(ti, t) + d(tj , t) wheret is the node at which this lower
bound is being computed. Thetotal across-tree distance
is obtained by adding all such combinations of terms:

|Oj |∑

j=1

|Oi|∑

i=1

d(ti, t) +

|Oi|∑

i=1

|Oj |∑

j=1

d(tj , t)

=nj .

|Oi|∑

i=1

d(ti, t) + ni.

|Oi|∑

i=1

d(tj , t)

=nj .wi + ni.wj (5)

Thus, the average distance is

dlb = d =
wi

ni

+
wj

nj

(6)

Since the within-tree distance for this pair is0, this is the
exact distance.

Case 2:Both the objects have multiple spans. The min-
imum across-tree distance can be estimated in a manner
similar to that in Case 1(b). There are at least two pair-
ings of terms ofOi andOj that are in different subtrees.
Using Eq. (5), thetotal across-tree costs for these pairings
arewi1 .nj2 + wj2 .ni1 andwi2 .nj1 + wj1 .ni2 , whereni1 ,
wi1 etc. are the number of terms ofOi in one subtree and

9



its total distance tot from that subtree. The values ofni1 ,
ni2 , nj1 , andnj2 are at least1. Thus, the total across-tree
distance is at leastwi1 +wi2 +wj1 +wj2 = wi+wj . The
lower bound for the average pairwise distance, then, is

dlb =
wi + wj

ni.nj

(7)

Case 3: One objectOi has a single span, and the other
objectOj has a multiple span. Similar to Case 2, there is
at least one subtree containing terms ofOj but not con-
taining terms ofOi. Thetotal across-tree cost is then the
minimum ofwi.nj1 + wj1 .ni andwi.nj2 + wj2 .ni. Sim-
ilar to Case 2, there is at least one term ofOj that is not
in the same subtree ofOi. Thus,nj1 andnj2 are at least
1. However, without knowing where the terms ofOj oc-
cur, nothing can be concluded aboutwj1 andwj2 . Since
the terms may occur at the node itself, the estimates for
wj1 andwj2 are0. Hence, the total distance is at leastwi

producing a lower bound of

dlb =
wi

ni.nj

(8)

6.2 Generating Ordered Pairs

Though the above mentioned lower bounds can be com-
puted for a given pair, the cost of computing them for ev-
ery pair isO(N2). We would like to avoid such costly
online operations. The trick is to separate the parameters
of Oi andOj in each lower bound such that they can be
systematically generated in anorderedmanner whenever
needed. The order of generation will guarantee that at any
point of time, the lower bounds of the pairs not exam-
ined will be greater than or equal to the lower bounds of
the pairs already generated. In this section, we will dis-
cuss ways to achieve this for each of the cases mentioned
above.

To identify pairs of objects in the same subtree (Case
1(a)),c+1 different lists are maintained at the root corre-
sponding to itself and itsc children.

To handle Case 1(b), each of thesec+1 lists of objects
are sorted by the average distancewi/ni. Given two such
sorted child lists, it is guaranteed that the lower bound
(which is the sum of the distances) for an object pair at
positionspi in the first list andpj in the second list is lower
than the estimate of every pair whose positions are> pi
and> pj . Thus, every time a pair at positions(pi, pj)
is inspected, only its immediate successors(pi + 1, pj)
and (pi, pj + 1) need to be considered. Since there are
c+1 child lists, the number of possible ways of pairing is
c(c+ 1)/2.

The lower bound for Case 2 is not easily separable in
terms of parameters ofOi andOj . It is, however, sep-
arable if for an object pair, the number of terms for the
objects (i.e.,ni, nj) are known a priori. To do that, the
list of objects with multiple spans is partitioned such that
each partition contains objects with a particularni. Pair-
ing Oi andOj and knowing which partitions they come
from immediately defines the denominator of the lower
bound. Thus, if there arer partitions, sorting each par-
tition by wi and performingr2 pairings in the same way
as done for Case 1(b) orders the pairs according to their
lower bounds.

Case 3 is handled similarly. The single-span list is bro-
ken intoc + 1 lists and the multiple-span list intor par-
titions. Generating allr(c + 1) pairings gives the lower
bounds in an ordered manner.

We next describe how the Query phase of the AvgDist
algorithm uses these lower bounds.

6.3 Query Phase

The AvgDist-Query procedure (Figure 6) is run at the root
of the ontology. It outputs a listP of top-k object pairs.
When the size ofP is less thank, P.dist is∞; otherwise,
it is maintained as thekth largest distance inP .

The listL of objects is broken intoc + 1 + r lists cor-
responding to single and multiple spans as explained in
the earlier section. From these lists, the initial pairs with
the lower bounds are generated (method GenInitialPairs in
line 6) and put into a heapH . See Section 6.2 for details
on how to generate these pairs.

The top-down searching for object pairs proceeds in a
manner where at every stage, only the current “best” pair
is examined [10]. Thus, this search strategy is called the
best-first search.

The algorithm progresses by extracting the currentbest
pair from the heap, i.e., the pairp with the current best
lower bound (line 8). If the lower bound is an estimate
for p and not an exact distance as in Case 1(b), the bound
can be improved in two ways (line 11). First, the within-
tree costs at the subtrees in the next level can be estimated
again using Eqs. (4-8) by descending into the subtree (de-
noted as AvgDist-NextEstimate). The descent is made in
a breadth-first order on the tree.9 The second way is to
compute the term-wise distances fully without resorting
to recursion (denoted as AvgDist-Complete). This, how-
ever, disregards the structure of the ontology.

If the exact distance ofp is computed, the listP is ex-
amined. If thekth distance inP is more than that ofp (line

9Any order, e.g., depth-first order, will also work. However,if the
edge distances decrease exponentially, breadth-first ordering produces
better bounds.
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Algorithm AvgDist-Query
Input: Noderoot
Output: Pair listP of sizek
1. L := list of object mappings inroot
2. P := Φ (therefore,P.dist := ∞)
3. c := number of children ofroot
4. r := number of partitions of objects
5. DivideL into c+ 1 + r listsB
6. A := GenInitialPairs(B)
7. Insert eacha ∈ A into heapH
8. p := Pop(H)
9. while p.dist < P.dist
10. if Done(p) = false
11. p := UpdateEstimate(p)
12. end if
13. if Done(p) = true
14. if p.dist < P.dist
15. Insertp intoP
16. P.dist := kth distance inP
17. end if
18. else
19. Insertp intoH
20. end if
21. A := GenNextPairs(p,L)
22. Insert eacha ∈ A intoH
23. p := Pop(H)
24. end while

Figure 6: TheQueryphase of the AvgDist algorithm.

14),p is inserted intoP andP.dist is modified. The size
of P is maintained to be at mostk by removing the pair
with the largest distance.

If, however, the lower bound ofp is still an estimate,
p is re-inserted back into the heapH (line 19). The next
pairs are generated from thec+ 1 + r lists (method Gen-
NextPairs in line 21 as described in Section 6.2) and in-
serted into the heap (line 22).

In the next iteration, the pair which is now thebestis
examined (line 23). If this pair has a distance more than
thekth distance inP (i.e.,P.dist), it is guaranteed that all
the pairs currently in the heap and all the pairs that are not
generated will have a greater distance. This is due to the
properties of the heap and the ordered nature of generating
the pairs from thec + 1 + r lists. Thus, the algorithm is
then terminated correctly.

Name Number of Number of
GO Terms (T ) Genes (N )

Process 13762 3437
Function 7803 1958

Localization 1990 645

Table 5: The Gene Ontology (GO) datasets.

6.4 Build Phase

In this section, we describe how AvgDist-Build computes
the information (Oi, ni, wi) for an object.10 Each node
t maintains an inverted listL of objectsOi described
usingt. First, it convertsL into B by makingni = 1 and
wi = 0 for eachOi ∈ L. Then, it calls AvgDist-Build for
each of its children. For each listCB that it receives from
a child, and for each objectOj ∈ CB, it modifieswj by
adding to it the distance to the child node multiplied by
the number of timesOj occurs in the child subtree, i.e.,
wj = wj + dist × nj , wheredist is the edge distance
from t to its child. This ensures that the total distance
from t is maintained correctly, since each of thenj

objects have to traverse the distancedist.

Analysis of Space and Time Complexities:Assume the
total size of the object description to beD which is at most
N × T whereN is the total number of objects, andT the
total number of terms. The inverted index requiresO(D)
time and space to construct. We next analyze the space
and time complexity of AvgDist-Build in terms of these
parameters.

Each object’s information is stored at the terms describ-
ing it. The information stored in a term is repeated along
all its ancestors. Since the size of the description isD,
and there areO(log T ) ancestors (assuming the ontology
to be balanced), the storage cost isO(D logT ).

The running time can be analyzed similarly. At the leaf
level of the tree, there areD describing terms. When this
O(D) information is sent up to the next level, the time
required to combine the information is stillO(D) since
each object description is read only once and is matched
using a hashtable to the information already computed.
Assuming the height of the tree to beO(log T ), the total
running time isO(D logT ).
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7 Experiments

7.1 Datasets

We have experimented with real as well as synthetic
datasets. The real dataset is that of Gene Ontology (GO,
http://www.geneontology.org/). There are three ontolo-
gies in GO, corresponding to biological process, molec-
ular function and cellular component (localization) of
terms. The details of the three ontologies are given in Ta-
ble 5. The datasets were curated by hashing gene descrip-
tions using their bit-vector representations of the terms
and removing the identical genes.

The synthetic datasets were generated by controlling
the number of objects, the number of terms, the aver-
age branching factor of the ontology tree and the average
number of terms per object. The ontologies and the object
datasets are created separately. Ontologies have a fixed
size and an average branching factor. Starting from the
root, we generate a random number of children by per-
turbing the average branching factor within some limits.
We continue with this at all successive nodes. The object
dataset is generated with a fixed number of objects and
an average number of terms per object. Again, a random
number is generated from the average by perturbing it.
Then, terms are picked from the ontology randomly with-
out replacement for the required number of terms. This
process is repeated for all objects.

7.2 Experimental Setup

When the distance function between the objects is defined
as theearth mover’s distancethe following schemes were
evaluated:

• L1-reduced: In this scheme (Section 4), theL1 on
reduced number of terms is used.

• L1-full: In this scheme, theL1 on all terms is used.
The tree is not pruned at a height1.

• EMD-reduced: All theO(N2) EMDs on reduced
number of terms are computed. These are then used
to prune those object pairs for which the reduced
EMD is greater than thekth best EMD already found.

• Brute-force: In this scheme, all theO(N2) pairs are
computed and then the top-k pairs are returned.

The performance of the brute-force scheme (267 s for
N = 100 objects) is too impractical to be of any use and
are, therefore, not reported. Also, the times ofL1-full are

10Figure 17 in Appendix outlines the algorithm.

not reported since, in the best case, it can only saveL1-
reduced computations, which are very fast anyway. In all
the experiments, it was actually worse thanL1-reduced.

When the distance function between the objects is
defined as theminimum pairwise distancebetween the
terms, the following schemes were considered:

• MinDist: This is the scheme described in Section 5
that has a running time ofO(Tk log k).

• Brute-force: In this scheme, all theO(N2) pairs
are computed and then the top-k pairs are returned.
Maintaining a heap of size at mostk gives the run-
ning time of this scheme to beO(N2 log k). Due to
the exorbitant online costs of it, this scheme is not
practically useful.

ForN = 104, the top-k computation using the brute-force
algorithm finishes in∼300 s. Since the MinDist has a bet-
ter running time, we report the experiments for MinDist
only.

When the distance function between the objects is de-
fined as theaverage pairwise distancebetween the terms,
the following schemes were evaluated:

• AvgDist-NextEstimate: In this variant of AvgDist,
the estimate for the best-pair is improved by progres-
sively descending into the subtrees and estimating
the across-tree costs at the roots of those subtrees.

• AvgDist-Complete: This is the other variant of
AvgDist where the exact distance is computed at one
go by computing all the pairwise term distances.

• Brute-force: In this scheme, all theO(N2) pairs are
computed and then the top-k pairs are returned.

The performance of the brute-force scheme (300 s for104

dataset) is much higher than that for AvgDist schemes.
Consequently, it is not discussed any further.

Sections 7.3 to 7.7 report experiments on EMD while
Sections 7.8 to 7.10 and 7.11 to 7.14 report on MinDist
and AvgDist respectively.

7.3 Effect of k on EMD

Figure 7 shows the effect ofk on the running time of GO
localization dataset. Whenk is increased, more number
of L1 computations are needed before the TA can halt.
Consequently, more number of EMD calculations are also
required.
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7.4 Effect of N on EMD

Figure 8 shows that the scalability of our algorithm with
N is better than quadratic. Even though the number of
objects increases quadratically, due toL1 lower bounding,
many of the object pairs are pruned. Consequently, the
number of full EMD computations increases by a lower
factor. Also, even forN = 350 which translates to6×104

object pairs, our algorithm finishes in only 55 s.

7.5 Number of Object Pairs for EMD

To check the effect of increasingN , we measured the ra-
tio of object pairs for which full EMD computation was
done. The ratio was measured as number of pairs investi-
gated to the total number of possible pairs (N(N − 1)/2)
and is denoted byη. As Figure 9 shows,η decreases when
N is increased. ForN = 250, the number of EMD com-
putations becomes lower than 10 %.

7.6 Effect of T on EMD

The next experiment measures the effect of the total num-
ber of terms on the EMD computations. Since both the
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Figure 9: Effect ofN on number of pairs examined for
EMD.
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L1 and EMD-reduced depends only on the reduced num-
ber of terms, the effect ofT is minimal (graph not shown).

7.7 Effect of t on EMD

As the number of children of root, i.e.,t increases, the
complexity of the TA increases linearly. Figure 10 shows
the running times for varyingt. The size of each object
description is limited to10. Whent ≤ 10, the time in-
creases. The EMD-reduced behaves in the opposite man-
ner. This is due to the interaction of two opposing effects:
ast increases, each computation takes more time, but the
lower bound gets tighter as more number of terms are
taken into account resulting in less number of full EMD
computations. However, whent > 10, since there are at
most10 terms in each object, the object description size
do not get reduced and each EMD-reduced computation
takes as much time as the full EMD computation. Since
O(N2) of these computations are performed, the running
time shoots up. TheL1-reduced, on the other hand, shows
only a little increase.

The next set of experiments measure the effect of dif-
ferent parameters on the MinDist algorithm.
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7.8 Effect of k on MinDist

The first set of experiments measure the effect of the num-
ber of top pairs queried (k), on the running time of the
MinDist algorithm. As shown in Figure 11, the scala-
bility of MinDist with k is linear. The analysis done in
Section 5.1 shows that for small values ofk, this is the ex-
pected behavior. The largest real dataset—GO process—
finishes in less than 1 s fork ≤ 50, demonstrating the
effectiveness of the algorithm.

7.9 Effect of T on MinDist

We next report the effect of the number of termsT on
the running time. Figure 12 shows that increasingT in-
crements the running time of MinDist linearly, indepen-
dent of the value ofk. We also note the practicality of
the MinDist algorithm. For a very large dataset of size
N = 106 and a very large tree of sizeT = 106, a top-
100 query finishes in about 100 s. For smallerk’s and for
smallerT ’s, the running time is in seconds.
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Figure 13: Effect ofk on AvgDist.

7.10 Effect of N on MinDist

The running time analysis of the MinDist algorithm shows
that it is independent of the number of objectsN . When
the number of termsT is kept constant, the experiments
confirm that the running time is practically constant even
whenN is increased from103 to 106 (graph not shown).

The next set of experiments evaluate the performance
of the two variants of AvgDist.

7.11 Effect of k on AvgDist

The first experiment on AvgDist illustrates the effect ofk
on the running time of the Build phase and the two differ-
ent variants—NextEstimate and Complete—for the two
larger GO datasets. All the six curves in Figure 13 are rel-
atively flat, showing that the effect ofk is minimal. Intu-
itively, the running time of AvgDist depends on the actual
number of object pairs investigated. For the GO datasets,
even for even largek’s up to100, this remains almost con-
stant. Moreover, the Build phase takes negligible time in
comparison to the Query phase.

7.12 Number of Object Pairs for AvgDist

We further investigated the effect ofk by measuring the
number of object pairs that are examined in the Query
phase of the AvgDist algorithm. For this, we increased
k up to 10000. Figure 14 shows thatη (i.e., the ratio to
the total number of possible pairs) increases very slowly
with k. The results are robust across different values ofT
(as shown in the figure) andN (not shown). This is the
reason why the running time is also constant acrossk.

The NextEstimate method examines less than 2% of
the total number of pairs. The Complete method inves-
tigates more object pairs (about 7%) than the NextEsti-
mate method. Computing a distance for the current best-
pair guarantees that only those pairs which have a bound
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lower than this distance will be analyzed. For the NextEs-
timate method, the distance of the best-pair is computed
progressively, thereby saving on full AvgDist computa-
tions as compared to the Complete method, which finds
the actual distance of the best-pair.

7.13 Effect of N on AvgDist

We next discuss the experimental results when the number
of objects is varied. We first measure the effect of number
of objects on the Build phase. From the analysis done in
Section 6.4, we expect the running time to grow linearly
with the size of the input information. Assuming that the
number of describing terms for an object is constant, the
size of the information is directly proportional to the num-
ber of objects. The experiment shows that the scalability
is indeed linear (graph not shown).

The next experiment (Figure 15) shows that the number
of pairs investigated grows at most quadratically withN .
Since the objects are generated using the same random
process, this is expected.

7.14 Effect of T on AvgDist

The next set of experiments measure the effect of the num-
ber of termsT on the different components of the AvgDist
algorithm. Figure 16 shows the time taken to complete the
Build phase. Note that this phase takes the same amount
of time regardless of the choice of the method for estimat-
ing the distance of a pair. Since the build procedure is run
at each node, the effect ofT is linear. Further, as can be
seen from the plot, when the number of objects increase,
more information needs to be processed at each node and
the running time increases linearly.

The next experiment measures the number of pairs in-
vestigated against different values ofT . As shown in Sec-
tion 7.13, the number of pairs depends primarily on the
distribution of the objects on the tree—mainly the num-
ber of objects falling in the single span lists—and not on
the size of the tree. Consequently, the size of the treeT
has no appreciable effect. Similar to the previous set of
experiments, this effect ofT (or rather the lack of it) is
directly reflected in the running time as well. The running
time is essentially independent ofT (graph not shown).

8 Conclusions

In this paper, we proposed the problem of finding top-k
most similar object pairs annotated with terms from an
ontology. The terms represent concepts and the objects
are described using these concepts. The join problem ex-
posed the computational aspects of the domain well.

We then defined and motivated three object distances
that can be used to define the dissimilarity (or, equiva-
lently similarity) between a pair of objects. Theminimum
pairwise distanceis useful in order to search objects that
share a similar term. Theaverage pairwise distancecap-
tures the notion of similarity when the object definitions
are imprecise or when objects need to be compared on
multiple attributes. The third one,earth mover’s distance,
is particularly useful as it finds the best way of matching
terms in one object with those in the other by capturing
the term-to-term relationships, and measures the distance
corresponding to this best matching.

Finally, we designed algorithms to efficiently solve the
problem using all the above distance measures. The al-
gorithm for EMD usesL1 distance as a lower bound and
even avoids allL1 computations by modifying the thresh-
old algorithm. The algorithm that solves the problem for
the minimum pairwise distance runs inO(D + Tk log k)
time. For the average pairwise distance, we devised a
best-first search strategy that avoids all pairs investigation
by generating lower bounds in an ordered manner. Ex-
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perimental evaluations demonstrated the practicality and
scalability of our algorithms.

In future, we would like to design algorithms for other
distance measures and lower bounds. We would also like
to develop methods that use term statistics to improve
the expected running time and further explore the opti-
mal height of pruning the ontology tree for EMD. Lastly,
algorithms fork-NN and range queries should be simple
extensions of the proposed algorithms.
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Appendix

A Average pairwise distance follows
triangular inequality

Lemma 1. The average pairwise distancedavg as defined
in Eq. (2) follows the triangular inequality property.

Proof. Assume any three objectsA, B andC. We need
to prove thatdavg(A,B) + davg(B,C) ≥ davg(C,A).

Consider any termai ∈ A, bj ∈ B, and ck ∈ C.
Since the term distance function is a metric, we can write
d(ai, bj) + d(bj , ck) ≥ d(ck, ai). Adding the|A|.|B|.|C|
equations together yields

|A|,|B|,|C|∑

i,j,k=1

d(ai, bj) +

|A|,|B|,|C|∑

i,j,k=1

d(bj , ck)

≥
|A|,|B|,|C|∑

i,j,k=1

d(ck, ai)

or, |C|.
|A|,|B|∑

i,j=1

d(ai, bj) + |A|.
|B|,|C|∑

j,k=1

d(bj , ck)

≥ |B|.
|C|,|A|∑

k,i=1

d(ck, ai)

Dividing by |A|.|B|.|C|, we get

davg(A,B) + davg(B,C) ≥ davg(C,A)

B Hashing

If L1 is computed on all the terms in the TA phase of the
EMD algorithm, then the time required for sorting ofN
objects in the initial phase can be saved. The key is to
observe that all values for an object will be of the form
1/c wherec is the count of the number of terms in the
object. Sincec is at mostT , a hashtable of sizeT with
keys 1

1
, . . . , 1

T
can be maintained. TheN object values

will be hashed into it. The heapH will be filled up with
values of the form1

i
− 1

i+1
only. This requires a running

time ofO(N + T ) instead ofO(N logN).
When reduced number of terms are used, the values

will be of the formt1
t2

, where1 ≤ t1 ≤ T and1 ≤ t2 ≤ T .
This requires a running time ofO(N + T 2).

C Algorithm AvgDist-Build

Algorithm AvgDist-Build
Input: Nodet
Output: Object listB
1. L := list of objects int
2. B := Modify(L)
3. c := number of children oft
4. for i = 1 to c
5. CB[i] := AvgDist-Build(t.child[i])
6. for eachco ∈ CB[i]
7. if ∃o := Find(co.id, B)
8. o.dist := o.dist+ co.dist

+co.count× t.edge[i]
9. o.count := o.count+ co.count
10. end if
11. end for
12. end for

Figure 17: TheBuild phase of the AvgDist algorithm.
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