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Arthur Zimek2

1 National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

meh@nii.ac.jp
2 Ludwig-Maximilians-Universität München
Oettingenstr. 67, 80538 München, Germany

http://www.dbs.ifi.lmu.de

{kriegel,kroegerp,schube,zimek}@dbs.ifi.lmu.de

Abstract. The performance of similarity measures for search, index-
ing, and data mining applications tends to degrade rapidly as the di-
mensionality of the data increases. The effects of the so-called ‘curse
of dimensionality’ have been studied by researchers for data sets gener-
ated according to a single data distribution. In this paper, we study the
effects of this phenomenon on different similarity measures for multiply-
distributed data. In particular, we assess the performance of shared-
neighbor similarity measures, which are secondary similarity measures
based on the rankings of data objects induced by some primary distance
measure. We find that rank-based similarity measures can result in more
stable performance than their associated primary distance measures.

1 Introduction

Effective solutions for data indexing and data mining tasks often require that
an appropriate measure of object-to-object similarity be provided. Operations
such as the retrieval of objects similar to a query object are facilitated using
a nearest-neighbor search with an appropriate distance measure. Any use of a
similarity measure involves the implicit assumption that the data objects nat-
urally form groups that can be regarded as arising from different generation
mechanisms, and sharing common statistical characteristics. In the context of
unsupervised learning, these groups can be clusters that follow some local ‘natu-
ral’ distribution. Sometimes, the learning process seeks to model the generation
mechanism by fitting the data to known distributions; in other cases, only the
groups themselves are sought. In outlier detection, the similarity measure is used
to distinguish those objects that are conspicuously dissimilar from the majority
of objects. In the context of classification, each class of the training set may be
composed of one or more natural clusters, possibly together with outlier objects.
In all contexts, we expect that a nearest-neighbor query based at an object from
a particular natural grouping should rank objects from the same grouping ahead
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of other objects in the data set. In real-valued feature spaces, Lp norms or the
cosine of the angle between the pair of vectors are commonly used to express
similarities between vectors.

In general, similarity measures based on distances are sensitive to variations
within a data distribution, or the dimensionality of a data space. These variations
can limit the quality of the solution, the efficiency of the search, or both. For
Lp norms in high dimensions, questions have been raised by several researchers,
including Beyer et al. in [1], as to whether the concept of the nearest neighbor
is meaningful. Intuitively, the key result of [1] states that if the ratio of the vari-
ance of the length of any point vector (denoted by ‖Xd‖) with the length of the
mean point vector (denoted by E[‖Xd‖]) converges to zero with increasing data
dimensionality, then the proportional difference between the farthest-point dis-
tance Dmax and the closest-point distance Dmin (the relative contrast) vanishes:

If lim
d→∞

var

( ‖Xd‖
E[‖Xd‖]

)
= 0, then

Dmax −Dmin

Dmin
→p 0.

For a broad range of data distributions and distance measures, the relative con-
trast does diminish as the dimensionality increases. This concentration effect of
the distance measure reduces the utility of the measure for discrimination. This
phenomenon — recognized as one aspect of the curse of dimensionality — is
quite general, and occurs for a broad range of data distributions and distance
measures. In [2], the behavior of integer Lp norms in high dimensional spaces
has been studied. The authors showed by means of an analytic argument that
L1 and L2 are the only integer norms useful for higher dimensions. In addition,
they studied the use of projections for discrimination, the effectiveness of which
depended on localized dissimilarity measures that did not satisfy the symmetry
and triangle inequality conditions of distance metrics. In [3], fractional Lp dis-
tance measures (with 0 < p < 1) have been studied in a similar context. The
authors provide evidence supporting the contention that smaller values of p offer
better results in higher dimensional settings. These well-known studies generally
assumed that the full data set followed a single data distribution, subject to
certain restrictions. In fact, when the data follows a mixture of distributions,
the concentration effect is not always observed; in such cases, distances between
members of different distributions may not necessarily tend to the global mean
as the dimensionality increases. As briefly noted in [1], if a data set is composed
of many natural groupings or clusters, each following their own distribution, then
the concentration effect will typically be less severe for queries based on points
within a cluster of similar points generated according to the same mechanism,
especially when the clusters are well-separated.

The fundamental differences between singly-distributed data and multiply-
distributed data are discussed in detail in [4]. The authors demonstrate that
nearest-neighbor queries are both theoretically and practically meaningful when
the search is limited to objects from the same cluster (distribution) as the query
point, and other clusters are well separated from the cluster in question. The
key concept is that of pairwise stability of clusters, which is said to hold when-
ever the mean distance between points of different clusters dominates the mean



distance between points belonging to the same cluster. When the clusters are
pairwise stable, for any point belonging to a given cluster, its nearest neighbors
tend to belong to the same cluster. Here, a nearest-neighbor query of size on
the order of the cluster size can be considered meaningful, whereas differentia-
tion between nearest and farthest neighbors within the same cluster may still
be meaningless. Note that for many common distributions these considerations
may remain valid even as the dimension d tends to infinity: for example, two
Gaussian distributions with widely separated means may find that their separa-
bility improves as the data dimension increases. However, it should also be noted
that these arguments are based on the assumption that all dimensions bear in-
formation relevant to the different clusters, classes, or distributions. Depending
on the ratio of relevant versus irrelevant attributes, and on the actual separation
of sets of points belonging to different distributions, irrelevant attributes in a
data set may impede the separability of different distributions and thus have the
potential for rendering nearest neighbor query results less meaningful.

The observations of [4], and the important distinction between the effects
of relevant and irrelevant attributes, both seem to have received little if any
attention in the research literature. Despite the demonstrated deficiency of con-
ventional Lp norms for high-dimensional data, a plethora of work based on the
Euclidean distance has been dedicated to clustering strategies, which appear to
be effective in practice to varying degrees for high-dimensional data [5]. Many
heuristics have recently been proposed or evaluated for clustering [6–14], outlier
detection [15–18], and indexing or similarity search [6, 19–23] that seek to mit-
igate the effects of the curse of dimensionality. While some of these strategies,
such as projected or subspace clustering, do recognize implicitly the effect of
relevant versus irrelevant attributes for a cluster, all these papers (as well as
others) abstain from discussing these effects, let alone studying them in detail.
In particular, the concept of pairwise stability of clusters as introduced in [4] has
not been taken into account in any of these papers. Although their underlying
data models do generally assume (explicitly or otherwise) different underlying
mechanisms for the formation of data groupings, they motivate their new ap-
proaches with only a passing reference to the curse of dimensionality. Indeed, it
has been observed recently that many questions regarding these effects remain
open [24]. Thus, a more detailed study of the effects of the curse of dimensional-
ity on such heterogeneously distributed data sets in the presence of both relevant
and irrelevant features is needed. One main objective of this paper is to attempt
to address this need.

An interesting alternative to traditional similarity measurement is the defini-
tion of secondary measures based on the rankings induced by a specified primary
similarity measure (such as an Lp norm, or the cosine measure). The simplest
and most common of these methods involves the use of shared nearest-neighbor
(SNN) information, in which the similarity value for an object pair (x, y) is a
function of the number of data objects in the common intersection of fixed-sized
neighborhoods centered at x and y, as determined by the primary measure. The
primary similarity measure can be any function that determines a ranking of the



data objects relative to the query. It is not even necessary for the data objects
to be represented as vectors.

The most basic form of shared nearest-neighbor similarity measure is that
of the ‘overlap’. Given a data set S consisting of n = |S| objects and s ∈ �+,
let NN s(x) ⊆ S be the set of s-nearest-neighbors of x ∈ S as determined using
some specified primary similarity measure. The overlap between objects x and
y is defined to be the intersection size

SNN s(x, y) = |NN s(x) ∩NN s(y)|. (1)

Other similarity measures have been proposed based on the overlap, such as the
cosine measure:

simcoss(x, y) =
SNN s(x, y)

s
, (2)

so called as it is equivalent to the cosine of the angle between the zero-one set
membership vectors for NN s(x) and NN s(y). This was used in [25,26] as a local
density measure for clustering.

For computing the nearest neighbors in high dimensional data, SNN measures
have been reported to be effective in practice, and supposedly less prone to the
curse of dimensionality than conventional distance measures. SNN measures have
found use in the design of merge criteria of agglomerative clustering algorithms
[25, 27, 28], in approaches for clustering high-dimensional data sets [26, 29], and
in finding outliers in subspaces of high dimensional data [30]. However, in all of
these studies, no systematic investigation has been made into the advantages of
SNN measures over conventional distance measures for high-dimensional data.

The main contributions of this paper are as follows: (i) We present the first
study of the effects of high data dimensionality for the more realistic scenario
of data mixture models (as opposed to data following a single distribution), for
a number of popular distance measures. (ii) We evaluate the performance of
secondary similarity measures based on SNN information, as compared to the
primary distances from which the rankings are derived. We demonstrate empir-
ical evidence for the claim that SNN is more robust in higher dimensions than
primary distances in widely varying settings of data set characteristics. (iii) We
also provide interpretations for this observation: since the ranking of points is
usually still meaningful in high dimensions, the overlap of the neighborhoods of
two points in a common natural grouping can be expected to be substantially
large, leading to a high SNN similarity value. The size of the overlap of neigh-
borhoods of points from different groups is expected to be rather small, result-
ing in a low SNN similarity value. (iv) We derive several SNN-based secondary
distance measures with the potential for good results for distance-based appli-
cations even when the curse of dimensionality limits the discrimination power of
the underlying primary distance functions. In such situations, the distance-based
implementation most likely performs worse than the SNN-based application for
most choices of a primary distance function.

In the following section, we explore different aspects of the curse of dimen-
sionality, and distinguish between the truth and myths surrounding this phe-



nomenon. We present the framework for our experimentation in Section 3. In
Section 4, we evaluate how dimensionality affects the performance of SNN sim-
ilarity, in contrast to that of the underlying primary similarity. In Section 5,
we validate our findings on several real world data sets. This will motivate the
formalization and discussion of possible distance measures based on the SNN
dissimilarity, in Section 6. The results of the study are summarized in Section 7.

The data sets studied, the plots shown throughout this paper, as well as
further information and experimental results and plots, are all available online
via http://www.dbs.ifi.lmu.de/research/SNN/.

2 The Curse of Dimensionality Reconsidered

As mentioned earlier, previous studies of the effects of the curse of dimensionality
on Lp norms mainly assume a common data distribution for all attributes of a
given data set. Here, we investigate the effects of the curse in the presence of
heterogeneous data distributions (for a more detailed discussion, see [5]):

Problem 1: Poor Discrimination of Distances
Concepts such as proximity, distance, or neighborhood become less meaningful

with increasing dimensionality due to a loss of contrast of distances.
This is the fundamental problem studied in [1–3]. For any data mining, in-

dexing, or similarity search application, this effect is a serious impediment to
the successful treatment of high-dimensional data.

Problem 2: Presence of Irrelevant Attributes
Among the features of a high dimensional data set, for any given query ob-

ject, many attributes can be expected to be irrelevant to that object. Irrelevant
attributes can interfere with the performance of similarity queries for that object.

The relevance of any particular attribute may vary across different groups
of objects within the same data set. Since natural clusters of the data are de-
termined only by some subset of the available attributes, the presence of many
irrelevant attributes may impede the efforts to identify these groups. The perfor-
mance of distance measures may be seriously compromised even by a relatively
small number of irrelevant attributes. As the total number of dimensions in-
creases, one would expect more and more features to be irrelevant to a given
query object. Many publications seem to confuse the problem of irrelevant at-
tributes with that of Problem 1, but they are in fact different — it is not im-
possible to have poor discrimination of distances even when all attributes are
relevant, and good discrimination even when many attributes are irrelevant.

Problem 3: Presence of Redundant Attributes
Similarly as with Problem 2, in a data set containing many attributes, there

may be correlations or redundancies among subsets of attributes that also lead to
special difficulties for data mining, indexing, or similarity search applications.

This issue relates to the concept of ‘intrinsic dimensionality’ of a data set.
For spatial queries, the observation that the intrinsic dimensionality of a data
set in many cases is lower than the representational dimensionality (due to inter-
dependencies among attributes) is often presented as a justification of strategies



for obviating the curse of dimensionality [31–34]. It should be noted that there
are scenarios where correlations among attributes do exist, but the problem of
discrimination of distances still applies [1]. The correlations among attributes
may be different within differing natural groups of a data set.

Since Problems 1 and 2 are often not well-differentiated in the literature,
in our experimental studies, we will take care to demonstrate the differences in
their natures and effects. In contrast with the earlier studies in [1–3], we limit
our investigation here to mixtures of data distributions (as in [4]) as a realistic
scenario for data mining or indexing or other similarity search applications.

3 Experimental Framework

3.1 Data Sets

To study the effects of the curse of dimensionality, we require a series of data
sets that scale in dimensionality without introducing bias. After controlling for
dimensionality, each of the sets in the series must be constructed so as to share
common characteristics to the greatest degree possible. This is difficult to achieve
with real world data, as the different attributes often vary in their scales and ex-
pressivity. When generating low-dimensional examples from a high-dimensional
data set, it is not always clear how to select the projective dimensions fairly.
In addition, well-defined ground truth sets necessary for assessing the expres-
siveness of query results are typically unavailable for large real data sets. The
use of synthetic data allows us to study individual effects separately, while real
data sets usually prevent the isolation of different influences. For these reasons
we construct several series of artificial data sets using pseudo-random genera-
tors with largely fixed parameters, avoiding those parameter choices leading to
data sets with groupings that are either too difficult or too easy to discriminate.
Unless stated otherwise, the synthetic data sets were constructed with the fol-
lowing characteristics: n = 10, 000 points grouped into c = 100 clusters in up to
dmax = 640 dimensions. Cluster sizes are randomized with a mean of n

c = 100
and standard deviation n

10·c = 10, with the size of the last generated cluster
adjusted so that the total number of points is n. When generating data sets
for a series, those sets with dimensionality d < dmax were generated so that
their attributes coincided with the first d attributes of all other data sets having
dimensionality greater than d.

For each object, attribute values were generated depending on whether the
attribute is to be considered ‘relevant’ or ‘irrelevant’ for the formation of the
cluster to which the object belongs. If the i-th attribute is deemed relevant to
the j-th cluster, the value of this attribute for all members of c are normally
distributed with a standard deviation in the range σj,i ∈ [0.05 : 0.8], and a mean
in the range μj,i ∈ [

σj,i

2 : 1 − σj,i

2 ]. These ranges were chosen to avoid overly
compact or overly wide distributions, as well as boundary effects, while still
providing a wide variety of distributions and overlaps. No additional clipping or
normalization was applied. Any attributes irrelevant to the cluster were assigned
noise values uniformly distributed in the interval [0 : 1].



For the experimentation, 6 synthetic data series were created, each consist-
ing of 7 sets of differing dimensionality d = 10, 20, 40, 80, 160, 320, 640: (i) All-
Relevant : in this series, all attributes were generated so as to be relevant for
all clusters. (ii) 10-Relevant : in this series, the first 10 attributes are relevant
for all clusters, the remaining attributes are irrelevant. (iii) Cyc-Relevant : in
this series, the i-th attribute is relevant for the j-th cluster when i mod c = j;
otherwise, the attribute is irrelevant. This series has n = 1, 000 and c = 10.
(iv) Half-Relevant : in this series, for each cluster, an attribute was chosen to be
relevant with probability 1

2 , and irrelevant otherwise. The selection of attributes
was consistent within a cluster, and performed independently of the selection for
other clusters. (v) All-Dependent : this series is derived from All-Relevant intro-
ducing correlations among attributes. (vi) 10-Dependent : this series is derived
from 10-Relevant introducing correlations among attributes.

For the correlated data sets All-Dependent and 10-Dependent, the i-th at-
tribute value Xi was generated by computing Xi = Yi for 1 ≤ i ≤ 10, and
Xi = 1

2 (Xi−10 + Yi) for i > 10, where Yi is the attribute of the correspond-
ing uncorrelated data set All-Relevant or 10-Relevant. This way of introducing
correlations is inspired by Example 3 in [1].

These 6 series provide us with the means to study different aspects of the
curse of dimensionality. Data series All-Relevant is the basic setting referred to
in the statement of Problem 1. However, the sets differ from those considered in
other studies [1–3], and conforms with [4] in that the data objects are partitioned
into clusters (as are all our data sets). Data sets 10-Relevant and Cyc-Relevant
relate exclusively to Problem 2 in different settings. The clusters are further
distinguished in the data set Cyc-Relevant, where every attribute is relevant for
exactly one cluster. In the series Half-Relevant, we give up control of the number
and choice of relevant attributes. Half the attributes are expected to be relevant
to a given cluster, but the selection of relevant attributes varies (independently)
from cluster to cluster.

Our synthetic data sets do not satisfy the IID (independent and identically-
distributed) assumptions used in the proofs of [1], as the sets are composed
of multiple clusters that overlap in some dimensions and are well-distinguished
in others. However, the analysis of [24] applies when dimensional values are
comparable in their extent and exhibit the same properties as for normalized
data.

As intended, our synthetic data sets show the typical behavior ascribed to
the curse of dimensionality. Figure 1 plots the numerator and denominator of
the contrast formula Dmax−Dmin

Dmin
for individual data sets, to demonstrate that

Dmin (the solid symbols) indeed grows much faster than the difference Dmax −
Dmin (the hollow symbols). The plots indicate that Dmin grows exponentially
faster than Dmax −Dmin . Plots for the correlated data series and other distance
functions can be found on our web page, as well as plots showing the contrast
directly.

In addition to the synthetic data sets described above, we also considered
real-world data sets for our study. Real-world data sets suitable for this study
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Fig. 1. Curse of dimensionality: Dmax −Dmin compared to Dmin

are difficult to obtain, since they should have a reasonable size, number of classes,
dimensionality, comparable dimensions and of course a solid ground truth. Re-
sults for real data can be difficult to interpret due to a lack of knowledge of
the underlying data distributions, even when ground-truth class knowledge is
available. Nevertheless, we report experimental results for 3 real data sets. The
first real data set we used is the Multiple Features data set [35]. It consists of
2000 instances from 10 classes (corresponding to the digits 0 to 9). There are
two variants, one with 649 dimensions (coming from multiple feature extraction
algorithms and giving the data set its name), and another with 240 dimensions
(the pixel averages features, which is the largest subset of directly comparable
features). The second set considered is the Optical Recognition of Handwritten
Digits data set [35]. It consists of 5620 instances from 10 classes (also correspond-
ing to the digits 0 to 9) in 64 dimensions, in the form of an 8× 8 grid of integer
values in the range of 0 to 16 obtained by downsampling from a larger 32 × 32
grid. The third real data set comes from the ALOI image database [36], each im-
age being described by 641 dense features based on color and texture histograms
(for a detailed description of how the vectors were produced, see [37]). The full
ALOI database consists of 110, 250 images of 1, 000 objects taken from different
orientations and in different lighting conditions, each object being treated as a



class. We used only the first 22, 050 instances of the data set, covering the first
205 objects, with an average class size of approximately 107 objects.

3.2 Distance Measures

As primary distance measures we considered for our experimental evaluation a
range of different Lp distances, in particular the Manhattan (L1) and Euclidean
(L2) distances, and the p = 0.6 and p = 0.8 fractional Lp distances. In addition,
we used also the cosine distance, referred to here as arccos, as it is computed
as the arc of the cosine similarity. All these distance measures can be used as
the primary distance for the computation of a secondary similarity simcoss,
as defined in Equation 2. For our experiments, we use the distance measure
1 − simcoss, and compare the performance of this secondary distance measure
with the corresponding primary distance measure to assess whether the accuracy
is improved. There are other possibilities for constructing distance measures from
similarity measures. The particular choice of method, however, does not affect
the ranking of query results, although it may influence the contrast. We will
discuss this further, in Section 6.

3.3 Evaluation Criteria

The purpose of a distance function is to facilitate the separation of data objects
similar to the query from those objects which are not similar. The discriminative
ability of a given distance function can best be evaluated by computing a nearest-
neighbor ranking of all data points with respect to a given query point. Ideally,
at the top positions of the ranking, we would find all objects drawn from the
same natural cluster as the query object, followed by the objects from outside the
cluster. To evaluate the discriminative ability of dissimilarity functions without
referring to the actual values, we compute Receiver Operating Characteristic
(ROC) curves that compare the true positive rate with the false positive rate.
For each query, the objects are ranked according to their similarity to the query
point. We can compute the matching ROC curve and the corresponding area
under the curve (AUC) for each ranking result. An AUC of 1.0 indicates perfect
discrimination — all relevant objects are ranked ahead of all other objects. An
AUC of 0.5 indicates a total lack of discriminative ability, as this value is what
would be expected with a uniform random permutation of the query result set.
An AUC significantly less than 0.5 indicates a reversed ordering. The ROC curve
and its AUC value provide a summary for a single ordering of points — that
is, for a single query object. By generating a ROC curve and AUC value for
each data object, the mean AUC value and standard deviation could then be
used to rate the quality for a particular distance function. However, we expect
points near the center of a cluster (the mean of the generating distribution) to
discriminate well for many distance functions. On the other hand, for points near
the border of a cluster or in the overlap of clusters, values of the dissimilarity
measure will most likely perform less well. Therefore, at data generation time,
we assign to each point a centrality rank, based on both its deviation from the



mean and the size of the cluster, so as to normalize across clusters of differing
sizes. The point generated for cluster M that is closest to the mean of M is
assigned a centrality of 1, and the point of M that is farthest from the mean of
M is assigned a centrality of 0. To obtain readable graphs, the ROC AUC values
then are aggregated into bins based on their centrality values. This allows us
to plot the degradation of the distance function with respect to the centrality
of a point within its distribution. For the plots shown in this paper, we will be
using three bins for the central 20%, outer 20% and middle 60%. In the online
material, 20 bins are used (each representing 5% of the data). In these plots we
will also show the standard deviation along with the mean ROC AUC value.

4 Effects of the Curse of Dimensionality

At first glance, the fact that our synthetic data sets exhibit the typical symptoms
of the curse of dimensionality would seem to indicate that these data series are
not amenable to indexing or mining. However, such a conclusion would be unnec-
essarily pessimistic. Especially for data sets with many relevant attributes (such
as the All-Relevant series), any given number of clusters should become dis-
tinguishable when the number of relevant attributes becomes sufficiently large.
This intuition is justified by examples such as the combination of kernels and
support vector machines (SVM): the number of dimensions is increased in order
to be able to separate classes linearly by hyperplanes. In fact, what is stated as
a condition for the pairwise stability of clusters in [4], we would expect to hold
for any two clusters where the number of discriminative attributes dominates.
This is not an essentially original contribution of our study but confirms prior
results. We provide, however, evidence for this effect in the online material.

One point that must be stressed is that while the curse of dimensionality tells
us not to rely on the absolute values of distances, it is still viable to use distance
values to derive a ranking of data objects. An ε-range query is dependent upon
the choice of an appropriate value of ε, and thus suffers from the lack of contrast,
whereas a k-nearest neighbor query will retrieve the top k neighbors indepen-
dently of their absolute distance values. Hence, the computation of k-nearest
neighbor queries and rankings has the potential to be viable in higher dimen-
sions, whereas that of ε-range queries likely does not. Furthermore, although the
curse of dimensionality contrast formula holds for all our data sets, the ranking
results are not tied solely to the data dimensionality, and can in certain situ-
ations improve significantly with increasing dimensionality, as reported in [1].
The conclusion we draw is supported by the research literature as well as by our
experiments on our synthetic data sets:

Conclusion 1: Relevant vs. Irrelevant Attributes
The quality of the ranking – and thus the separability of the different gener-

ating mechanisms – may not necessarily depend on the data dimensionality, but
instead on the number of relevant attributes in the data set.

More specifically, there are two contrary effects of an increase in dimensional-
ity when the number of relevant attributes is high: the relative contrast between
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Fig. 2. Ranking quality with different SNN distances based on Euclidean distance at
640 dimensions.

points tends to decrease, but the separation among different generating mecha-
nisms can increase. On the other hand, if the data dimensionality is high and the
number of relevant dimensions is rather low, the curse of dimensionality fully
applies, and hampers any analysis task. In retrospect, this is an important yet
unsurprising conclusion to draw. Nevertheless, as mentioned in Section 1, it has
not gained much recognition in the research literature to date.

As a further original contribution of this study, we evaluate the behavior
of SNN as a secondary similarity measure. Motivated by the findings sketched
above, an improved performance can be expected for a rank-based similarity
measure such as SNN, whenever the ranking provided by the primary similar-
ity measure is meaningful. Figure 2 compares results for the secondary distance
measure with different SNN reference sizes s, based on Euclidean distance as
the primary distance measure, for dimension d = 640. The performance of the
corresponding primary distance is given on the left side of each diagram as a
reference. Results for lower dimensionalities are comparable, and are shown in
the following figures. For easily separable data sets such as All-Relevant, most
choices of s yield excellent results. On Half-Relevant and Cyc-Relevant, the best
results are achieved for choices of s of the same order as the cluster size (100).
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Fig. 3. Ranking quality for the All-Relevant set with different SNN distances based on
L2.

This can also be seen for All-Relevant on lower dimensionality, where the con-
trast between the results is better. On the barely separable 10-Relevant data set,
even larger values of s seem to be needed, although the average ROC AUC score
is not significant, being below 0.6. Figure 3 shows the same plots for different
dimensionalities of the All-Relevant data set. It can be seen that by using an
SNN distance, a considerable improvement can be achieved given that the data
set is sufficiently separable, and that the parameter s is chosen roughly in the
range of the cluster size. In particular, the secondary distance performs very
well at high dimensionalities, and is reasonably robust with respect to the choice
of s. The observations on the correlated data sets (given in the supplementary
material) are quite similar. To summarize, we can draw the following conclu-
sion from our experiments (see http://www.dbs.ifi.lmu.de/research/SNN/

for the complete results with all distance functions on all data sets).

Conclusion 2: Ranking Quality Improvement

Our experiments suggest that the use of an SNN similarity measure can signif-
icantly boost the quality of a ranking compared to the use of the primary distance
measure alone, provided that the primary distance already provides some degree
of distinguishability of clusters.
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Fig. 4. Distributions of intra-class and inter-class distances (Euclidean distance).

The experimental results confirm that although the discrimination of pri-
mary distances worsens with increasing data dimensionality, the natural data
groupings may still be separable and, if so, the neighborhoods of query points
would contain many points from the same grouping. Clearly, for two points
from a common data grouping, when increasing the value of s, the probability
that their neighborhoods have significant overlap increases as well. On the other
hand, if s is substantially larger than the size of the grouping, many objects from
different groups are contained in the neighborhoods of the two points, and the
performance of secondary distance measures become less predictable.

5 Experiments on real data

Experiments on artificial data allow more control over parameters such as the
data dimension, and are more amenable to studying effects on the performance
of distance measures in isolation. Real-world data, on the other hand, is consid-
erably more difficult to control in this way. Nevertheless, in this section we offer
experimental results for real-world data sets in order to validate and confirm
some of the effects observed for artificial data. As seen in Figure 4, on all the
real data sets considered, the distance distributions are approximately Gaussian
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Fig. 5. Distributions of intra-class and inter-class SNN distances (based on Euclidean
distance).

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100  1000

R
O

C
 A

U
C

 a
ve

ra
ge

SNN s range

MultiFeat all
MultiFeat pixel

OptDigits
ALOI

Fig. 6. Ranking quality with different SNN distances based on Euclidean distance
(straight lines: ranking quality with primary distance).



(which is to be expected in high dimensionalities for the Lp norms, due to the
central limit theorem). It is also apparent that these data sets will be reasonably
separable, as the overlap of the distance distributions is not very large. The re-
sults for other primary distances are comparable. Figure 5 shows the histogram
results when using an SNN-based distance. The data set groupings have become
very well separable. The effects of s on the results for real-data are as one would
expect from the experiments on artificial data: Figure 6 displays the results for
various sizes of s. Choosing s to match the class size gives reasonable results;
however, the best performances are achieved with even larger values of s. Only
when s approaches the full data set size does performance drop. The benefits of
using SNN on the ALOI data set are minimal, as the groupings of that set are
already very well separable for primary distances.

6 Distance Measures Based on SNN

Let us recall, as described in Section 1, the observations reported by previous
studies on the behavior of distance measures: (i) The relative contrast in Eu-
clidean distances between nearest and farthest neighbor decreases with increas-
ing dimensionality of the data [1]. (ii) This effect is stronger for Lp distances
with higher values of p, while it remains weaker for the Manhattan distance
L1 [2]. (iii) Fractional distances — Lp distances with p ∈ (0 : 1) — may even
increase the relative contrast compared to Lp norms with p ∈ �+ [3]. The re-
sults of our experiments have not only confirmed these observations, but they
also dispel some incorrectly held beliefs regarding the effects of dimensionality,
through the investigation of data sets drawn from a mixture of distributions,
each with varying relevance of attribute subsets.

Despite the performance limitations due to the presence of irrelevant at-
tributes and due to the curse of dimensionality, our experimentation shows that
traditional similarity measures can still serve as the basis of effective secondary
similarity measures.

Conclusion 3: Stability of SNN
As an alternative to traditional distance measures such as Lp norms or the

cosine distance, the performance of similarity search and its applications in data
mining or indexing can be stabilized by using SNN secondary distance measures
in preference to primary distances.

There are several common ways to convert a similarity measure into a dis-
similarity measure. For the SNN similarity simcos (Equation 2) with a given
number of neighbors s considered, we propose as possible distance measures:

dinvs(x, y) = 1− simcoss(x, y) (3)

dacoss(x, y) = arccos (simcoss(x, y)) (4)

dlns(x, y) = − ln simcoss(x, y) (5)

While dinv , which has been used throughout our experiments, is simply a linear
inversion of the values, dacos penalizes slightly suboptimal similarities more



strongly, whereas dln is more tolerant than dinv for a broad range of higher
similarity values but approaches infinity for very low similarity values. In general,
any function f that is monotonically decreasing on the interval [0 : 1] with
f(1) = 0 can be used to transform the SNN similarity measure into a dissimilarity
measure. The functions only differ in their contrast at different ranges. All of
these functions are symmetric (since simcos is symmetric) and maintain the
same ranking. However, it should be noted that of the three, only dacos satisfies
the triangle inequality. While most retrieval results (based simply on rankings)
remain unaffected by different formulations of these secondary distances, the
effects on indexing and clustering may vary from formulation to formulation.
For example, the separation of clusters in terms of absolute distances depends
on the concrete choice of the distance measure and on the secondary distance
measure as well.

7 Conclusion

With the ever-increasing capabilities of automatic data generation, the demand
is rising for analysis methods that can cope with high dimensional data. The no-
torious curse of dimensionality and its implications for similarity measurement
have been the subject of several recent studies; however, these studies have eval-
uated only data sets generated according to a single distribution mechanism.
Moreover, a number of myths surrounding the effects of the curse of dimension-
ality have been supported by too loose interpretations of these studies. Seemingly
in contradiction to these studies, the SNN similarity measure has been reported
to be able to alleviate the effects of the curse for clustering.

In light of these considerations, this paper has made the following contribu-
tions. We have presented the first study of the effects of high data dimensionality
on a range of popular distance measures, for the more realistic scenario of data
mixture models as opposed to data following a single distribution. We exposed
some of the myths involving the curse of dimensionality, and partly confirmed
previously reported truths. We demonstrated that although the contrast of pair-
wise distances diminishes with increasing dimensionality (severely hampering all
distance-based algorithms), for realistic data sets with a mixture of local distri-
butions, the discrimination power of a distance measure depends more strongly
on the number of relevant dimensions, and can actually rise as the dimensionality
increases. On the other hand, simultaneously increasing the data dimensional-
ity and decreasing the number of relevant dimensions dramatically decreases the
separability of local distributions. In such a scenario, it seems to be more suitable
to separate the groupings by means of projection into subspaces.

In addition, we evaluated the performance of secondary similarity measures
based on SNN information, as compared to the primary distances from which
the rankings are derived. We empirically confirmed that SNN is more robust
in higher dimensions than primary distances in all settings. We also provided
explanations for this observation: since the ranking of points is typically still
meaningful in high dimensions, the overlap of the neighborhoods of two points



in a common natural grouping can be expected to be substantially large, leading
to a high SNN similarity value; the size of the overlap of neighborhoods of
points from different groups is expected to be rather small, resulting in a low
SNN similarity value.

Last but not least, we derived several SNN-based secondary distance mea-
sures with the potential for good results for distance-based applications even
when the curse of dimensionality limits the discrimination power of the under-
lying primary distance functions. In such situations, the distance-based imple-
mentation most likely performs worse than the SNN-based application for most
choices of a primary distance function.

In summary, for high dimensional applications, despite a deteriorating con-
trast in the chosen primary distance measure, we expect the incorporation of
ranking information to enhance the quality of rankings and query results.
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21. Berchtold, S., Böhm, C., Jagadish, H.V., Kriegel, H.P., Sander, J.: Independent
Quantization: An index compression technique for high-dimensional data spaces.
In: Proc. ICDE. (2000)

22. Jin, H., Ooi, B.C., Shen, H.T., Yu, C., Zhou, A.Y.: An adaptive and efficient
dimensionality reduction algorithm for high-dimensional indexing. In: Proc. ICDE.
(2003)

23. Aggarwal, C.C., Yu, P.S.: On high dimensional indexing of uncertain data. In:
Proc. ICDE. (2008)

24. Francois, D., Wertz, V., Verleysen, M.: The concentration of fractional distances.
IEEE TKDE 19(7) (2007) 873–886
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