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Abstract. One challenge in Earth science research is the accurate and
efficient ad-hoc query and retrieval of Earth science satellite sensor data
based on user-defined criteria to study and analyze atmospheric events
such as tropical cyclones. The problem can be formulated as a spatio-
temporal join query to identify the spatio-temporal location where mov-
ing sensor objects and dynamic atmospheric event objects intersect, ei-
ther precisely or within a user-defined proximity. In this paper, we de-
scribe an efficient query and retrieval framework to handle the problem of
identifying the spatio-temporal intersecting positions for satellite sensor
data retrieval. We demonstrate the effectiveness of our proposed frame-
work using sensor measurements from QuikSCAT (wind field measure-
ment) and TRMM (precipitation vertical profile measurements) satel-
lites, and the trajectories of the tropical cyclones occurring in the North
Atlantic Ocean in 2009.

Key words: data retrieval, satellite data, atmospheric events, spatio-
temporal join

1 Introduction

The Earth Observing System Data and Information System (EOSDIS)3 is a
comprehensive data and information system which archives, manages, and dis-
tributes Earth science data from the EOS spacecrafts (a.k.a. satellite sensors)
[1]. A challenge of EOSDIS is how to “help users find the data that they need
and how to get it to them” [2]. The Warehouse Inventory Search Tool (WIST)4

This work was partially carried out at the Jet Propulsion Laboratory, California
Institute of Technology and was funded by the National Aeronautics and Space
Adminstration (NASA) Advanced Information Systems Technology (AIST) Program
under grant number AIST-08-0081.

3 http://esdis.eosdis.nasa.gov
4 https://wist.echo.nasa.gov/~wist/api/imswelcome/
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is the primary search and order tool for Earth Science data sets for EOSDIS. It
allows users to browse and retrieve satellite measurements based on user-defined
spatial and temporal conditions. This type of data query and retrieval is known
in the Earth science community as data “subseting”. One important use of the
retrieved satellite sensor data is the improvement of weather forecasting such
as the use of QuikSCAT wind measurements to accurately depict the initial
conditions of air and sea states for tropical cyclone forecast model [3].

In the mid-nineties, there was an ambitious project to develop a “flexible,
extensible, and seamless SCF [Scientific Computing Facilities] for scientific data
analysis, knowledge discovery, visualization, and collaboration” called the Open
Architecture Scientific Information System (OASIS) to support EOSDIS based
on the Common Object Request Broker Architecture (CORBA) [4]. The OASIS
was not embraced by the scientific community which could have been the result
of serious technical, complexity, and security issues related to CORBA [5].

Currently, there is still a lack of capabilities that support flexible data re-
trieval in the EOSDIS. One non-existent capability is the accurate and efficient
ad-hoc query and retrieval of Earth science satellite sensor data for dynamic
atmospheric events such as tropical cyclones based on ad-hoc user-defined cri-
teria and event trajectories. In this paper, we describe a fast data query and
retrieval framework based on a spatio-temporal partitioning scheme driven by
the partitioning of the moving satellite trajectory so that the positions which
the satellite trajectory and an atmospheric event trajectory intersect, either pre-
cisely or within close proximity, are used for satellite data retrieval. We demon-
strate the feasibility of our framework on the tropical cyclone event which is a
“non-frontal synoptic scale low-pressure system over tropical or sub-tropical wa-
ters with organized convection and definite cyclonic surface wind circulation”5.
Experimental results are used to show the effectiveness of our proposed frame-
work using sensor measurements from QuikSCAT (wind field measurement) and
TRMM (precipitation vertical profile measurements) satellites, and the tropical
cyclones occurring in the North Atlantic Ocean in 2009.

From published scientific journal papers [6–10], one observes that such a
capability is extremely important to scientists who retrieve specific sensor data of
specific atmospheric events for statistical analysis. Some query examples derived
from these published scientific papers that require search, retrieval, and analysis
of satellite data containing cyclone features, are listed below:

1. Retrieve TRMM precipitation data for tropical cyclones that attained tropi-
cal storm intensity or higher over western North Pacific and the South China
Sea between longitudes 100oE and 180o. 138 sensor datasets from 61 tropical
cyclones retrieved [6].

2. Retrieve TRMM precipitation data for tropical cyclones from December 1997
to December 2003. 3703 sensor datasets from 563 tropical cyclones retrieved
[7].

5 http://www.aoml.noaa.gov/hrd/tcfaq/A1.html
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3. Retrieve QuikSCAT wind data for tropical cyclones in western North Pacific
from September 1999 to December 2004 which formed west of 160oE and
south of 26oN . Datasets containing 124 tropical cyclones retrieved [8].

Our problem is fundamentally different from previous research to discover
and track cyclones from either sea-level pressure fields [11] or from heterogeneous
satellite data [12]. For our problem, the cyclone tracks are known. Our main
contribution is an efficient framework that enables the retrieval of satellite data
based on known cyclone tracks, an approach to fuse two databases with widely
different characteristics.

The paper is organized as follows. In Section 2, we briefly review previous re-
search and systems developed for satellite data query and retrieval, in particular,
for the tropical cyclone events. In Section 3, the satellite sensor data query and
retrieval problem is defined. In Section 4, the satellite data and tropical cyclone
event trajectory data are briefly described. In Section 5, the satellite sensor tra-
jectory data partitioning scheme and partition search algorithm are described in
detail. In Section 6, the satellite data retrieval algorithm is described in detail.
In Section 7, experimental results are presented to demonstrate the feasibility of
our proposed framework for both QuikSCAT and TRMM satellite sensor data.
Some visualizations of the retrieved satellite data sets from a queried hurricane
trajectory are also shown.

2 Related Work

Existing state-of-the-art publicly available web-based tropical cyclone data and
information portals6 7, data archives 8, and forecast services 9 provide excellent
visualizations and information of tropical cyclones and satellite sensor measure-
ments.

However, comfortable data access (e.g., ad-hoc data retrieval for specific
weather events) is not provided, and users only have limited, simple, and hard-
coded query and request capabilities. Examples of such queries are:

1. Provide specific satellite data of a specified region at a specific date and
time. [EOSDIS]

2. Provide the static dataset for a specific tropical cyclone event. [Physical
Oceanography DAAC: Hurricane/Typhoon Tracker]

Users are not able to perform own queries to retrieve satellite data based on
arbitrary trajectory information and retrieval parameters.

6 Navy/NRL Tropical Cyclone. http://www.nrlmry.navy.mil/tc_pages/tc_home.

html
7 NASA GSFC Hurricane Portal. http://daac.gsfc.nasa.gov/hurricane/
8 Physical Oceanography DAAC Hurricane/Typhoon Tracker. http://podaac.jpl.

nasa.gov/hurricanes/
9 NOAA National Hurricane Center. http://www.nhc.noaa.gov/pastall.shtml
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Fig. 1. Visualization of the output from the query “Find all hurricanes from 1886 to
1996 within 75 nautical miles of mid-Florida Bay”
(http://www.aoml.noaa.gov/hrd/Storm pages/fl track red.html).

Many spatio-temporal access methods (for indexing historical spatio-temporal
data) have been developed [13, 14] (and references therein) to support certain
query types or to support efficiently as many query types as possible. Some of
the common query types are

1. Selection: Find all objects within a specific region and/or during a specific
time interval.

2. Join: Find all objects that are spatially close during a specific time interval.
3. Nearest Neighbor: Find the k-closest objects with respect to a specific region

and/or time interval.

These queries are of interest to scientists studying tropical cyclones An example
of a selection query is “Find all hurricanes 10 from 1886 to 1996 within 75 nautical
miles of mid-Florida Bay” and its output shown in Fig. 1.

In this paper, we are, however, interested in exploring the intersection of two
different object classes (hurricanes and satellite trajectories) by a query such
as “Find the spatial region(s) R and time interval(s) I such that the hurricane
path is either in the satellite sensor scanning region or within some user-defined
distance outside the boundary of the satellite sensor scanning region” and then
to use its output for data retrieval.

3 Problem Definition

Consider the set of satellite sensors, Os = {Os1, Os2, . . . , Osk}, and the set of at-
mospheric events, Oc = {Oc1, Oc2, . . . , Ocm} such as the set of tropical cyclones.
In particular, the query and retrieval problem of interest is “Find all unique satel-
lite sensor measurements from Osi that is at most x kilometers from the tropical

10 Hurricanes are tropical cyclones with sustained surface wind intensity equal or more
than 119km/h.
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Characteristics Os Oc

Temporal long short
Length (several years) (unlikely to be several months)

Temporal fine grain course grain
Resolution (order of 10−1 seconds) (several hours)

Motion high low
Speed (a full orbit is about 100 minutes)

Representation line segments points
(can be extended to a region)

Spatial continuous motion unlikely to be stationary,
Position (orbiting; not geostationary satellites) but possible

Data Updates/ No delete; No delete;
Modifications most current historical, most current

Table 1. Differences in the characteristics between the satellite sensor objects and the
tropical cyclone objects

cyclone path P of Ocj and in the time interval I.” It can be generalized to “Find
all unique satellite sensor measurements from satellite Os1, . . . , Osk that are at
most x kilometers from the tropical cyclone paths p1, . . . , pm in region R at time
interval I.” This is closely related to the spatio-temporal join which retrieves all
pairs of objects < o1, o2 > with o1 ∈ Os and o2 ∈ Oc, |o1(tq) − o2(tq)| ≤ d
where tq is a time-stamp and d is an upper-bound threshold. Our problem goes
further by querying for the positions and time instances where and when the join
condition is satisfied. This condition is likely to be satisfied at multiple positions
and time instances. An orbiting satellite sensor trajectory consists of many years
of continuous spatio-temporal information. Hence, one needs to construct an ef-
ficient partitioning scheme to handle the lengthy data sequence. We construct
the partitions by treating time as another dimension for a satellite sensor ob-
ject. The tropical cyclone objects are stored in an index structure since there
are some fundamental differences between the two object types. The differences
in the characteristics between the two object types are shown in Table 1. For
selection and nearest neighbor queries for objects in Oc, one can use an index
structure such as TB-tree [15] or SEB-tree [16].

Let S be the spatial bound (latitude[min, max], longitude[min, max]) and T
be the temporal bound time(start, end). Queries that return sensor objects and
their intersecting spatio-temporal information such as

Oq = {osi ∈ Os|Os ∩ST Os 6= ∅ within spatial bound S and temporal bound T}
TS = {(t, s)|t ∈ T, s ∈ S and Os ∩ST Os 6= ∅ within spatial bound S and

temporal bound T}
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Field matrix size Unit Minimum Maximum

wvc lat [nrow, ncol] degree -90.00 90.00
wvc lon [nrow, ncol] degree E 0.00 359.99
selected speed [nrow, ncol] meter per second 0.00 50.00
selected direction [nrow, ncol] degree from North 0.00 359.99
wvc row time [nrow] Coordinated 1993-001 2009-365

Universal Time (UTC) T00:00.000 T23:59:59.999

Table 2. Relevant QuikSCAT data fields. nrow: number of rows; ncol: number of
columns.

Field Structure Size

Scan Time Table 9 bytes× nscan
Geo-location Array 2× npixel × nscan

Table 3. Relevant TRMM spatio-temporal data field. nscan: number of rows in the
data matrix; npixel: number of column in the data matrix.

are not the focus of this paper as the intersections (∩ST
11) of satellite sensor

trajectories alone are not useful information for atmospheric, ocean, and weather
event research. One is interested in

Oq = {osi ∈ Os|Oc ∩ST Os 6= ∅ within spatial bound S and temporal bound T}
TS = {(t, s)|t ∈ T, s ∈ S and Oc ∩ST Os 6= ∅ within spatial bound S and (1)

temporal bound T}

The first one is a “Which” query such as a selection or nearest neighbor query.
The latter one is a query which determines the positions and time instances
where and when the trajectories of the objects in the two sets intersect, either
precisely or within a certain proximity. In this paper, we focus on the latter
query which can be derived from the first one and its outputs are applicable to
our satellite data retrieval problem.

4 Data Description

In this paper, we use the Level 2B QuikSCAT wind field swath data and the
Level 2A12 TRMM precipitation swath data stored in hierarchical data format
(HDF)12 to demonstrate the feasibility and efficiency of the partitioning scheme
and the data retrieval framework. In Section 4.1, we give a brief description
of the satellite data. In Section 4.2, we give a brief description of the tropical
cyclone trajectories.

11 ∩ST denotes the operation that returns the set of elements from the bigger set
(usually Oc, if the two sets are different) when the trajectories of objects in Oc and
Os intersect. The simplest case is when |Oc| = |Os| = 1.

12 http://www.hdfgroup.org/



7

Name Format Description

Year 2-byte integer 4-digit year
Month 1-byte integer The month of the Year
Day of Month 1-byte integer The day of the Month
Hour 1-byte integer The hour (UTC) of the Day
Minute 1-byte integer The minute of the Hour
Second 1-byte integer The second of the minute
Day of Year 2-byte integer The day of the Year

Table 4. Scan Time

Name Minimum Maximum

Latitude -90.00 90.00
Longitude -179.99 180.00

Table 5. Geo-location. Off-Earth is represented by -9999.9

Fig. 2. One QuikSCAT swath intersecting path of Hurricane Irene in 2005.

4.1 Satellite Data

QuikSCAT. One QuikSCAT satellite full polar orbiting revolution takes about
101 minutes. The Level 2B data are grouped by rows of wind vector cells (WVC)
which are squares of dimension 25 km or 12.5 km. A complete coverage of the
earth circumference requires 1624 WVC rows at 25 km spatial resolution, and
3248 rows at 12.5 km spatial resolution. The width of the swath is 1800 km
which amounts to seventy-two 25 km WVCs or one hundred and forty-four 12.5
km WVCs.

There are 25 fields in the data structure for Level 2B data [17]. We are,
however, only interested in the latitude, longitude, time, and the most likely
wind speed and direction for the WVCs. The fields that we are interested in are
summarized in Table 2 and used in Algorithm 1 and 2. The QuikSCAT Level 2B
data is obtained from the JPL Physical Oceanography DAAC (PO.DAAC) FTP
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Fig. 3. One TRMM swath intersecting path of Hurricane Irene in 2005

server13. In Fig. 2, the two outer curves are the boundaries of the satellite obser-
vations and the middle curve represents the median of the observation bound-
aries. The median approximates the satellite trajectory when sensor takes mea-
surements above the ocean. However, it is impossible to estimate the QuikSCAT
satellite trajectory accurately from the Level 2B data when the satellite is above
or near land due to the satellite sensor measurement constraints above or near
land.

TRMM. The Tropical Rainfall Measurement Mission (TRMM) is a joint mis-
sion between NASA and the Japan Aerospace Exploration Agency (JAXA) de-
signed to monitor and study tropical rainfall. TRMM satellite orbits between 35
degrees north and 35 degrees south of the equator. It takes measurements be-
tween 50 degrees north and 50 degrees south of the equator. All TRMM products
are archived and distributed to the public by the Goddard Distributed Active
Archive Center (GES DISC DAAC).14

For TRMM, we use the Level 2A12 data product, “TMI Profiling” which
contains vertical hydrometeor profiles on a pixel by pixel basis. For each pixel,
cloud liquid water, precipitation water, cloud ice water, precipitation ice, and
latent heating are given at 14 vertical layers [18]. The TRMM Level 2A12 data is
obtained from the Goddard Earth Sciences and Information Services Center15.

There are 15 fields in the SDS (Science Data Set) in the TRMM Level 2A12
HDF data file. We use the scan time and geo-location shown in Table 3 to
estimate the satellite motion. These fields are summarized in Table 4 and 5.
Fig. 3 shows a TRMM swath intersecting path of Hurricane Irene in 2005. One
notes that TRMM satellite takes measurements over land unlike the QuikSCAT

13 ftp://podaac.jpl.nasa.gov/ocean_wind/quikscat/L2B12/data
14 http://disc.sci.gsfc.nasa.gov/
15 ftp://disc2.nascom.nasa.gov/ftp/data/s4pa/TRMM_L2/TRMM_2A12
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Fig. 4. Cyclone track for Hurricane Ike 2008 from NHC best track data.

satellite. Hence, the median of the observation boundaries approximates the
TRMM satellite trajectory well.

4.2 Tropical Cyclone Event Trajectory

A trajectory is the path a moving object follows through space and time. Con-
sider a time-stamped d dimensional data sequence defining a trajectory Tr as
follows.

Tr = 〈(t1,x1), . . . , (ti,xi), . . . , (tN ,xN )〉

where N is the length of the data sequence Tr, t1 < · · · < ti < · · · < tN
are the timestamps, and the vector xi containing spatial information can have
cardinality d = 1, 2, or 3; A tropical cyclone trajectory is described by (i) spatial
attributes (latitude and longitude), and (ii) temporal attributes (year, day, time).
Fig. 4 shows the trajectory of Hurricane Ike 2008 based on National Hurricane
Center (NHC) best track information.

Historical tropical cyclone trajectories are obtained from the NOAA Coastal
Services Center (Atlantic and North Eastern Pacific)16. The eleven tropical cy-
clone trajectories in North Atlantic Ocean in 2009 are used in our experiments.

5 Satellite Sensor Object Partitioning Scheme

Since (i) the temporal resolution of the satellite observations is relatively high,
and (ii) the satellite orbiting speed is also relatively high compared to the atmo-
spheric event objects, a large amount of data is generated in a relatively short
time. Hence, one partition tree structure is used for each satellite object. The
partitioning scheme is based on the time segmentation of the satellite trajectory,
defined by the boundaries of the satellite sensor measurements.

We use the QuikSCAT satellite swath data (see Table 2) as an example to
illustrate the partitioning scheme for satellite sensor objects. One notes that
satellite measurements and their positions in an arbitrary row i in a data matrix

16 http://csc-s-maps-q.csc.noaa.gov/hurricanes/
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Fig. 5. A segment of the QuikSCAT satellite data swath divided into partitions.

(e.g., selected speed[i, 1:ncol]) have a fix timestamp in QuikSCAT, TRMM, and
other satellites. Hence, the satellite sensor object at a fix time instance t (e.g.,
wvc row time[i]) can be represented by a spatial line segment or curve defined
by the latitude and longitude values in row i in the position matrices (e.g.,
wvc lat[i,1:ncol] and wvc lon[i,1:ncol]).

The QuikSCAT satellite data swath is divided into partitions such that each
partition is a spatial region within a time interval defined by a fixed n number of
consecutive wvc row time elements (see Fig. 5). These partitions form the leave
nodes in the partition tree. Each partition time interval varies slightly due to the
non-uniform measurement sampling. Each leave node (partition) contains (i) the
temporal information consisting of the start of the time interval wvc row time[i]
= ts, and the end of the time interval wvc row time[i + n − 1] = te, and (ii)
the spatial information for a swath data partition defined by the first and last
non-zero elements in wvc lat[i,1:ncol] and wvc lon[i,1:ncol] at ts, and wvc lat[i+
n − 1,1:ncol] and wvc lon[i + n − 1,1:ncol] at te. In other words, a leave node
partition is a quadrilateral region defined by the four corners of the data swath
partition approximating the data swath partition. One notes that as n increases,
some measurements in a data swath partition nearer to one of the swath data
boundaries fall outside the leave node partition. If n is too high, one may fail to
identify the data swath partitions that intersect a tropical cyclone trajectory.

The partition tree structure for a satellite sensor object is shown in Fig.
6. Revolution numbers (Rev. No) are unique incremental numbers tagging the
orbits. p ids are unique numbers tagging the partitions shown in Fig. 5. For the
QuikSCAT satellite object, there are either 365 or 366 Julian days each year,
14 unique revolution numbers per day, and each swath defined by a revolution
number is divided into segments containing n consecutive time instances. For
the TRMM satellite object, the only difference is that there is either 15 or 16
unique revolution numbers per day.

Algorithm 1 is used to search the partition tree structure (for QuikSCAT
swath data) for partitions that intersect a path defined by two consecutive tra-
jectory points and the user-defined radius R in degree. In Lines 2 to 3, spatio-
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Root Node: [Year, Y]

|

Non-Leave Nodes: [Year, Y; Julian Day, D]

|

Non-Leave Nodes: [Year, Y; Julian Day, D; Rev. Number, Rn]

|

Non-Leave Nodes: [Rev. No., Rn; time: s_time, e_time]

|

Leave Nodes: [p_id; Rev. No., Rn; Partition, P; time: Ps_time, Pe_time]

Fig. 6. Partition tree scheme for the moving satellite trajectory.

temporal points between the two consecutive trajectory points and their cor-
responding circumference points are computed. For each interpolated spatio-
temporal point, the partition tree structure is searched to locate the Revolution
number Rn which the spatio-temporal point may be in (Line 5). When a Rn is
located, the partitions which may contain the interpolated point will be searched
(Lines 8 to 14). If the interpolated point and its circumference points are found
in a partition, I and TS are updated (Lines 10 to 13). I contains information
related to the start time instances and the end time instances of the spatio-
temporal partitions that the interpolated points and their circumference points
intersect. The goal of Line 20 is to locate the earliest start time and the latest
end time from I and also the start row number RIs and the end row number RIe
in the swath Rn. TS is the set defined in (1). Algorithm 1 can be generalized to
other satellite sensor data.

6 Retrieval Algorithm

Next, we describe the algorithm that retrieves all satellite measurements within
a specified radius R from TS defined in (1). In practice, we want a unique set of
retrieved satellite sensor measurements, M = {M1, . . . ,Ms} from the satellite
sensor data set S such that

Mi

⋂
Mj = ∅, i 6= j,∀i, j ∈ {1, . . . , s} (2)

with each Mi defined by Mi = {m|m ∈ S, |m− tpi| < R} and represented by a
unique tpi ∈ TS and a user-defined radius R. However, one is likely to match
more than one (interpolated) trajectory point tpi ∈ TS to a specific satellite
measurement partition. This may result in Mi

⋂
Mj 6= ∅ with Mi corresponding

to tpi and Mj corresponding to tpj , tpi 6= tpj , and i 6= j. One needs to identify
the best time interpolated trajectory position x̂ that corresponds to the satel-
lite measurement set Mx̂ such that (2) is satisfied. We compute the best time
interpolated trajectory position x̂ as follows.

x̂ = argmin
x∈X

{s̄− x} for s̄ ∈ T (3)
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Input: Two consecutive trajectory points, (ts,xs) and (te,xe); Radius, R (in
degree)

Output: RIs, RIe, Rn, TS
1: TS := {}; I := {} ;
2: Generate a set of interpolated points, P = {p1, . . . , pk}, using (ts,xs) and

(te,xe);
3: Generate a set of circumference points, Ci for each pi ∈ P based on R;
4: for interpolated point pi = (ti,xi) do
5: Identity Rn and leave-node partitions within

time interval T =[s time, e time] in the partition tree based on ti;
6: if Rn 6= ∅ then
7: Ci := Ci

⋃
{pi};

8: for partition, Qj in T of Rn do
9: Ii := {Qj |Qj

⋂
Ci 6= ∅};

10: if Ii 6= ∅ then
11: I := I

⋃
Ii ;

12: TS := TS
⋃
{pi} ;

13: end if
14: end for
15: end if
16: end for
17: if I = ∅ then
18: RIs := RIe := Rn := ∅;
19: end if
20: Use I to identify the start row number, RIs and end row number, RIe

for wvc lat, wvc lon, and wvc row time in Rn.

Algorithm 1: Partition tree search to locate the tropical cyclone event in
satellite swath data.

Input: Rn, RIs, RIe, R (in degree), TS.
Output: Point Sets: PSws, PSwd

1: Retrieve QuikSCAT HDF Data with Rev. No., Rn;
2: py := {wvc lat[i, 1 : ncol], i ∈ [RIs, RIe]};
3: px := {wvc lon[i, 1 : ncol], i ∈ [RIs, RIe]};
4: ws := {selected speed[i, 1 : ncol], i ∈ [RIs, RIe]};
5: wd := {selected direction[i, 1 : ncol], i ∈ [RIs, RIe]};
6: Compute x̂ using (3) OR Cyclone Eye Locator (see Algorithm 3);
7: for p(j) := (py(j), px(j)) do
8: dist(j) :=‖ p(j)− x̂ ‖2;
9: end for

10: PSws := {ws(k) | dist(k) < R};
11: PSwd := {wd(k) | dist(k) < R};

Algorithm 2: Retrieval algorithm for wind direction and speed measure-
ments.

where

T =

{
s | s =

xe − xs

te − ts
(t− ts) + xs for t ∈ [ts, te]

}
,

X = {x = (x1, x2) | x1 = wvc lat[i, j], x2 = wvc lon[i, j], (4)

∀(i, j), j = 1, · · · , ncol and wvc row time(i) ∈ [ts, te]},
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Input: QuikSCAT L2B Data with rev. no, Rn; (ts,xs) and (te,xe).
Output: S, Cyclone Eye
1: Subset the L2B data based on (ts,xs) and (te,xe);
2: Grid the L2B subseted data;
3: for Pixel i from the gridded L2B subseted data do
4: Compute the normal vector n̂i to the direction vector d̂i;
5: Calculate which 8-neighbors n̂i is pointing;
6: Update the neighbor count Nk of the pixel k n̂i is pointing;
7: Update lk, list of neighbor pixels, pointing at k ;
8: end for
9: MaxNeighbor := max1≤k≤m Nk;

10: V C := {i | Ni ≥MaxNeighbor − 1};
11: for j ∈ V C do
12: root := j;
13: Count[j] := SizeOfSpanningTree(root, lroot);
14: end for
15: S := arg maxj∈V C Count[j];

Algorithm 3: Cyclone eye locator.

such that (ts,xs) and (te,xe) are two consecutive (interpolated) trajectory points
and Ms

⋂
Me 6= ∅.

Algorithm 2 retrieves wind direction and speed measurement sets from the
QuikSCAT HDF data files based on user-defined radius and outputs from Al-
gorithm 1. Assuming that Rn is a single revolution number, a single HDF data
file is retrieved (Line 1). To improve the accuracy of a tropical cyclone eye posi-
tion x̂ and data retrieval, a cyclone eye locator algorithm (see Algorithm 3 [19])
based on the vortex feature of a tropical cyclone can be used instead of com-
puting x̂ using (3) (Line 6). Then, the distances between all the spatial points
in the partition located using outputs from Algorithm 1 and x̂ are computed
(Line 7-9). The point sets containing wind speed and direction measurements
within the user-defined radius, R, are created (Lines 10 to 11). Algorithm 2 can
be generalized to data retrieval for any satellite HDF file.

A simple query and retrieval system for QuikSCAT L2B swath data is shown
in Fig. 7. The user inputs consist of arbitrary trajectory information and the
retrieval parameter R. First, Algorithm 1 searches the partition tree structure.
The retrieval parameter R and the outputs from Algorithm 1 are then used by
Algorithm 2 to retrieve the satellite data for analysis.

One notes that using Algorithm 3 increases the computation cost of Algo-
rithm 2. Algorithm 3 works as follows. First, the satellite data is gridded (Line
2). Then, one computes the normal vector to the wind direction at each gridded
pixel and compute the number of pixels pointing to each gridded pixels (Lines 3
to 8). The most likely cyclone eye position is the one which creates the largest
spanning tree from among the pixels (Lines 11 to 14) with the largest number
of pixels pointing to them (Line 15). For TRMM measurements, one can use the
characteristics discussed in [6] to improve the cyclone eye positions.
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Fig. 7. QuikSCAT data search and retrieval system.

7 Experimental Results

In our experiments, we used QuikSCAT L2B data and TRMM 2A12 data from
Day 182 (July 1) to 325 (November 21) in 2009. There are 2623 uncompressed
QuikSCAT L2B HDF data files (32.1M each and a total size of 84.2G) and
2245 uncompressed TRMM 2A12 HDF data files (98.4M each and a total size of
220.9G). All eleven tropical cyclones occurring in North Atlantic Ocean in 2009
are used in the experiments.

First, we look at the effect of partition size to the partition tree search time,
data retrieval time, and the number of vectors returned to users. The number of
consecutive instances, n, in the time interval for each partition is varied from 1 to
200 with R = 1. When n = 1, it represents the standard approach where each row
in a measurement position matrix has to scan through to decide whether there
is an intersection between a tropical cyclone trajectory and a satellite object. As
n increases, the partition size increases and the number of partitions decreases.
One observes from Fig. 8 that as n increases, the mean search time (MST) drops
exponentially and stabilizes after n = 50 for both the QuikSCAT and TRMM
satellite data. The number of vectors returned to the user query decreases as n
increases. We pointed out earlier in Section 5 that a bigger n value decreases
the accurate approximation of the data swath partition which in turns affects
the data retrieval accuracy by failing to return the data vectors based on the
tropical cyclone trajectory. While the number of HDF files (NRtr) that need
to be opened in Algorithm 2 remains almost the same, the mean retrieval time
(MRT) increases due to the decrease in the number of returned vectors (NRtn).
The mean retrieval time for TRMM data is much higher than QuikSCAT data
as much more data is retrieved for each HDF data file.

Next, we query for QuikSCAT and TRMM measurements for all the North
Atlantic Ocean tropical cyclones in 2009 with user-defined radius R = 1, 2, and 3.
The data query and retrieval performance statistics for each tropical cyclone for
QuikSCAT and TRMM data are presented in Table 6 and 7, respectively. Based
on results shown in Fig 8, we set n to 25 for QuikSCAT and 50 for TRMM
satellite data so that it has identical returned vectors as standard approach
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Fig. 8. Effect of partition size, n, on the mean search time (MST), number of vectors
returned (NRtn) and mean retrieval time (MRT) for QuikSCAT and TRMM satellite
data.

(n = 1). Some observations from the experimental results in Table 6 and 7 are
as follows.

1. The mean search time (MST) for each tropical cyclone for a particular satel-
lite is similar. The MST for TRMM satellite is lower than QuikSCAT satellite
as there are more leave nodes (partitions) for each QuikSCAT non-leave node
(revolution number).

2. User-defined radius does not affect the MST as the number of sampling
points is fixed. It only affects the number of HDF files opened and measure-
ment vectors returned to user, which in turn affects the total retrieval time
(TRT).

3. The total retrieval time (TRT) is related to (i) the number of HDF opened
(Nrtr), (ii) the number of data features retrieved from the HDF files and
their matrix size, and (iii) the number of measurement vectors to be returned
to user. For each retrieved QuikSCAT data file, four 2-D matrices, namely
speed, direction, latitude, and longitude, are retrieved . For each retrieved
TRMM data file, six 3-D (fourteen data points for each spatial location)
matrices for five features, and the spatial location (two data points for spatial
location) are retrieved. Hence, TRMM data retrieval takes longer time.

4. Even though Hurricane Grace consists of thirty-seven segments, only six to
seven TRMM measurement vectors are returned compared to the twenty
QuikSCAT measurement vectors since Hurricane Grace occurred close to
Europe which is near and beyond the edge of TRMM orbiting latitude.

5. 01L occurred near and beyond the edge of TRMM orbiting latitude. QuikSCAT
also did not registered any measurement when three degrees from its eye.
Hence, no related data is retrieved or returned.
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Radius = 1 Radius = 2 Radius = 3

Name NS TST MST NRtr NRtn TRT TST MST NRtr NRtn TRT TST MST NRtr NRtn TRT

01L 13 3.27 0.27 0 0 0.00 3.19 0.27 0 0 0.00 3.22 0.27 0 0 0.00
Ana 31 9.39 0.31 11 11 1.01 9.38 0.31 12 12 1.11 9.44 0.31 14 14 1.43
Bill 49 14.82 0.31 21 21 1.90 14.79 0.31 21 21 1.91 14.91 0.31 23 23 2.19

Claudette 5 1.22 0.30 2 2 0.30 1.22 0.31 2 2 0.18 1.22 0.31 2 2 0.18
Danny 22 6.60 0.31 8 8 0.72 6.58 0.31 8 8 0.72 6.63 0.32 9 9 1.28
Erika 32 9.67 0.31 11 11 0.97 9.70 0.31 12 11 1.10 9.73 0.31 14 13 1.35
Fred 34 10.43 0.32 14 14 1.22 10.49 0.31 15 15 1.37 10.48 0.32 16 16 1.64
08L 8 2.31 0.33 4 4 0.35 2.33 0.33 4 4 0.37 2.34 0.33 4 4 0.37

Grace 37 11.57 0.32 20 20 1.84 11.67 0.32 20 20 1.94 11.69 0.33 20 20 1.91
Henri 21 6.71 0.34 9 8 1.67 6.75 0.34 10 10 0.90 6.76 0.34 12 11 1.35
Ida 29 9.29 0.33 13 12 1.74 9.32 0.33 15 15 1.43 9.28 0.33 15 15 1.53

Table 6. Query and Retrieval Performance: QuikSCAT data query and retrieval for
North Atlantic tropical cyclones in 2009.

Radius = 1 Radius = 2 Radius = 3

Name NS TST MST NRtr NRtn TRT TST MST NRtr NRtn TRT TST MST NRtr NRtn TRT

01L 13 1.76 0.15 0 0 0.00 1.75 0.15 0 0 0.00 1.74 0.14 0 0 0.00
Ana 31 5.86 0.20 24 13 230.20 5.87 0.20 24 15 225.32 5.89 0.20 25 18 236.71
Bill 49 8.93 0.19 26 14 214.87 8.87 0.18 27 20 212.05 8.87 0.18 27 21 211.55

Claudette 5 0.75 0.19 2 2 13.32 0.74 0.18 2 2 13.23 0.74 0.19 2 2 14.41
Danny 22 3.99 0.19 9 6 81.61 3.97 0.20 9 8 81.77 3.94 0.19 9 8 81.15
Erika 32 5.98 0.19 22 10 186.13 6.00 0.20 22 13 176.35 5.99 0.19 22 17 180.55
Fred 34 6.40 0.19 22 6 197.97 6.35 0.20 22 9 195.58 6.43 0.19 22 11 200.66
08L 8 1.43 0.20 5 2 63.88 1.46 0.21 5 3 62.47 1.48 0.21 5 3 63.82

Grace 37 6.59 0.18 9 6 58.47 6.71 0.19 11 6 69.76 6.71 0.19 14 7 93.15
Henri 21 4.08 0.20 11 7 148.06 4.20 0.21 11 8 156.24 4.13 0.21 11 8 157.68
Ida 29 5.52 0.20 14 5 123.21 5.59 0.20 14 9 126.56 5.50 0.20 14 11 126.71

Table 7. Query and Retrieval Performance: TRMM data query and retrieval for North
Atlantic tropical cyclones in 2009.

Abbreviation Definition

NS Number of line segments = Number of trajectory points - 1
TST Total time for partition tree searching (seconds)

MST Mean search time for each segment= TST
NS

(seconds)

NRtr Number of HDF files opened.
NRtn Number of sensor measurement vectors returned to user
TRT Total time for data retrieval (seconds)

Table 8. Abbreviation Definitions

Fig. 9 shows examples of retrieved QuikSCAT partitions and their output
vectors for Hurricane Bill in 2009 when the user-defined radius R is 3. The top
row shows the retrieved QuikSCAT data partitions for Hurricane Bill at three
time instances. The bottom row shows the output vectors at the three time
instances. One notes that the satellite sensor captured the hurricane partially at
the later two time instances. In the right column, the example shows a case when
the interpolated hurricane eye location is beyond the sensor data boundaries.

Fig. 10 shows a fully developed hurricane. The middle image shows the output
vector based on the interpolated hurricane eye location at 15.33N, 310.83E which
is slightly East of the hurricane eye. The right image shows the output vector
using the eye position computed from Algorithm 3. The hurricane eye is at
15.20N, 310.40E. The right image appears to be the more accurate output vector.
Again, one notes that the retrieval time (TST) increases with the application of
a cyclone eye location algorithm such as Algorithm 3.

8 Conclusions and Future Work

In this paper, we describe an efficient framework to handle ad-hoc query and
retrieval of satellite sensor data for dynamic atmospheric events such as tropical
cyclones based on ad-hoc user-defined criteria. This approach provides Earth
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Fig. 9. QuikSCAT examples of retrieved partition and output vector when R = 3 for
Hurricane Bill in 2009.

Fig. 10. A fully developed Hurricane Bill from QuikSCAT measurements. Left: Re-
trieved Partition; Middle: Output vector with R = 3 using interpolated eye location;
Right: Output vector with R = 3 using Algorithm 3.

science researchers the capability to retrieve and manipulate satellite data to
study dynamic atmospheric events. Future work include (i) integrating the cur-
rent framework into a moving objects database for both satellite sensor objects
and dynamic atmospheric (also earth and ocean) event objects, and (ii) the de-
sign and implementation of a spatio-temporal query language that enables users
to pose ad-hoc satellite data retrieval queries (see query examples in Section 1).
One also foresees the possibility of integrating our query and retrieval framework
into a scientific workflow system to support flexible scientific analysis.
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