Skip to main content

Architecture-Driven Reliability and Energy Optimization for Complex Embedded Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6093))

Abstract

The use of redundant computational nodes is a widely used design tactic to improve the reliability of complex embedded systems. However, this redundancy allocation has also an effect on other quality attributes, including energy consumption, as each of the redundant computational nodes requires additional energy. As a result, the two quality objectives are conflicting. The approach presented in this paper applies a multi-objective optimization strategy to find optimal redundancy levels for different architectural elements. It is implemented in the ArcheOpterix tool and illustrated on a realistic case study from the automotive domain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goševa-Popstojanova, K., Trivedi, K.S.: Architecture-based approach to reliability assessment of software systems. Performance Evaluation 45(2-3), 179–204 (2001)

    Article  MATH  Google Scholar 

  2. Benini, L., Bogliolo, A., Micheli, G.D.: A survey of design techniques for system-level dynamic power management. IEEE Trans. VLSI Syst. 8(3), 299–316 (2000)

    Article  Google Scholar 

  3. Aydin, H., Melhem, R., Mossé, D., Mejía-Alvarez, P.: Dynamic and aggressive scheduling techniques for power-aware real-time systems. In: Real-Time Systems Symposium, pp. 95–105. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  4. Coit, D.W., Smith, A.E.: Reliability optimization of series-parallel systems using a genetic algorithm. IEEE Transactions on Reliability 45(2), 225–266 (1996)

    Article  Google Scholar 

  5. Kulturel-Konak, S., Smith, A.E., Coit, D.W.: Efficiently solving the redundancy allocation problem using tabu search. IIE Transactions 35(6), 515–526 (2003)

    Article  Google Scholar 

  6. Grunske, L., Lindsay, P.A., Bondarev, E., Papadopoulos, Y., Parker, D.: An outline of an architecture-based method for optimizing dependability attributes of software-intensive systems. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable Systems IV. LNCS, vol. 4615, pp. 188–209. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Zhu, D., Melhem, R.G., Mossé, D.: The effects of energy management on reliability in real-time embedded systems. In: International Conference on Computer-Aided Design, pp. 35–40. IEEE Computer Society/ACM (2004)

    Google Scholar 

  8. Pop, P., Poulsen, K.H., Izosimov, V., Eles, P.: Scheduling and voltage scaling for energy/reliability trade-offs in fault-tolerant time-triggered embedded systems. In: International Conference on Hardware/Software Codesign and System Synthesis, pp. 233–238. ACM, New York (2007)

    Chapter  Google Scholar 

  9. Bertozzi, D., Benini, L., Micheli, G.D.: Energy-reliability trade-off for NoCs. In: Networks on Chip, pp. 107–129. Springer, US (2003)

    Google Scholar 

  10. Aleti, A., Björnander, S., Grunske, L., Meedeniya, I.: ArcheOpterix: An extendable tool for architecture optimization of AADL models. In: Model-based Methodologies for Pervasive and Embedded Software, pp. 61–71. IEEE Computer Society Press, Los Alamitos (2009)

    Chapter  Google Scholar 

  11. Benini, L., Micheli, G.D.: Powering networks on chips. In: International Symposium on Systems Synthesis, pp. 33–38 (2001)

    Google Scholar 

  12. Simunic, T., Benini, L., Micheli, G.D.: Energy-efficient design of battery-powered embedded systems. IEEE Trans. VLSI Syst. 9(1), 15–28 (2001)

    Article  Google Scholar 

  13. Hong, I., Kirovski, D., Qu, G., Potkonjak, M., Srivastava, M.B.: Power optimization of variable-voltage core-based systems. IEEE Trans. on CAD of Integrated Circuits and Systems 18(12), 1702–1714 (1999)

    Article  Google Scholar 

  14. Lu, Y.H., Simunic, T., Micheli, G.D.: Software controlled power management. In: International Workshop on Hardware/Software Codesign, pp. 157–161 (1999)

    Google Scholar 

  15. Seo, C., Edwards, G., Malek, S., Medvidovic, N.: A framework for estimating the impact of a distributed software system’s architectural style on its energy consumption. In: Working IEEE/IFIP Conference on Software Architecture, pp. 277–280. IEEE Computer Society, Los Alamitos (2008)

    Chapter  Google Scholar 

  16. Qiu, Q., Pedram, M.: Dynamic power management based on continuous-time markov decision processes. In: Design Automation Conference, pp. 555–561. ACM, New York (1999)

    Google Scholar 

  17. Vijaykrishnan, N., Kandemir, M.T., Irwin, M.J., Kim, H.S., Ye, W.: Energy-driven integrated hardware-software optimizations using simplepower. In: International Symposium on Computer Architecture, pp. 95–106 (2000)

    Google Scholar 

  18. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing, and Computer Science Applications. Prentice-Hall, Englewood Cliffs (1982)

    Google Scholar 

  19. Cloth, L., Katoen, J.P., Khattri, M., Pulungan, R.: Model checking markov reward models with impulse rewards. In: Dependable Systems and Networks, pp. 722–731. IEEE Comp. Society, Los Alamitos (2005)

    Google Scholar 

  20. Cloth, L., Jongerden, M.R., Haverkort, B.R.: Computing battery lifetime distributions. In: Dependable Systems and Networks, pp. 780–789. IEEE Comp. Society, Los Alamitos (2007)

    Google Scholar 

  21. Coit, D.W., Smith, A.E.: Reliability optimization of series-parallel systems using a genetic algorithm. IEEE Transactions on Reliability 45(2), 254–260 (1996)

    Article  Google Scholar 

  22. Liang, Y.C., Smith, A.E.: An ant system approach to redundancy allocation. In: Congress on Evolutionary Computation, pp. 1478–1484. IEEE, Los Alamitos (1999)

    Google Scholar 

  23. Grunske, L.: Identifying “good” architectural design alternatives with multi-objective optimization strategies. In: International Conference on Software Engineering, ICSE, pp. 849–852. ACM, New York (2006)

    Google Scholar 

  24. Zhang, W., Kandemir, M., Sivasubramaniam, A., Irwin, M.J.: Performance, energy, and reliability tradeoffs in replicating hot cache lines. In: Proceedings of the International Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES 2003), pp. 309–317. ACM Press, New York (2003)

    Chapter  Google Scholar 

  25. Perillo, M.A., Heinzelman, W.B.: Optimal sensor management under energy and reliability constraints. IEEE Wireless Communications, 1621–1626 (2003)

    Google Scholar 

  26. Kubat, P.: Assessing reliability of modular software. Operations Research Letters 8(1), 35–41 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nelson, V.P., Carroll, B.: Fault-Tolerant Computing. IEEE Computer Society Press, Los Alamitos (1987)

    Google Scholar 

  28. Katoen, J.P., Khattri, M., Zapreev, S.I.: A markov reward model checker. In: International Conference on the Quantitative Evaluation of Systems(QEST), pp. 243–244. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  29. Shatz, S.M., Wang, J.P., Goto, M.: Task allocation for maximizing reliability of distributed computer systems. IEEE Trans. on Comp. 41(9), 1156–1168 (1992)

    Article  Google Scholar 

  30. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2(3), 221–248 (1995)

    Article  Google Scholar 

  31. Fredriksson, J., Nolte, T., Nolin, M., Schmidt, H.: Contract-based reusable worst-case execution time estimate. In: The International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 39–46 (2007)

    Google Scholar 

  32. Grunske, L.: Towards an Integration of Standard Component-Based Safety Evaluation Techniques with SaveCCM. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214, pp. 199–213. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  33. Assayad, I., Girault, A., Kalla, H.: A bi-criteria scheduling heuristic for distributed embedded systems under reliability and real-time constraints. In: Dependable Systems and Networks, pp. 347–356. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  34. Florentz, B., Huhn, M.: Embedded systems architecture: Evaluation and analysis. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214, pp. 145–162. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meedeniya, I., Buhnova, B., Aleti, A., Grunske, L. (2010). Architecture-Driven Reliability and Energy Optimization for Complex Embedded Systems. In: Heineman, G.T., Kofron, J., Plasil, F. (eds) Research into Practice – Reality and Gaps. QoSA 2010. Lecture Notes in Computer Science, vol 6093. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13821-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13821-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13820-1

  • Online ISBN: 978-3-642-13821-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics