Skip to main content

Ideal Downward Refinement in the \(\mathcal{EL}\) Description Logic

  • Conference paper
Inductive Logic Programming (ILP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5989))

Included in the following conference series:

Abstract

With the proliferation of the Semantic Web, there has been a rapidly rising interest in description logics, which form the logical foundation of the W3C standard ontology language OWL. While the number of OWL knowledge bases grows, there is an increasing demand for tools assisting knowledge engineers in building up and maintaining their structure. For this purpose, concept learning algorithms based on refinement operators have been investigated. In this paper, we provide an ideal refinement operator for the description logic \(\mathcal{EL}\) and show that it is computationally feasible on large knowledge bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baader, F., Molitor, R., Tobies, S.: Tractable and decidable fragments of conceptual graphs. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS, vol. 1640, pp. 480–493. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Baader, F., Sertkaya, B., Turhan, A.-Y.: Computing the least common subsumer w.r.t. a background terminology. J. Applied Logic 5(3), 392–420 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Bodenreider, O., Smith, B., Kumar, A., Burgun, A.: Investigating subsumption in SNOMED CT: An exploration into large description logic-based biomedical terminologies. Artificial Intelligence in Medicine 39(3), 183–195 (2007)

    Article  Google Scholar 

  5. Buitelaar, P., Cimiano, P., Magnini, B. (eds.): Ontology Learning from Text: Methods, Evaluation and Applications. Frontiers in Artificial Intelligence, vol. 123. IOS Press, Amsterdam (2007)

    Google Scholar 

  6. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)

    Google Scholar 

  7. Fanizzi, N., Ferilli, S., Iannone, L., Palmisano, I., Semeraro, G.: Downward refinement in the ALN description logic. In: HIS, pp. 68–73. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  8. Fanizzi, N., Ferilli, S., Di Mauro, N., Altomare Basile, T.M.: Spaces of theories with ideal refinement operators. In: Gottlob, G., Walsh, T. (eds.) Proc. of 18th Int. Joint Conf. on Artificial Intelligence, pp. 527–532. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  9. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)

    Article  Google Scholar 

  10. Küsters, R.: Non-standard inferences in description logics. Springer, New York (2001)

    Book  MATH  Google Scholar 

  11. Lehmann, J.: Hybrid learning of ontology classes. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 883–898. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Lehmann, J., Hitzler, P.: Foundations of refinement operators for description logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008) (Best Student Paper)

    Chapter  Google Scholar 

  13. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the ALC description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008) (Best Student Paper)

    Chapter  Google Scholar 

  14. Lisi, F.A., Malerba, D.: Ideal refinement of descriptions in AL-log. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 215–232. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)

    Google Scholar 

  16. Ramanan, P.: Efficient algorithms for minimizing tree pattern queries. In: SIGMOD 2002: Proc. of the 2002 ACM SIGMOD Int. Conf. on Management of data, pp. 299–309. ACM, New York (2002)

    Chapter  Google Scholar 

  17. Shapiro, E.Y.: Inductive inference of theories from facts. In: Lassez, J.L., Plotkin, G.D. (eds.) Computational Logic: Essays in Honor of Alan Robinson, pp. 199–255. The MIT Press, Cambridge (1991)

    Google Scholar 

  18. The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature Genetics 25(1), 25–29 (May 2000)

    Google Scholar 

  19. van der Laag, P.R.J., Nienhuys-Cheng, S.-H.: Existence and nonexistence of complete refinement operators. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS (LNAI), vol. 784, pp. 307–322. Springer, Heidelberg (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lehmann, J., Haase, C. (2010). Ideal Downward Refinement in the \(\mathcal{EL}\) Description Logic. In: De Raedt, L. (eds) Inductive Logic Programming. ILP 2009. Lecture Notes in Computer Science(), vol 5989. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13840-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13840-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13839-3

  • Online ISBN: 978-3-642-13840-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics