Skip to main content

On Authentication Method Impact upon Data Sampling Delay in Wireless Sensor Networks

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 79))

Abstract

Traffic in Wireless Sensor Network (WSN) consists of short packets sent by nodes that are usually identical in respect of software applied and their hardware architecture. In such a communication environment it is important to guarantee authentication of the nodes. The most popular way to achieve this basic security service is using Message Authentication Code (MAC). The sensor node’s harbware is very limited so the cryptography used must be very efficient. In the article we focus on the influence of the authentication method’s performance on delays in data sampling by the sensor nodes. We present efficiency results for MACs generation in the node. We compare the results for approved, standardized and commonly-used schemes: CMAC, GMAC and HMAC based on MD5 and SHA-1. Additionally, we compare the obtained results with the performance of PKC-based authentication method using the ECDSA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Douceur, J., Donath, J.S.: The sybil attack, pp. 251–260 (2002)

    Google Scholar 

  2. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: Attacks and countermeasures. In: First IEEE International Workshop on Sensor Network Protocols and Applications, pp. 113–127 (2002)

    Google Scholar 

  3. Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G.J.: Protocols for self-organization of a wireless sensor network. IEEE Personal Communications 7, 16–27 (2000)

    Article  Google Scholar 

  4. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: Spins: security protocols for sensor networks. Wirel. Netw. 8(5), 521–534 (2002)

    Article  MATH  Google Scholar 

  5. Karlof, C., Sastry, N., Wagner, D.: Tinysec: a link layer security architecture for wireless sensor networks. In: SenSys 2004: Proceedings of the 2nd international conference on Embedded networked sensor systems, pp. 162–175. ACM, New York (2004)

    Chapter  Google Scholar 

  6. Xiao, Y., Rayi, V.K., Sun, B., Du, X., Hu, F., Galloway, M.: A survey of key management schemes in wireless sensor networks. Comput. Commun. 30(11-12), 2314–2341 (2007)

    Article  Google Scholar 

  7. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2003)

    Google Scholar 

  8. Wander, A.S., Gura, N., Eberle, H., Gupta, V., Shantz, S.C.: Energy analysis of public-key cryptography for wireless sensor networks. In: PERCOM 2005: Proceedings of the Third IEEE International Conference on Pervasive Computing and Communications, Washington, DC, USA, pp. 324–328. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  9. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve cryptography and RSA on 8-bit cPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

    Google Scholar 

  10. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. ACM Commun. 21(2), 120–126 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Iris datasheet, http://www.xbow.com/

  12. Laboratories, R.: Pkcs 6: Extended-certificate syntax standard (1993)

    Google Scholar 

  13. Stinson, D.R.: Cryptography: Theory and Practice. CRC Press, Inc., Boca Raton (1995)

    Google Scholar 

  14. Lai, X., Rueppel, R.A., Woollven, J.: A fast cryptographic checksum algorithm based on stream ciphers. In: ASIACRYPT 1992: Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques, London, UK, pp. 339–348. Springer, Heidelberg (1993)

    Google Scholar 

  15. Lim, S.Y., Pu, C.C., Lim, H.T., Lee, H.J.: Dragon-mac: Securing wireless sensor networks with authenticated encryption

    Google Scholar 

  16. Zoltak, B.: Tail-mac: A message authentication scheme for stream ciphers (2004)

    Google Scholar 

  17. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: Umac: Fast and secure message authentication (1999)

    Google Scholar 

  18. NIST – Current modes, http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html

  19. McGrew, D.A., Viega, J.: The galois/counter mode of operation. gcm (2004)

    Google Scholar 

  20. Krawczyk, H., Bellare, M., Canetti, R.: Hmac: keyed-hashing for message authentication. RFC 2104, 1–12 (1997)

    Google Scholar 

  21. Rivest, R.: The md5 message-digest algorithm (1992)

    Google Scholar 

  22. Eastlake, 3rd, D., Jones, P.: Us secure hash algorithm 1, sha1 (2001)

    Google Scholar 

  23. Liu, A., Ning, P.: Tinyecc: A configurable library for elliptic curve cryptography in wireless sensor networks. In: IPSN 2008: Proceedings of the 7th international conference on Information processing in sensor networks, Washington, DC, USA, pp. 245–256. IEEE Computer Society Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  24. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, New York (2002)

    MATH  Google Scholar 

  25. Das labor page: https://das-labor.org/svn/microcontroller-2/crypto-lib/

  26. Cao, Q., Abdelzaher, T., Stankovic, J., He, T.: The liteos operating system: Towards unix-like abstractions for wireless sensor networks. In: IPSN 2008: Proceedings of the 7th international conference on Information processing in sensor networks, Washington, DC, USA, pp. 233–244. IEEE Computer Society Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  27. Research, C.: Sec 2: Recommended elliptic curve domain parameters. Standards for efficient cryptography version 1.0 (2000)

    Google Scholar 

  28. Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 137–161. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szalachowski, P., Ksiezopolski, B., Kotulski, Z. (2010). On Authentication Method Impact upon Data Sampling Delay in Wireless Sensor Networks. In: Kwiecień, A., Gaj, P., Stera, P. (eds) Computer Networks. CN 2010. Communications in Computer and Information Science, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13861-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13861-4_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13860-7

  • Online ISBN: 978-3-642-13861-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics