Skip to main content

Retinal Vessel Centerline Extraction Using Multiscale Matched Filter and Sparse Representation-Based Classifier

  • Conference paper
Book cover Medical Biometrics (ICMB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6165))

Included in the following conference series:

Abstract

Retina located in the back of the eye contains useful information in the diagnosis of certain diseases. By locating a blood vessel’s width, color, reflectivity, tortuosity and abnormal branching, one can deduce the existence of these diseases. In order for this to be achieved, blood vessels first need to be extracted from its background in fundus image. In this paper we propose a new method to extract vessels based on Multiscale Production of Matched Filter (MPMF) and Sparse Representation-based Classifier (SRC). First, we locate vessel centerline candidates using multi-scale Gaussian filtering, scale production, double thresholding and centerline detection. Then, the candidates which are centerline pixels are classified with SRC. Particularly, two dictionary elements of vessel and non-vessel are used in the SRC process. Experimental results on two public databases show that the proposed method is good at distinguishing vessel from non-vessel objects and extracting the centerlines of small vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 501–509 (2004)

    Google Scholar 

  2. Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Trans. on Medical Imaging 25, 1214–1222 (2006)

    Article  Google Scholar 

  3. Niemeijer, M., Staal, J.J., van Ginneken, B., Loog, M., Abramoff, M.D.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: SPIE Medical Imaging, vol. 5370, pp. 648–656 (2004)

    Google Scholar 

  4. Martínez-Pérez, M., Hughes, A., Stanton, A., Thom, S., Bharath, A., Parker, K.: Scale-space analysis for the characterisation of retinal blood vessels. Medical Image Computing and Computer-Assisted Intervention, 90–97 (1999)

    Google Scholar 

  5. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imag. 19(3), 203–210 (2000)

    Article  Google Scholar 

  6. Jiang, X., Mojon, D.: Adaptive local thresholding by verification based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 131–137 (2003)

    Article  Google Scholar 

  7. Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Transactions on Medical Imaging 25(9), 1200–1213 (2006)

    Article  Google Scholar 

  8. Martinez-Perez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Medical Image Analysis 11(1), 47–61 (2007)

    Article  Google Scholar 

  9. Leung, H., Wang, J.J., Rochtchina, E., Wong, T.Y., Klein, R., Mitchell, P.: Impact of current and past blood pressure on retinal arteriolar diameter in older population. J. Hypertens., 1543–1549 (2003)

    Google Scholar 

  10. Mitchell, P., Leung, H., Wang, J.J., Rochtchina, E., Lee, A.J., Wong, T.Y., Klein, R.: Retinal vessel diameter and open-angle glaucoma: the Blue Mountains eye study. Ophthalmology, 245–250 (2005)

    Google Scholar 

  11. Wang, J.J., Taylor, B., Wong, T.Y., Chua, B., Rochtchina, E., Klein, R., Mitchell, P.: Retinal vessel diameters and obesity: a population-based study in older persons. Obes. Res., 206–214 (2006)

    Google Scholar 

  12. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging, 263–269 (1989)

    Google Scholar 

  13. Cinsdikici, M., Aydin, D.: Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm. Computer Methods and Programs in Biomedicine 96, 85–95 (2009)

    Article  Google Scholar 

  14. Al-Rawi, M., Qutaishat, M., Arrar, M.: An improvement matched filter for blood vessel detection of digital retinal images. Computers in Biology and Medicine 37, 262–267 (2007)

    Article  Google Scholar 

  15. Chutatape, O., Zheng, L., Krishnan, S.: Retinal blood vessel detection and tracking by matched Gaussian and kalman filters. In: Proc. of Engineering in Medicine and Biology Society, pp. 3144–3149 (1998)

    Google Scholar 

  16. Rangayyan, R.M., Ayres, F.J., Oloumi, F., Oloumi, F., Eshghzadeh-Zanjani, P.: Detection of blood vessels in the retina with multiscale Gabor filters. J. Electron. Imaging 17, 023018 (2008)

    Article  Google Scholar 

  17. Tolias, Y., Panas, S.: A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Trans. Med. Imaging, 263–273 (1998)

    Google Scholar 

  18. Sinthanayothin, C., Boyce, J., Williamson, C.T.: Automated Localisation of the Optic Disk, Fovea, and Retinal Blood Vessels from Digital Colour Fundus Images. British Journal of Ophthalmology, 902–910 (1999)

    Google Scholar 

  19. Garg, S., Sivaswamy, J., Chandra, S.: Unsupervised curvature-based retinal vessel segmentation. In: Proc. of IEEE International Symposium on Bio-Medical Imaging, pp. 344–347 (2007)

    Google Scholar 

  20. Zana, F., Klein, J.C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 1010–1019 (2001)

    Google Scholar 

  21. Fraz, M.M., Javed, M.Y., Basit, A.: Evaluation of Retinal Vessel Segmentation Methodologies Based on Combination of Vessel Centerlines and Morphological Processing. In: IEEE International Conference on Emerging Technologies, pp. 18–19 (2008)

    Google Scholar 

  22. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust Face Recognition via Sparse Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 2, 210–227 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, B., Li, Q., Zhang, L., You, J., Karray, F. (2010). Retinal Vessel Centerline Extraction Using Multiscale Matched Filter and Sparse Representation-Based Classifier. In: Zhang, D., Sonka, M. (eds) Medical Biometrics. ICMB 2010. Lecture Notes in Computer Science, vol 6165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13923-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13923-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13922-2

  • Online ISBN: 978-3-642-13923-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics