Skip to main content

Reliable Biological Circuit Design Including Uncertain Kinetic Parameters

  • Chapter
  • 1508 Accesses

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 254))

Abstract

In the context of possibilistic decision making, this work deals with biological design problems particularly important in the near future when it will be possible to produce biological entities and synthetic organisms for pharmacological and medical usage. The biological systems is investigated in terms of performances or main key features of the system. The analysis of the biological system is based on the idea that the set of parameters involved in the model can be classified into two different typologies: the uncertain kinetic parameters and the control design parameters. In order to design a robust and reliable biological system with respect to a target performance, the design parameter values are set up to balance the uncertainty of the kinetic parameters. To take into account these uncertainties arising from the estimations of the kinetic parameters, the function representing the feedback of the system is fuzzified and a measure of failure of the designed biological circuit is minimized to reach the required performance. An application of this methodology is illustrated on a case study of an autonomously oscillatory system: the Drosophila Period Protein which is a central component of the Drosophila circadian clocks. Finally, the results of the fuzzy methodology are compared with a deterministic method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagheri, N., Stelling, J., Doyle III, F.J.: Quantitative performance metrics for robustness in circadian rhythms. Bioinformatics 23(3), 358–364 (2007)

    Article  Google Scholar 

  2. Banga, J.R.: Optimization in computational systems biology. BMC Systems Biology 2, 47 (2008)

    Article  MathSciNet  Google Scholar 

  3. Dubois, D., Prade, H.: Possibility theory: An approach to computerized processing of uncertainty. Plenum Press, New York (1988)

    MATH  Google Scholar 

  4. Gavin, H.P., Yau, S.C.: High-order limit state functions in the response surface method for structural reliability analysis. Structural Safety 2(30), 162–179 (2008)

    Article  Google Scholar 

  5. Goldbeter, A.: A model for circadian oscillations in the Drosophila period protein (PER). Proc. R. Soc. Lond. B 261, 319–324 (1995)

    Article  Google Scholar 

  6. Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  7. Heinrich, R., Schuster, S.: The modelling of metabolic systems: Structure, control and optimality. Biosystems 12(47), 61–77 (1998)

    Article  Google Scholar 

  8. Ingalls, B.P.: Autonomously Oscillating Biochemical Systems: Parametric Sensitivity of Extrema and Period. Systems Biology 1(1), 62–70 (2004)

    Article  Google Scholar 

  9. Kholodenko, B.N., Demin, O.V., Moehren, G., Hoek, J.B.: Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274, 30169–30181 (1999)

    Article  Google Scholar 

  10. Klir, G., Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, USA (1995)

    MATH  Google Scholar 

  11. Lodwick, W.A., Jamison, K.D.: Theoretical and semantic distinctions of fuzzy, possibilistic, and mixed fuzzy/possibilistic optimization. Fuzzy Sets Syst. 158(17), 1861–1872 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nelder, J., Mead, R.: A simplex method for function minimization. Computer Journal 7, 308–313 (1965)

    MATH  Google Scholar 

  13. Sciacca, E., Spinella, S., Anile, A.M.: Possibilistic Worst Case Distance and Applications to Circuit Sizing. Theoretical Advances and Applications of Fuzzy Logic and Soft Computing 42, 287–295 (2007)

    Article  Google Scholar 

  14. Segre, D., Vitkup, D., Church, G.M.: Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 23(99), 15112–15117 (2002)

    Article  Google Scholar 

  15. Spinella, S., Anile, A.M.: Modeling uncertain sparse data with fuzzy b-splines. Reliable Computing 10(5), 335–355 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J., Doyle, J.: Robustness of cellular functions. Cell 6(118), 675–685 (2004)

    Article  Google Scholar 

  17. Torres, N.V., Voit, E.O.: Pathway analysis and optimization in metabolic engineering. Cambridge University Press, New York (2002)

    Book  Google Scholar 

  18. van Riel, N.A.W.: Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Briefings in Bioinformatics 7(4), 364–374 (2006)

    Article  Google Scholar 

  19. Venter, G., Haftka, R.T.: Using response surface approximations in fuzzy set based design optimization. Structural and Multidisciplinary Optimization 18(4), 218–227 (1999)

    Google Scholar 

  20. Wang, R.S., Wang, Y., Zhang, X.S., Chen, L.: Inferring transcriptional regulatory networks from high-throughput data. Bioinformatics 22(23), 3056–3064 (2007)

    Article  Google Scholar 

  21. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zadeh, L.A.: Fuzzy algorithms. Information and Control 12(2), 94–102 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zadeh, L.A.: Fuzzy sets as the basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zi, Z., Cho, K.H., Sung, M.H., et al.: In silico identification of the key components and steps in IFN-λ induced JAK-STAT signaling pathway. FEBS Letters 579, 1101–1108 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sciacca, E., Spinella, S. (2010). Reliable Biological Circuit Design Including Uncertain Kinetic Parameters. In: Lodwick, W.A., Kacprzyk, J. (eds) Fuzzy Optimization. Studies in Fuzziness and Soft Computing, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13935-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13935-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13934-5

  • Online ISBN: 978-3-642-13935-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics