
Visualizing Dynamic Metrics with Profiling
Blueprints

Alexandre Bergel1, Romain Robbes1, and Walter Binder2

1 Pleiad Lab, DCC, University of Chile, Santiago, Chile
http://bergel.eu http://www.dcc.uchile.cl/∼rrobbes

2 University of Lugano, Switzerland
http://www.inf.usi.ch/faculty/binder

Abstract. While traditional approaches to code profiling help locate
performance bottlenecks, they offer only limited support for removing
these bottlenecks. The main reason is the lack of visual and detailed
runtime information to identify and eliminate computation redundancy.
We provide two profiling blueprints which help identify and remove per-
formance bottlenecks. The structural distribution blueprint graphically
represents the CPU consumption share for each method and class of an
application. The behavioral distribution blueprint depicts the distribution
of CPU consumption along method invocations, and hints at method
candidates for caching optimizations. These two blueprints helped us
to significantly optimize Mondrian, an open source visualization engine.
Our implementation is freely available for the Pharo development envi-
ronment and has been evaluated in a number of different scenarios.

1 Introduction

Even though computing resources are abundant, execution optimization through
code profiling remains an important software development activity. A CPU time
profiler is a crucial tool to identify bottlenecks – program elements that take a
large part of the execution time. Today, it is inconceivable to ship a programming
environment without a code profiler included or provided by a third party.

However, when we retrospectively look at the history of code profiler tools, we
see that tool usability and profiling overhead reduction have steadily improved,
but that the set of offered abstractions has remained constant. For instance,
gprof, which appeared in 1982, offers a number of textual reports focussed on
“how much time was spent executing directly in each function” and call graphs1.
JProfiler essentially produces the same output, using a graphical rendering in-
stead of a textual one2. Most of the research conducted in the field of code pro-
filing focus on reducing the overhead triggered by the code instrumentation and
observation. On the other hand, the abstractions used to profile object-oriented
applications are very close to the ones for procedural applications.
1 http://sourceware.org/binutils/docs/gprof/Output.html#Output
2 http://www.ej-technologies.com/products/jprofiler/screenshots.html

The contribution of this paper is to apply some visualizations that have been
previously used in static software analysis to display dynamic metric for profil-
ing purposes. We propose a visual mechanism for rendering dynamic information
that effectively enables comparison of different metrics related to a program ex-
ecution. Structural distribution blueprint and behavioral distribution blueprint
are two visualizations intended to identify bottlenecks and propose hints on how
to remove them. The first blueprint represents the distribution of the CPU ef-
fort along the program structure. The second blueprint directs the distribution
along method invocations and identifies methods prone to one class of optimiza-
tion, namely caching. The work presented in this paper aims at complementing
existing profilers with new visualizations that help specific optimization tasks.

The results presented in this paper were realizing using Pharo3, an open-
source Smalltalk-dialect programming language. Nothing in the visualizations
we propose prevents one from using them in a different setting.

We apply our techniques to the visualization framework Mondrian4 [MGL06],
our running example. We first describe our blueprints (Section 2). Subsequently,
we identify and implement opportunities for optimization in Mondrian (Section
3). We then review related work (Section 4) and conclude (Section 5).

2 Profiling Blueprints

2.1 Profiling blueprint in a nutshell

Time profiling blueprints are graphical representations meant to help program-
mers (i) assess the time distribution and (ii) identify bottlenecks and give hints
on how to remove them for a given program execution. The essence of profiling
blueprints is to enable a better comparison of elements constituting the program
structure and behavior. To render information, these blueprints use a graph
metaphor, composed of nodes and edges.

The size of a node hints at its importance in the execution. In the case that
nodes represent methods, a large node may say that the program execution
spends “a lot of time” in this method. The expression “a lot of time” is then
quantified by visually comparing the height and/or the width of the node against
other nodes.

Color is used to either transmit a boolean property (e.g., a gray node rep-
resents a method that always returns the same value) or a metric (e.g., a color
gradient is mapped to the number of times a method has been invoked).

We propose two blueprints that help identify opportunities for code opti-
mization. They provide hints to programmers to refactor their program along
the following two principles: (i) make often-used methods faster and (ii) call slow
methods less often. The metrics we adopted in this paper help finding methods
that are either unlikely to perform a side effect or return always the same result,
good candidates for simple caching optimizations.
3 http://www.pharo-project.org/home
4 http://www.moosetechnology.org/tools/mondrian

2

2.2 Polymetric views

width property

height
property

color
property

edge width and
color properties

X property

Y
property

Fig. 1. Principle of polymetric view.

The blueprints we propose are graphically rendered as polymetric views [LD03].
A polymetric view is a lightweight software visualization enriched with software
metrics. It has been successfully used to provide “software maps” intended to
help software comprehension and visualization. Figure 1 depicts the general as-
pect of a polymetric view.

Given two-dimensional nodes representing entities, we can map up to 5 met-
rics on the node characteristics: position (X and Y), size (width and height),
and color:

– Position. The X and Y coordinates of the position of a node may reflect two
measurements.

– Size. The width and height of a node can render two measurements. We
follow the intuitive notion that the wider and the higher the node, the larger
the associated metric.

– Color. The color interval between white and black may render one mea-
surement. The convention that is usually adopted [GL04] is that the higher
the measurement, the darker the node. Thus light gray represents a smaller
measurement than dark gray.

Edges may also render properties along a number of dimensions (width, color,
direction, etc.). However, for the purpose of this work, all edges are identical.

2.3 Structural distribution blueprint

The execution of an object-oriented program yields a large amount of informa-
tion [DLB04] (e.g., number of objects created at runtime, total execution time of
a method). Unfortunately, all these dimensions cannot be visually rendered in a
meaningful fashion. The structural distribution blueprint displays a selected num-
ber of metrics indicating the distribution of the execution time along the static
structure of a program (i.e., classes, methods and class hierarchy). Table 1 gives

3

the specification of the structural distribution blueprint. The blueprint renders
a program in terms of classes, methods and inheritance relations. Each method
representation exhibits its corresponding CPU time profiling information along
three metrics:

– number of different receivers: amount of different object receivers the method
has been invoked on. Due to implementation limitations, this is at the mo-
ment a lower bound estimate.

– total execution time of a method : time for which a call frame corresponding
to the method is present on the stack at runtime. The precision depends on
the underlining profiler used to collect runtime information.

– number of executions: number of times the method has been executed, in-
dependently of the object receiver.

Actual metric values, and additional information, are accessible through a
contextual popup window.

Structural distribution blueprint

Scope full system execution time

Edge class inheritance (upper is superclass of below)
Layout tree layout for outer nodes and gridlayout for inner nodes

(inner nodes are ordered by increasing height)
Metric scale linear (except for node width)
Node outer node is a class, an inner node is a method

Inner node color Number of different receivers
Inner node height total execution time of a method
Inner node width number of executions (logarithmic scale)

Example Figure 2

Table 1. Specification of the structural distribution blueprint

Example. Troughout this paper, we use the graph visualization framework Mon-
drian as a case study. The blueprints described in this paper are also rendered
using Mondrian. An example of the structural distribution blueprint is given in
Figure 2. Four classes are represented: MOGraphElement, MOViewRenderer, MON-
ode and MORoot. This figure is a small part of a bigger picture obtained by
evaluating the following code snippet, which renders a simple visualization of
100 nodes, each containing 100 nodes:

ProfilingPackageSpy
viewProfiling: [

| view |
view := MOViewRenderer new.
view nodes: (1 to: 100)

forEach: [:each | view nodes: (1 to: 100)].
view root applyLayout]

inPackage: ’Mondrian’

4

legend for methods

(color)
#different
receiver

executions

execution
time

bounds

translateTo:

shapeBoundsAt:
ifPresent:

Fig. 2. Example of a structural blueprint

5

The code being profiled is indicated using a bold font in the example source
code. The profiling is realized from the perspective of one package, Mondrian in
our case. MOGraphElement inherits from MONode, MORoot from MOGraphElement,
and MOViewRenderer from Object. Since Object does not belong to Mondrian (but
to the Kernel package), it is not rendered in the blueprint.

The height of a method node is proportional to the total execution time
taken by the method (e.g., 53% of the code execution is spent in the method
applyLayout and 38% in bounds). The width is proportional to the number of times
the method has been executed. A logarithmic scale is used. The method node
color represents the number of different objects this method has been executed
on (more than 3 732). The scope of the blueprint is global, which means that
the darkest method corresponds to the method that has been executed on the
greatest number of object receivers, system-wide.

Moving the mouse over a method node pops up additional contextual infor-
mation. In the example, the contextual window says that the method applyLayout

defined in the class MOGraphElement has been executed 10 100 times, and has
been executed on more than 3 732 distinct receiver objects (i.e., instances of
MOGraphElement or one of its subclasses). It is also indicated that this method
returns always the same value for a given object receiver. While the blueprint
emphasizes the three metrics indicated above, the contextual information pro-
vides useful data when one wants to know more about a particular method.

Within a class, methods are ordered along their height. This helps quickly
spot the amount of costly methods. For example, it is clear that among MO-

GraphElement’s methods, 3 are dominating with respect to execution time.

Interpretation. Classes represented in Figure 2 illustrate part of a scenario
that totals 11 classes. Among the 111 classes that define Mondrian, these 11
classes are the only classes involved in the code snippet execution given above.
Only classes that are covered by the execution, even partially, are depicted in
the blueprint.

MOGraphElement contains “many large and dark” methods. This indicates
that this class is central to the code snippet execution: these large and black
methods consume a lot of CPU time and are invoked on many different instances.
Almost all of MOGraphElement’s methods are executed a large number of times: in
the visualization, they are quite wide compared to methods in other classes. For
most of them, this is not a problem because they are thin and horizontal: even
if these methods are executed many times, they do not consume CPU time. On
the left of applyLayout stands the bounds method. This method takes 38% of the
CPU time and is invoked 70 201 times on more than 3 732 object receivers. The
third costliest method on MOGraphElement, shapeBoundsAt:ifPresent: takes 33% of
the CPU time. MONode contains a black and relatively large method: MONode>>

translateTo: consumes 22% of the total CPU time. The method has been invoked
10 100 times on at least 3 732 receivers.

Comparing to MOGraphElement, we find that classes are not involved in the
computation as much. The representation of MOViewRenderer quickly says that

6

its methods are invoked a few times without consuming much CPU. Moreover,
methods are white, which tells that they are invoked on few instances only. The
contextual information obtained by moving the mouse over the methods reveals
that these methods are executed on a unique receiver. This is not surprising
since only one instance of MOViewRenderer is created in the code example given
above.

MORoot also does not seem to be the cause of a bottleneck at runtime. The
few methods of this class are not frequently executed since they are relatively
narrow. MORoot also defines a method applyLayout. This method is the tall, thin
and white method. The contextual information reveals that this method is ex-
ecuted once and on one object only. It consumes 97% of the CPU time. The
method MORoot>> applyLayout invokes MOGraphElement>> applyLayout on each of
the nodes. The relation between these two applyLayout methods is indicated by a
fly-by-highlighting (not represented in the picture) and the behavioral distribu-
tion blueprint, described below.

All in all, a large piece of the total CPU time is distributed over four meth-
ods: MONode>> translateTo: (24%), MOGraphElement>> bounds (32%), MOGraphEle-

ment>> shapeBoundsAt:ifPresent: (33%), MOGraphElement>> applyLayout (53%). Note
that at this stage, we cannot say that the CPU time share of these three meth-
ods is the sum of their individual share. We have 24 + 32 + 33 + 53 = 142.
This indicates that some of these methods call each other since their sum cannot
exceed 100%.

2.4 Behavioral distribution blueprint

In a pure object-oriented setting, computation is solely performed through mes-
sage sending between objects. The CPU time consumption is distributed along
method executions. Assessing the runtime distribution along method invoca-
tions complements the structural distribution described in the previous section.
To reflect this profiling along method invocations, we provide the behavioral
distribution blueprint. Table 2 gives the specification of the figure.

The goal of this blueprint is to assess runtime information alongside method
call invocations. It is intended to find optimization opportunities, which may be
tackled with caching. In addition to the metrics such as the number of calls and
execution time, we also show whether a given method returns constant values,
and whether it is likely to perform a side effect or not. As shown later, this
information is helpful to identify a class of bottlenecks.

Classes do not appear on this blueprint. Methods are represented by nodes
and invocations by directed edges. The blueprint uses the two metrics described
in the previous blueprint for the width and height of a method. In addition to
the shape, node color indicates a property:

– the gray color indicates methods that return self, the default return value.
When no return value is specified in Pharo, the object receiver is returned.
This corresponds to void methods in a statically typed language. No result
is expected from the method, strongly suggesting that the method operates
via side effects.

7

– the yellow color (which appears as light gray on a black and white printout)
indicates methods that are constant on their return value, this value being
different from self.

– other methods are white.

A tree layout is used to order methods, with upper methods calling lower
methods. We illustrates this blueprint on the MOGraphElement>> bounds method
that we previously saw, a candidate for optimization.

Behavioral distribution blueprint

Scope all methods directly or indirectly invoked for a given
starting method

Edge method invocation (upper methods invoke lower ones)
Layout tree layout
Metric scale linear (except for node width)
Nodes methods

Node color gray: return always self; yellow: same return value per
object receiver; white: remaining methods

Node height total execution time
Node width number of execution (logarithmic scale)

Example Figure 3

Table 2. Specification of the behavioral distribution blueprint

Example. In the previous blueprint (Figure 2), right-clicking on the method
MORoot>> applyLayout opens a behavioral distribution blueprint for this method.
The complete picture is given in Figure 3. The picture has to be read top-
down. Methods in this blueprint have the same dimensions as in the behavioral
blueprint. We recognize the tall and thin MORoot>> applyLayout at the top. All
methods in Figure 3 are therefore invoked directly or indirectly by this apply-

Layout. MORoot>> applyLayout invokes 3 methods, including MOGraphElement>>

applyLayout (labelled in the figure). MOGraphElement>> applyLayout calls MOAb-

stractLayout>> applyOn:, and both of these are called by MORoot>> applyLayout.

Interpretation. As the first blueprint revealed, bounds, applyLayout, shapeBound-

sAt:ifPresent:, translateTo: are expensive in terms of CPU time consumption. The
behavior blueprint highlights this fact from a different point of view, along
method invocations. In the following we will optimize bounds by identifying the
reason of its high cost and provide a solution to fix it. Our experience with Mon-
drian tells us that this method has a surprisingly high cost. Where to start a
refactoring among all potential candidates remains the programmer task. Our
blueprint only says “how it is” and not “how it should be”, however it is a rich
source of indication of what’s going on at runtime.

8

legend for methods

gray =
return
self

yellow =
constant
on return

value

executions

execution
time

m2
m1

invokes
m2 and m3

MOGraphElement>>
applyLayout

bounds

shapeBoundsAt:
ifPresent:

MONode>>
translateTo:

m1 m3

MOAbstractLayout>>applyOn:

MORoot>>applyLayout

Fig. 3. Example of a behavioral blueprint

9

The return value of MOGraphElement>> bounds is constant over time since it is
painted in yellow. This method is involved in a rich invocation graph (presented
in Figure 3). In general, understanding the interaction of a single method is likely
to be difficult when a complete call graph is used. The contextual menu obtained
by right-clicking on a method offers a filtered view on the entity of interest.

MOGraphElement>>
origin

shapeBoundsAt:ifPresent:
Called by #bounds

Calling #bounds

bounds

computeExtentHavingChildrenFor:

Fig. 4. Detailed view of MOGraphElement>> bounds

Figure 4 shows a detailed view of a behavioral blueprint, centered on MO-

GraphElement>> bounds. This method is at the center of the picture. Above are
located the methods calling bounds. Below, the unique method that is called by
bounds. Among the 5 methods that call bounds, 3 always return the same value
when executed. The method called by bounds also remains constant on its re-
turn value. Figure 4 renders bounds and shapeBoundsAt:ifPresent: with the same
width. It is therefore likely that these two methods are invoked the same num-
ber of times. The contextual window indicates that each of these two methods
is invoked 70 201 times. We can deduce the following:

– bounds belongs to several execution paths in which each method is constant
on its return value. This is indicated in the upper part of Figure 4.

– bounds calls shapeBoundsAt:ifPresent:, which is constant on return value.
– bounds and shapeBoundsAt:ifPresent: are invoked the same number of times.

The following section addresses this bottleneck by adding a cache in bounds

and unveils another bottleneck in Mondrian.

10

3 Optimizing Mondrian

The combination of the structural and behavioral blueprints helped us to iden-
tify a number of bottlenecks in Mondrian. In this section, we address some of
these bottlenecks by using memoization5, i.e. we cache values to avoid redundant
computations.

3.1 Bottleneck MOGraphElement>> bounds

As we saw earlier, the behavioral blueprint on the method MOGraphElement>>

bounds reveals a number of facts about the program’s execution. These facts are
good hints that bounds will benefit from a caching mechanism since it always
returns the same value and calls a method that is also constant. We inspect its
source code:

MOGraphElement>> bounds
”Answer the bounds of the receiver.”
| basicBounds |
self shapeBoundsAt: self shape ifPresent: [:b | ˆ b].

basicBounds := shape computeBoundsFor: self.
self shapeBoundsAt: self shape put: basicBounds.
ˆ basicBounds

The code source confirms that shapeBoundsAt:ifPresent: is invoked once each
time bounds is invoked. The method shape is also invoked at each invocation of
bounds. The contextual window obtained in the structural blueprint reveals that
the return value of shape is constant: It is a simple variable accessor (“getter”
method), so it is fast. bounds calls computeBoundsFor: and shapeBoundsAt:put: in
addition to shapeBoundsAt:ifPresent: and shape. However, they do not appear in
Figure 3 and 4. This means that bounds exits before reaching computeBoundsFor:.
The block [:b | ˆb], which has the effect of exiting the method, is therefore always
executed in the considered example.

We first thought that the last tree lines of bounds may be removed since they
are not executed in our scenario. However, the large number of tests in Mondrian
indicate that these lines are indeed important in some scenarios although they
are not in our particular example.

We elected to upgrade bounds with a simple cache mechanism. Differences
with the original version are indicated using a bold font. The class MOGraphEle-

ment is extended with a new instance variable, boundsCache. In addition, the cache
variable has to be reset in 5 methods related to graphical bounds manipulation
of nodes, such as translating and resizing.

5 http://en.wikipedia.org/wiki/Memoization

11

MOGraphElement>> bounds
”Answer the bounds of the receiver.”
| basicBounds |
boundsCache ifNotNil: [ˆ boundsCache].
self shapeBoundsAt: self shape ifPresent: [:b | ˆ boundsCache := b].

basicBounds := shape computeBoundsFor: self.
self shapeBoundsAt: self shape put: basicBounds.
ˆ boundsCache := basicBounds

There is no risk of concurrent accesses of boundsCache since this variable is
set when the layout is being computed. This occurs before the display of the
visualization, which is done in a different thread.

Result. Adding a statement boundsCache ifNotNil: [ˆ boundsCache] significantly
reduces the execution time of the code given in Section 2.3. Before adding this
simple cache mechanism, the code took 430 ms to execute (on a MacBook Pro,
2Gb of RAM (1067 MHz DDR3), 2.26 GHz Intel Core 2 Duo, Squeak VM
4.2.1beta1U). With the cache, the same execution takes 242 ms only, which
represents a speedup of approximately 43%.

This gain is reflected on the overall distribution of the computational effort.
Figure 5 provides two structural blueprints of the code snippet given in Sec-
tion 2.3. The left blueprint has been produced before upgrading the method
MOGraphElement>> bounds. Figure 2 is a part of it. The right one has been pro-
duced after upgrading bounds as described above. Many places are impacted. We
annotated the figure with the most significant changes:

– the size of the bounds method and the methods invoked by it (C) have seen
their height significantly reduced. Before the optimization, bounds used 38%
of the total CPU consumption. After the optimization, its CPU use fell to
5%.

– the 5 methods denoted by the circle A and B have seen their height increased
and their color darkened. The height increase illustrates the augmentation
in relative CPU consumption these methods are subject to, now that bounds

has been improved.

The evolution of the behavioral blueprint is presented in Figure 6. We can
clearly see the reduced size of bounds and shapeBoundsAt:ifPresent: (Circle B) and
the increase of the applyLayout method (Circle A).

3.2 Bottleneck in MONode>> displayOn:

We fixed an important bottleneck when computing bounds in Mondrian. We
push our analysis of bounds computing a step further. We inspect the User
Interface (UI) thread of Mondrian. Most applications with a graphical user in-
terface run in at least 2 threads: one for the program logic and another in charge
of receiving user events (e.g., keystrokes, mouse events) and virtual machine/OS

12

A

B

C

Upgrading
MOGraphElement>>bounds

Fig. 5. Upgrading bounds has a global structural impact

B

A

Upgrading
MOGraphElement>>bounds

Fig. 6. Upgrading bounds has a global behavioral impact

13

events (e.g., window refreshes). Mondrian is no exception. The blueprints pre-
sented earlier focused on profiling the application logic.

legend for methods

(color)
#different
receiver

executions

execution
time

displayOn:

absoluteBounds

shapeBoundsAt:
ifPresent:

absoluteBoundsFor:

display:on:

Fig. 7. Profiling of the UI thread in Mondrian

Step 1. Figure 7 shows the structural profiling of the UI thread for the Mon-
drian script given in Section 2.3. The blueprint contains many large methods,
indicating methods that received a significant CPU share. Among these, our
knowledge of Mondrian lead us to absoluteBounds. This method is very similar
to bounds that we previously saw. It returns the bounds of a node using abso-
lute coordinates (instead of relative). The UI thread spends most of the time in
MONode>> displayOn: since it is the root of the thread’s computation.

Figure 8 shows the behavioral blueprint opened on MONode>> displayOn:. The
blueprint reveals that absoluteBounds and absoluteBoundsFor: call each other. Re-
turn values of these two methods are constant as indicated by their yellow color.
They are therefore good candidates for caching:

14

MONode>>displayOn:

MOGraphElement>>
absoluteBoundsMOShape>>

absoluteBoundsFor:

legend for methods

gray =
return
self

yellow =
constant
on return

value

executions

execution
time

m2
m1

invokes
m2 and m3

m1 m3

MORectangleShape>>
display:on:

Fig. 8. Profiling of the UI thread in Mondrian

15

MOGraphElement>> absoluteBounds
”Answer the bounds in absolute terms (relative to the entire Canvas, not just the parent).”
absoluteBoundsCache ifNotNil: [ˆabsoluteBoundsCache].
ˆabsoluteBoundsCache := self shape absoluteBoundsFor: self

Result. Without the cache in absoluteBounds, the scenario takes 356 ms to run.
With the cache, it takes 231 ms. We therefore gained 35% when displaying the
visualization.

Step 2. By adding the cache in absoluteBounds, we significantly reduced the cost
of this method. We can still do better. As shown in Figure 8, there is another
caller of absoluteBounds. MORectangleShape>> display:on: is 85 lines long and begins
with:

MORectangleShape>> display: aFigure on: aCanvas
| bounds borderWidthValue textExtent c textToDisplay font borderColorValue ... |
bounds := self absoluteBoundsFor: aFigure.
c := self fillColorFor: aFigure.
...

We saw in Step 1 that absoluteBounds calls the expensive and uncached abso-

luteBoundsFor:. Replacing the call to absoluteBoundsFor: by absoluteBounds improves
performance further:

MORectangleShape>> display: aFigure on: aCanvas
| bounds borderWidthValue textExtent c textToDisplay font borderColorValue ... |
bounds := aFigure absoluteBounds.
c := self fillColorFor: aFigure.
...

Result. The execution time of the code snippet has been reduced to 198 ms. A
speedup of 14% from Step 1, and of 45% overall.

Blueprint evolution. Figure 9 summarizes the two evolution steps described
previously. Differences with a previous step are denoted using a circle. The ef-
fect of caching absoluteBounds considerably diminished the execution time of this
method. This is illustrated by Circle C. It has also the effect of reducing the
size of MOShape’s methods and increasing MORectangleShape>> display:on:. The
share of the CPU consumption increased for this method. Step 2 reduced the
size of MOShape’s method. Their execution time became so small, that it does
not appear in the behavioral blueprint (since we use a sampling-based profiler
to obtain the runtime information, methods having less than 1% of the CPU do
not appear in this blueprint).

3.3 Summary

The cache value of MOGraphElement>> bounds (Section 3.1) is implemented and
has been finalized in the version 341 of Mondrian6. The improvement of ab-

6 The source code is available at: http://www.squeaksource.com/Mondrian.html

16

ca
ch

ed

ab
so
lu
te
Bo
un
ds

A
B

C

m
ak

e
di
sp
la
y:
on
:

ca
ll a
bs
ol
ut
eB
ou
nd
s

in
st

ea
d

of
 a
bs
ol
ut
eB
ou
nd
sF
or
:

D

A'

C'

B'

C'

Fig. 9. Profiling of the UI thread in Mondrian

17

soluteBounds and display:on: may be found in the version 352 of Mondrian. The
complete experiment lead to a 43% improvement in creating the layout of a view,
and of 45% in displaying the same view.

We identify and remove a number of bottlenecks. From this experience, it is
tempting to identify and look after some general patterns that would easily ex-
pose fixable execution bottleneck. Unfortunately, we haven’t see the opportunity
to deduce some general rules. The visualization we provide clearly identify costly
methods and classes, potentially being candidates for optimization. Whether the
optimization can easily or not be realized heavily depends on a wide range of
parameters (e.g., algorithm, architecture, data structure).

4 Related Work

Profiling capabilities have been integrated in IDEs such as the NetBeans Pro-
filer7 and Eclipse’s Tracing and Profiling Project (TPTP)8. The NetBeans Pro-
filer uses JFluid [Dmi04], which offers a Calling Context Tree (CCT) [ABL97]
augmented with the accumulated execution time for individual methods. The
CCT is visualized as an expandable tree, where calling contexts are sorted by
their execution time and can be expanded respectively collapsed in order to
show or hide callees. However, as CCTs for real-world applications are often
large, comprising up to some million nodes, an expandable tree representation
makes it difficult to detect hotspots in deep calling contexts.

The Calling Context Ring Chart (CCRC) [MBAV09] is a CCT visualization
that eases the exploration of large trees. Like the Sunburst visualization [Sta00],
CCRC uses a circular layout. Callee methods are represented in ring segments
surrounding the caller’s ring segment. In order to reveal hot calling contexts,
the ring segments can be sized according to a chosen dynamic metric. Re-
cently, CCRC has been integrated into the Senseo plugin for Eclipse [RHV+09],
which enriches Eclipse’s static source views with several dynamic metrics. Our
blueprints have a different focus, since global information is shown instead of
providing a line-of-code granularity.

Execution traces may be used to analyze dynamic program behavior. Execu-
tion traces are logged events, such as method entry and exit, or object allocation.
However, the resulting amount of data can be excessive. In Deelen et al. [DvH-
HvdW07] execution traces are visualized with nodes representing classes and
edges representing method calls. Node size and edge thickness are mapped to
properties (e.g., number of method invocations). A time range can be selected in
order to limit the data to be visualized. Another approach to visualizing execu-
tion traces has been introduced in Holten et al. [HCvW07]. It uses the concept
of hierarchical edge bundles [Hol06], where similar edges are put together to
improve the visualization of larger traces. Execution traces allow keeping calls
in sequences and selecting a precise time interval to be visualized, which helps
understand a particular phase in the execution of a program. Blueprint profiling
7 http://profiler.netbeans.org/
8 http://www.eclipse.org/tptp/performance/

18

offers a global map of the complete execution without focusing on sequentiality
in time. On the other, they offer hints about the behavior of individual methods
that help to solve a class of optimization problem, namely introducing caches.

Tree-maps [JS91] visualize hierarchical structures. Nodes are represented
as rectangular areas sized proportionally to a metric. Tree-maps have been
used to visualize profiling data. For instance, in [WKT04] the authors present
KCacheGrind, a front end to a simulator-based cache profiling tool, using a com-
bination of tree-maps and call graphs to visualize the data. Our blueprint use
polymetric view to render data. A tree-map solves a problem in a different way
that a polymetric view would solve it. A polymetric enables one to compare
several different metrics, whereas a tree-map is dedicated to showing a single
metric (besides color) in a compact space.

5 Conclusion

In this paper we presented two visualizations helping developers to identify and
remove performance bottlenecks. Providing visualizations that are intuitive and
easy to use is our primary goal. Our graphical blueprints follow simple principles
such as “big nodes are slow methods”, “gray nodes are methods likely to have
side-effects”, “yellow nodes remain constant on return values”. Our visualizations
helped us to significantly improve Mondrian, a visualization engine. We described
a number of optimizations we realized. For space reason, we couldn’t describe all
the optimization. The last version of Mondrian contains an improved version of
the applyLayout method, thus mitigating the bottleneck caused by this method.
This improvement was recently publicly announced9.

A number of conclusions may be drawn from the experiment described in
this paper. First, bottleneck identification and removal are significantly easier
when side-effects and constant return values are localized. Second, an extensive
set of unit tests remains essential to assess whether a candidate optimization
can be applied without changing the behavior of the system.

As future work, we plan to focus on architectural views by adopting coarser
grain than methods and classes.

We used our blueprint visualizations on a number of case studies not de-
scribed in this paper: Glamour and Moose, and O210. Our visualizations and
profiler are available in Pharo11 under the MIT license.

References

[ABL97] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hard-
ware performance counters with flow and context sensitive profiling.
In PLDI ’97: Proceedings of the conference on Programming language
design and implementation, pages 85–96. ACM Press, 1997.

9 http://www.iam.unibe.ch/pipermail/moose-dev/2010-January/003781.html
10 http://www.moosetechnology.org/tools/, http://www.squeaksource.com/O2.html
11 http://www.squeaksource.com/Spy.html

19

[DLB04] Stéphane Ducasse, Michele Lanza, and Roland Bertuli. High-level poly-
metric views of condensed run-time information. In Proceedings of
8th European Conference on Software Maintenance and Reengineering
(CSMR’04), pages 309–318, Los Alamitos CA, 2004. IEEE Computer
Society Press.

[Dmi04] Mikhail Dmitriev. Profiling Java applications using code hotswapping
and dynamic call graph revelation. In WOSP ’04: Proceedings of the
Fourth International Workshop on Software and Performance, pages
139–150. ACM Press, 2004.

[DvHHvdW07] P. Deelen, F. van Ham, Cornells Huizing, and H. van de Watering. Vi-
sualization of dynamic program aspects. In VISSOFT 2007: 4th IEEE
International Workshop on Visualizing Software for Understanding and
Analysis, pages 39–46, June 2007.

[GL04] Tudor Gı̂rba and Michele Lanza. Visualizing and characterizing the
evolution of class hierarchies. In WOOR 2004 (5th ECOOP Workshop
on Object-Oriented Reengineering), 2004.

[HCvW07] D. Holten, B. Cornelissen, and J.J. van Wijk. Trace visualization using
hierarchical edge bundles and massive sequence views. In VISSOFT
2007: 4th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, pages 47–54, June 2007.

[Hol06] D. Holten. Hierarchical edge bundles: Visualization of adjacency re-
lations in hierarchical data. IEEE Transactions on Visualization and
Computer Graphics, 12(5):741–748, Sept.-Oct. 2006.

[JS91] Brian Johnson and Ben Shneiderman. Tree-maps: a space-filling ap-
proach to the visualization of hierarchical information structures. In
VIS ’91: Proceedings of the 2nd conference on Visualization ’91, pages
284–291. IEEE Computer Society Press, 1991.

[LD03] Michele Lanza and Stéphane Ducasse. Polymetric views—a lightweight
visual approach to reverse engineering. Transactions on Software En-
gineering (TSE), 29(9):782–795, September 2003.

[MBAV09] Philippe Moret, Walter Binder, Danilo Ansaloni, and Alex Villazón.
Visualizing Calling Context Profiles with Ring Charts. In VISSOFT
2009: 5th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, pages 33–36.

[MGL06] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu. Mondrian: An agile
visualization framework. In ACM Symposium on Software Visualization
(SoftVis’06), pages 135–144, New York, NY, USA, 2006.

[RHV+09] David Röthlisberger, Marcel Härry, Alex Villazón, Danilo Ansaloni,
Walter Binder, Oscar Nierstrasz, and Philippe Moret. Augmenting
Static Source Views in IDEs with Dynamic Metrics. In ICSM ’09:
Proceedings of the 2009 IEEE International Conference on Software
Maintenance, pages 253–262.

[Sta00] John Stasko. An evaluation of space-filling information visualizations
for depicting hierarchical structures. Int. J. Hum.-Comput. Stud.,
53(5):663–694, 2000.

[WKT04] Josef Weidendorfer, Markus Kowarschik, and Carsten Trinitis. A tool
suite for simulation based analysis of memory access behavior. In ICCS
2004: 4th International Conference on Computational Science, volume
3038 of LNCS, pages 440–447.

20

