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Abstract. In this paper, we study the complexity of computing locally optimal solutions for weighted
versions of standard set problems such as SETCOVER, SETPACKING, and many more. For our inves-
tigation, we use the framework of PLS, as defined in Johnson et al., [13]. We show that for most of
these problems, computing a locally optimal solution is already PLS-complete for a simple natural
neighborhood of size one. For the local search versions of weighted SETPACKING and SETCOVER,
we derive tight bounds for a simple neighborhood of size two. To the best of our knowledge, these are
one of the very few PLS results about local search for weighted standard set problems.

1 Introduction

Set Problems and Their Approximation In this paper, we study the complexity of computing
locally optimal solutions for weighted standard set problems in the framework ofPLS , as defined
in Johnson et al., [13]. In weighted set problems such as SETPACKING or SETCOVER, the input
consists of a set system along with a weight function on the set system. The task is to compute
a solution maximizing or minimizing some objective function on the set system while obeying
certain constraints. Weighted set problems are fundamental combinatorial optimization problems
with a wide range of applications spanning from crew scheduling in transportation networks and
machine scheduling to facility location problems. Since they are of such fundamental importance
on the one hand but of computational intractability on the other hand, [8], the approximation of
weighted standard set problems has been extensively studied in the literature. Numerous heuristics
have been applied to or developed for these problems, spanning from greedy algorithms and linear
programming to local search.

Local Search and Set Problems Local search is a standard approach to approximate solutions
of hard combinatorial optimization problems. Starting from an arbitrary feasible solution, a se-
quence of feasible solutions is iteratively generated, such that each solution is contained in the
predefined neighborhood of its predecessor solution and strictly improves a given cost function.
If no improvement within the neighborhood of a solution is possible, a local optimum (or locally
optimal solution) is found. In practice, local search algorithms often require only a few steps to
compute a solution. However, the running time is often pseudo-polynomial and even exponential
in the worst case.
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rithm Engineering, DFG-Project DA155/31-1, ME872/11-1, FI14911-1 AVIPASIA and the DFG Research Training
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author visited Simon Fraser University.
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Polynomial Time Local Search Johnson, Papadimitriou, and Yannakakis, [13], introduced the
class PLS (polynomial-time local search) in 1988 to investigate the complexity of local search
algorithms. Essentially, a problem in PLS is given by some minimization or maximization prob-
lem over instances with finite sets of feasible solutions together with a non-negative cost function.
A neighborhood structure is superimposed over the set of feasible solutions, with the property that
a local improvement in the neighborhood can be found in polynomial time. The objective is to find
a locally optimal solution. The notion of a PLS-reduction was defined in Johnson et al., [13], to
establish relationships between PLS-problems and to further classify them. Not many problems
are known to be PLS-complete, since reductions are mostly technically involved, which seems to
be in large parts due to the transformation of the neighborhood under the reduction. In the recent
past, game theoretic approaches re-raised the focus on the class PLS since in many games the
computation of a Nash Equilibrium can be modeled as a local search problem, [7]. The knowledge
about PLS is still very limited and not at all comparable with our rich knowledge about NP .

In this paper, we show that for most weighted standard set problems, computing locally op-
timal solutions is PLS-complete, even for very small natural neighborhoods. This implies that
computing local optima for these problems via successive improvements may not yield a suf-
ficient performance improvement over computing globally optimal solutions. Furthermore, we
believe that most problems investigated in this paper have the potential to serve as candidates for
the base of future reductions.

2 Notation and Contribution

In this section, we describe the notation, complexity classes, and problems considered throughout
this paper. The fundamental definitions of a PLS-problem and the class PLS were introduced
by Johnson, Papadimitriou, and Yannakakis, [13]. For all k ∈ N, denote [k] := {1, . . . , k}, and
[k]0 := [k] ∪ {0}. Given a k-tuple T , let Pi(T ) denote the projection to the i-th coordinate for
some i ∈ [k]. For some set S, denote by 2|S| the power set of S.

PLS, Reductions, and Completeness, [13] APLS-problemL = (DL, FL, cL, NL, INITL,COSTL,
IMPROVEL) is characterized by seven parameters. The set of instances is given by DL ⊆ {0, 1}∗.
Every instance I ∈ DL has a set of feasible solutions FL(I), where feasible solutions s ∈ FL(I)
have length bounded by a polynomial in the length of I . Every feasible solution s ∈ FL(I)
has a non-negative integer cost cL(s, I) and a neighborhood NL(s, I) ⊆ FL(I). INITL(I),
COSTL(s, I), and IMPROVEL(s, I) are polynomial time algorithms. Algorithm INITL(I), given
an instance I ∈ DL, computes an initial feasible solution s ∈ FL(I). Algorithm COSTL(s, I),
given a solution s ∈ FL(I) and an instance I ∈ DL, computes the cost of the solution. Algorithm
IMPROVEL(s, I), given a solution s ∈ FL(I) and an instance I ∈ DL, finds a better solution in
NL(s, I) or returns that there is no better one.

A solution s ∈ FL(I) is locally optimal, if for every neighboring solution s′ ∈ NL(s, I)
it holds that cL(s′, I) ≤ cL(s, I) in case L is a maximization PLS-problem and cL(s′, I) ≥
cL(s, I) in caseL is a minimizationPLS-problem. A search problemR is given by a relation over
{0, 1}∗ × {0, 1}∗. An algorithm “solves” R, when given I ∈ {0, 1}∗ it computes an s ∈ {0, 1}∗,
such that (I, s) ∈ R or it correctly outputs that such an s does not exist. Given a PLS-problem
L, let the according search problem be RL := {(I, s) | I ∈ DL, s ∈ FL(I) is a local optimum}.
The class PLS is defined as PLS := {RL | L is a PLS-problem}. A PLS-problem L1 is
PLS-reducible to a PLS-problem L2 (written L1 ≤pls L2), if there exist two polynomial-time
computable functions Φ : DL1 7→ DL2 and Ψ defined for {(I, s) | I ∈ DL1 , s ∈ FL2(Φ(I))}
with Ψ(I, s) ∈ FL1(I), such that for all I ∈ DL1 and for all s ∈ FL2(Φ(I)) it holds that, if
(Φ(I), s) ∈ RL2 , then (I, Ψ(I, s)) ∈ RL1 . A PLS-problem L is PLS-complete if every PLS-
problem is PLS-reducible to L.
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We write limitations to a problem as a prefix and the size of the neighborhood as a suffix.
For all PLS-problems L studied in this paper, the algorithms INITL, COSTL, and IMPROVEL are
straightforward and polynomial-time computable.

2.1 Weighted Standard Set Problems

We next describe the PLS-problems we study in this paper. All problems we present are local
search versions of their respective decision problems. In the following, let B denote some finite
set and let C := {C1, . . . , Cn} denote a collection of subsets over B. Let wC : C 7→ N and
wB : B × B 7→ N. Denote by mB and mC positive integers with mB ≤ |B| and mC ≤ |C|.
Unless otherwise mentioned, we use the k-differ-neighborhood where two solutions are mutual
neighbors if they differ in at most k-elements which describe a solution. Except for SETCOVER,
all problems are maximization problems.

Definition 1 (W3DM-(p,q), [6]). I ∈ DW3DM of WEIGHTED-3-DIMENSIONALMATCHING (in
short W3DM) is a pair (n,w) with n ∈ N and w is a function w : [n]3 → R≥0. The components
of triples are identified with boys, girls, and homes. FW3DM(I) are all matchings of boys, girls,
and homes, i.e. all S ⊆ [n]3, with |S| = n, Pk(Ti) 6= Pk(Tj), for all Ti, Tj ∈ S, i 6= j, k ∈ [3].
For S ∈ FW3DM(I) the cost is cW3DM(S, I) :=

∑
Ti∈Sw(Ti). NW3DM-(p,q)(S, I) contains all

feasible solutions where at most p triples are replaced and up to q boys or girls move to new
homes.

Definition 2 (X3C-(k)). I ∈ DX3C of EXACT-COVER-BY-3-SETS (in short X3C) is a collec-
tion C := {C1, . . . , Cn} of all 3-element sets over a finite set B, with |B| = 3q for some q ∈ N,
and w : C 7→ N. FX3C(I) are all S ⊆ C such that every b ∈ B is in exactly one Ci ∈ S. For
S ∈ FX3C(I) the cost is cX3C(S, I) :=

∑
Ci∈Sw(Ci).

Definition 3 (SP-(k)). I ∈ DSP of SETPACKING (in short SP) is a triple (C, wC ,mC). FSP(I)
are all sets S ⊆ C with |S| ≤ mC . For S ∈ FSP(I) the cost is cSP(S, I) :=

∑
Ci∈S∧∀j∈[m],j 6=i:Ci∩Cj=∅w(Ci).

Definition 4 (SSP-(k)). I ∈ DSSP of SETSPLITTING (in short SSP) is a tuple (C, wC). Feasible
solutions FSSP(I) are all partitionings S1, S2 ⊆ B of B. For S ∈ FSSP(I) the cost is cSSP(S, I) :=∑

Ci∈C∧∃s1∈Ci:s1∈S1∧∃s2∈Ci:s2∈S2
w(Ci).

Definition 5 (SC-(k)). I ∈ DSC of SETCOVER (in short SC) is a tuple (C, wC). FSC(I) are all
subsets S ⊆ C with

⋃
Ci∈SCi = B. For S ∈ FSC(I) the cost is cSC(S, I) :=

∑
Ci∈Sw(Ci).

Definition 6 (TS-(k)). I ∈ DTS of TESTSET (in short TS) is a triple (C, wB,mB). Feasible
solutions FTS(I) are all sets S ⊆ C with |S| ∈ [mB]. For S ∈ FTS(I) the cost is cTS(S, I) :=∑

bi,bj∈B;i<j∧∃Cp,Cq∈S containing exactly one of bi and bj w(bi, bj).

Definition 7 (SB-(k)). I ∈ DSB of SETBASIS (in short SB) is a triple (C, wC ,mC). FSB(I) are
all sets S = {S1, . . . , SmC}, where Si ∈ 2|B| for all i ∈ [mC ]. For S ∈ FSB(I) the cost is
cSB(S, I) :=

∑
Ci∈C∧∃S′⊆S:Ci=

⋃
S′
i
∈S′ S

′
i
w(Ci).

Definition 8 (HS-(k)). I ∈ DHS of HITTINGSET (in short HS) is a triple (C, wC ,mB). FHS(I)
are all sets S ⊆ B with |S| ≤ mB. For S ∈ FHS(I) the cost is cHS(S, I) :=

∑
Ci∈C∧∃s∈S:s∈Ci

w(Ci).

Definition 9 (IP-(k)). I ∈ DIP of INTERSECTIONPATTERN (in short IP) are two symmetric
n×n matrices A = (aij)i,j∈[n] and B = (bij)i,j∈[n] with positive integer entries and a collection
D := {D1, . . . , Dl} with l ≥ n over a set B. FIP(I) are all vectors C := (C1, . . . , Cn) with
Ci ∈ D for all i ∈ [n]. For S ∈ FIP(I) the cost is cIP(S, I) :=

∑
i≤j∈[n],|Ci∩Cj |=aij bij .
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Definition 10 (CC-(k)). I ∈ DCC of COMPARATIVECONTAINMENT (in short CC) are two
collections C := {C1, . . . , Cn}, and D := {D1, . . . , Dl} of sets over a set B, and a function
w : C ∪ D 7→ N. FCC(I) are all sets S ⊆ B. For S ∈ FCC(I) the cost is cCC(S, I) :=∑

Ci∈C;S⊆Ci
w(Ci)−

∑
Di∈D;S⊆Di

w(Di) +W , where W ≥
∑

Di∈D w(Di).

2.2 Generalized Satisfiability Problems

The hardness results we present in this paper, rely on known hardness results for the problems
given below. For all these problems, we use the neighborhood where the value of one variable is
changed. The task is to compute an assignment maximizing the sum of the weights.

Definition 11 ((p,q,r)-MCA, [5]). An instance I ∈ D(p,q,r)-MCA of (p, q, r)-MAXCONSTRAINT-
ASSIGNMENT is a set of constraints C := {C1, . . . , Cm} over a set of variablesX := {x1, . . . , xn}.
Every constraint Ci(xi1 , . . . , xipi ) ∈ C has length at most p and is a function wCi : [r]pi 7→
R≥0. Every variable appears in at most q constraints and takes values from [r] with r ∈ N.
FMCA(I) are all assignments a : X 7→ [r]. The cost of a ∈ FMCA(I) is cMCA(a, I) :=∑

Ci(xi1 ,...,xipi
)∈C wCi(a(xi1), . . . ,a(xipi )).

Definition 12 (POSNAE, [17]). An instance I ∈ DPOSNAE of POSITIVENOTALLEQUAL (in
short POSNAE) is an instance of (2, ∗, 2)-MCA. Constraints have length two and return the
weight wCi of constraint Ci ∈ C if the two literals in the clause do not have the identical assign-
ment, otherwise they return 0.

Definition 13 ((h)-CNFSAT, [14]). An instance I ∈ DCNFSAT of CNFSAT is an instance of
(h, ∗, 2)-MCA. Constraints are limited to disjunctions of literals over binary variables x ∈ X .
We drop the prefix if we refer to instances where clauses can have arbitrary length.

2.3 Related Work

In this subsection, we mainly present related work about PLS and PLS-completeness. The ap-
proximation of set problems has been intensively studied in the literature, [10–12, 16]. Survey
articles about local search algorithms can be found in several books, [1, 2]. Local search for set
problems has been applied in numerous papers, [4, 9]. For a survey on the quality of solutions
obtained via local search not only for set problems, confer [3]. PLS was defined in Johnson et
al., [13], and the fundamental definitions and results are presented in [13, 17]. Krentel, [14], shows
that (h)-CNFSAT is PLS-complete for some constant h ∈ N. Schäffer and Yannakakis, [17],
show that POSNAE, among numerous other local search problems, is PLS-complete. The prob-
lem (p, q, r)-MCA is known to be PLS-complete for triples (3,2,3), (2,3,8), and (6,2,2), [5, 14].
Orlin, Punnen, and Schulz present an FPTAS for computing approximate local optima for every
linear combinatorial optimization problem in PLS , [15]. The book of Aarts et al., [1], contains a
list of PLS-complete problems known so far.

2.4 Our Contribution

In this paper, we show that for most of the weighted standard set problems given in Subsection 2.1,
computing a locally optimal solution isPLS-complete for the 1-differ-neighborhood. This means,
that the problems are already hard, when one element describing the solution is allowed to be
added, deleted, or exchanged for another element which is not part of the solution. As our main
result, we prove the following two theorems:
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Theorem 1. The problems SSP-(k), TS-(k), HS-(k), SB-(k), IP-(k), and CC-(k) arePLS-complete
for all k ≥ 1. The problems SP-(k) and SC-(k) are PLS-complete for all k ≥ 2. The problems
W3DM-(k,l) and X3C-(k) are PLS-complete for all k ≥ 6 and l ≥ 12.

Theorem 2. The problems SP-(1) and SC-(1) are polynomial-time solvable.

All proofs can be found in Section 3. In Subsection 3.1, we investigate the PLS-complexity of
W3DM-(p, q) and X3C-(k), in Subsection 3.2, thePLS-complexity of SP-(k), in Subsection 3.3
the PLS-complexity of SSP-(k), in Subsection 3.4, the PLS-complexity of SC-(k), in Sub-
section 3.5 the PLS-complexity of TS-(k), in Subsection 3.6 the PLS-complexity of SB-(k),
in Subsection 3.7 the PLS-complexity of HS-(k), in Subsection 3.8 the PLS-complexity of
IP-(k), and in Subsection 3.9 the PLS-complexity of CC-(k), Let us remark that the reductions
we present are tight in the sense of Schäffer and Yannakakis, [17].

Neighborhoods, Weights, and Hardness. The hardness of a PLS-problems crucially depends on
both the structure of the neighborhood and the involved weights. On the one hand, if the neigh-
borhood structure limits the options for improvements in every step such that this can be exploited
by polynomial time algorithms, then the problems become easy, regardless of the weights. This
is the case in SP-(1) and SC-(1) where the neighborhood structure can be exploited by a greedy
algorithm. Interestingly, for all other problems we investigate, the neighborhood structure does
not interfere with weights in terms of hardness. For most of the problems, this is the case even for
the smallest possible neighborhood of size 1. On the other hand, if all weights are polynomially
bounded then locally optimal solutions can be computed via successive improvements in polyno-
mial time. All PLS-complete generalized satisfiability problems we reduce from were proven to
be PLS-complete via tight reduction and the involved weights are of exponential size. We incor-
porate these weights in our reductions, preserving their overall structure. Usually, we introduce
additional weights which are not part of the input problem. They belong to auxiliary gadgets that
are specific to the reduction. The weights involved are either of size one or such that a single
weight exceeds the sum of all weights in the original problem.

The General Technique of Our Reductions. As with most reductions in PLS , [5, 17], our re-
ductions for hardness results consist of two parts: In one part, we encode the input problem I in
the reduced instance Φ(I) in a rather direct manner, while preserving the structure of the orig-
inal weights. In the other part, which is specific to the reduction and represents a large part of
our contribution, we introduce auxiliary gadgets that enforce a particular structure in local op-
tima. Eventually, these gadgets ensure that locally optimal solutions in Φ(I) indeed correspond to
locally optimal solution in I . Our proofs also consist of two parts:

1. First, we show that all feasible solutions which are locally optimal for Φ(I) use the gadgets
as intended, thereby uncovering the structure of locally optimal solutions. Depending on the
reduction, we call these solutions standard solutions or to be consistent for some property.

2. Second, we show that all local optima for Φ(I) correspond to local optimal for I . Step 1 now
allows to concentrate on the set of all consistent or standard solutions.

We want to stress that reducing from (3, 2, r)-MCA is crucial for us to show tight bounds for
SETPACKING and SETCOVER. Furthermore, we believe that reducing from very restricted but
PLS-complete versions of the MAXCONSTRAINTASSIGNMENT-problem might prove useful for
establishing that further PLS-problems with a small neighborhood are PLS-complete.

To the best of our knowledge, these are are one of the very fewPLS results for local search on
weighted standard set problems, as intensively studied in the literature. Our analysis also unveils
that the hardness of the problems stems from the combination of a numerical problem on an
underlying combinatorial problem.
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3 The PLS-Complexity of Weighted Standard Set Problems

In this section, we investigate the complexity of computing locally optimal solutions for the
weighted standard set problems presented in Section 2.1.

Preliminaries Denote by (p, q, r)-MINCA the minimization version of (p, q, r)-MCA. Here,
results about (p, q, r)-MCA carry over to (p, q, r)-MINCA. In the following, let integer W ∈
N be larger than the sum of all weights in an instance I from problem POSNAE, CNFSAT,
(p, q, r)-MCA or (p, q, r)-MINCA. In detail, for a given instance of POSNAE or CNFSAT, let
integer W �

∑
Ci∈C wCi . For a given instance of (p, q, r)-MCA or (p, q, r)-MINCA, let integer

W �
∑

Ci(xi1 ,...xipi
)∈C

∑
a(xi1 ),...,a(xipi

)∈[r]wCi(a(xi1), . . . ,a(xipi )).

3.1 On the Complexity of W3DM-(p,q) and X3C-(k)

In this subsection, we show that W3DM-(p, q) is PLS-complete for all p ≥ 6 and q ≥ 12. Since
instances of X3C-(k) are instances of W3DM-(k) by defining triples as 3-element sets, our
reduction is also applicable to X3C-(k) with the same argumentation. This eventually shows that
X3C-(k) is PLS-complete for all k ≥ 6. We present the reduction function Φ and the solution
mapping Ψ , which are both slight modifications of a reduction proving that W3DM-(9, 15) is
PLS-complete, presented in [6]. We also use the notation presented therein.

The Reduction In a nutshell, the main idea is to mimic assignments of variables in a constraint
with triples possessing the weight of the constraint for the given assignment. An additional gadget
ensures the consistency for all variable assignments.

In more detail, given an instance I ∈ D(3,2,r)-MCA, we construct a reduced instance Φ(I) =
(N,w) ∈ DW3DM-(6,12), consisting of a positive integer N ∈ N and a weight function w :
[N ]3 7→ N that maps triples to positive integer weights. From [5] it follows that the subclass of
instances of (3, 2, r)-MCA where every clause has length three and where the set of variables is
tri-colored such that no clause contains two variables with the same color and all sets of variables
with a certain color have the same cardinality is PLS-complete. Thus, without loss of generality,
we assume that in I , every constraint has length three, every variable appears twice and is colored
blue, red, or white. The coloring of the variables is such that no clause contains two variables with
the same color and each subset of variables with a certain color has cardinality |X |/3. Let σ be
an ordering of C. We define N := 2 · r · |X |+ |X |/3 and introduce the following function w:

bx
2(0)

bx
1(0)bx

1(i)

bx
2(i)gx

2 (i)

gx
1 (i)

hx
1(i)hx

2(i)

(a) Gadget assign(i, x) for a blue
variable x ∈ X with i ∈ [r].

gy
1 (0)

gy
2 (0)

by
1(j)

by
2(j)

gy
1 (j)

gy
2 (j)

hy
2(j) hy

1(j)

(b) Gadget assign(j, x) for a red vari-
able y ∈ X with j ∈ [r]

hz
1(0)

hz
2(0)

bz
1(!)

bz
2(!)

gz
2(!) gz

1(!)

hz
1(!)

hz
2(!)

(c) Gadget assign(`, x) for a white
variable z ∈ X with ` ∈ [r]

Fig. 1: Gadgets assign(i, x) for a blue, a red, and a white variable with two large triples (solid
triangles) and two medium triples (dashed triangles).
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Forcing a consistent assignment We define the three sets

B :={bxs (i) | x ∈ X, i ∈ [r], s ∈ [2]} ∪ {bxs (0) | x ∈ X is a blue variable, s ∈ [3]},
G :={gxs (i) | x ∈ X, i ∈ [r], s ∈ [2]} ∪ {gxs (0) | x ∈ X is a red variable, s ∈ [3]},
H :={hxs (i) | x ∈ X, i ∈ [r], s ∈ [2]} ∪ {hxs (0) | x ∈ X is a white variable, s ∈ [3]},

each of cardinality N . For every blue variable x ∈ X and i ∈ [r], we define gadgets as-
sign(i, x) consisting of two large triples (bx1(0), gx1 (i), hx1(i)) and (bx2(0), gx2 (i), hx2(i)) of weight
7W and two medium triples (bx1(i), gx1 (i), hx2(i)) and (bx2(i), gx2 (i), hx1(i)) of weight 3W . We
depicted a gadget assign(i, x) in Figure 1a for some blue variable x ∈ X and i ∈ [r]. For
every red variable y ∈ X and j ∈ [r], we define gadgets assign(j, y) consisting of two large
triples (by1(j), gy1(0), hy1(j)) and (by2(j), gy2(0), hy2(j)) of weight 7W and two medium triples
(by1(j), gy1(j), hy2(j)) and (by2(j), gy2(j), hy1(j)) of weight 3W . We again depicted a gadget as-
sign(j, y) in Figure 1b for some red variable y ∈ X and j ∈ [r]. For every white variable z ∈ X
and ` ∈ [r], we define gadgets assign(`, z) consisting of two large triples (bz1(`), gz1(`), hz1(0))
and (bz2(`), gz2(`), hz2(0)) of weight 7W and two medium triples (bz1(`), gz2(`), hz1(`)) and (bz2(`), gz1(`), hz2(`))
of weight 3W . We again depicted a gadget assign(`, z) in Figure 1c for some white variable
z ∈ X and ` ∈ [r].

Evaluating the assignment Without loss of generality, let x ∈ X , be a blue variable, y ∈ X be
a red variable, and z ∈ X be a white variable. For every constraint Ci(x, y, z) ∈ C, where, with
respect to σ, variable x appears for the s-th, variable y appears for the t-th time, and z appears for
the u-th time, with s, t, u ∈ [2], we define small triples (bxs (i), gyt (j), hzu(`)) of weight wCi(i, j, `)
for every i, j, ` ∈ [r]. All other triples have weight zero. This terminates the description of the
reduction function Φ(I).

Standard assignment Extending the definition from [6], we define a standard assignment as a
feasible solution S ∈ FW3DM-(6,12)(Φ(I)), consisting of an assignment part and an evaluation
part, of the following form: Considering the assignment part, for every blue variable x ∈ X
there is some i ∈ [r], such that for all s ∈ [3], large triples (bxs (0), gxs (i), hxs (i)) ∈ S. For all
j ∈ [r], j 6= i, medium triples (bx1(j), gx1 (j), hx2(j)), (bx2(j), gx2 (j), hx1(j)) ∈ S. Analogously,
large and medium triples are present for red and white variables. Considering the evaluation part,
let x, y, z ∈ X and i, j, ` ∈ [r], such that large triples for x, y, and z in S are from gadgets
assign(i, x), assign(j, y), and assign(`, z). For every constraint Cp(x, y, z) ∈ C, where x oc-
curs for the s-th, y occurs for the t-th time, and z occurs for the u-th time, with respect to σ
and s, t, u ∈ [3], if x is a blue variable, y is a red variable, and z is a white variable, the triple
(bxs (i), gyt (j), hzu(`)) ∈ S; analogously for all other colorings of the involved variables.

Solution Mapping Again extending [6], if S ∈ FW3DM-(6,12)(Φ(I)) is a standard assignment,
then Ψ(I,S) returns for every blue variable x ∈ X the index i ∈ [r], such that (bx1(0), gx1 (i), hx1(i)) ∈
S, for every red variable y ∈ X the index j ∈ [r], such that (by1(j), gy1(0), hy1(j)) ∈ S, and
for every white variable z ∈ X the index ` ∈ [r], such that (bz1(`), gz1(`), hz1(0)) ∈ S. If
S ∈ FW3DM-(6,12)(Φ(I)) is not a standard assignment, then Ψ(I,S) returns the feasible solu-
tion computed by algorithm INIT(3,2,r)-MCA(I). This terminates the description of the reduction.

Lemma 1. Every locally optimal solution S ∈ FW3DM-(6,12)(Φ(I)) is a standard assignment.

Proof. We present the proof for sake of completeness, as it is similar to the proof of Lemma 1
presented in [6]. Let S ∈ FW3DM-(6,12)(Φ(I)) be a locally optimal solution. Without loss of
generality, let x ∈ X be a blue variable.
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Roadmap With variable x fixed, the proof splits into three parts:

1. We first show that there are two large triples (bx1(0), gx1 (i), hx1(i)) and (bx2(0), gx2 (j), hx2(j)) in
S for some i, j ∈ [r]. For every gadget without a large triple, there are two medium triples in
S.

2. Second, we prove that the two large triples are on the same gadget.
3. Finally, we show that the small triples in S are chosen in consistency with the placement of

the large triples.

(1): Two Large Triples and Two Medium Triples. Assume that w.l.o.g triple (bx1(0), gx1 (i), hx1(i)) 6∈
S for every i ∈ [r]. We construct a better solution that contains (bx1(0), gx1 (i), hx1(i)) for some
i ∈ [r]. On gadget assign(i, x), the large triple (bx1(0), gx1 (i), hx1(i)) with weight 7W is built.
The necessary elements bx1(0), gx1 (i), and hx1(i) are in at most three triples, each of weight at
most 2W . Thus, we substitute a total of three triples to obtain a strictly better solution. Con-
sidering the medium triples, assume that there exists some j ∈ [r] such that no large triple
and not both medium triples from gadget assign(j, x) are in S. Without loss of generality, let
(bx1(j), gx1 (j), hx2(j)) 6∈ S. On gadget assign(j, x), the medium triple (bx1(j), gx1 (j), hx2(j)) of
weight 2W is built. The necessary elements are in at most three triples of total weight at most W .
Thus, we again substitute a total of three triples to obtain a strictly better solution.
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Fig. 2: Illustration of the construction of a better solution in (2) from proof of Lemma 1.

(2): Two Large Triples On A Single Gadget. Assume that the large triples are placed on two
different gadgets assign(i, x) and assign(j, x) for some i, j ∈ [r] with i 6= j. In detail, let
large triples (bx2(0), gx2 (i), hx2(i)) ∈ S and (bx1(0), gx1 (j), hx1(j)) ∈ S. We have depicted this



On the Complexity of Local Search for Weighted Standard Set Problems 9

situation in the upper part of Figure 2. Note that by construction, there are no medium triples
from gadgets assign(i, x) or assign(j, x) in S. We construct a better solution by removing the
large triple (bx1(0), gx1 (j), hx1(j)) from S. Additionally, on gadget assign(i, x), the large triple
(bx1(0), gx1 (i), hx1(i)) with weight 7W is built. On gadget assign(j, x), the two new medium
triples (bx1(j), gx1 (j), hx2(j)) and (bx2(j), gx2 (j), hx1(j)), each of weight 2W , are built. We have
depicted the better neighboring solution in the lower part of Figure 2. Elements bx1(0), gx1 (j), and
hx1(j)) are in given triples. The remaining elements gx1 (i), hx1(i), bx1(j), hx2(j), bx2(j), and gx2 (j)
are in at most six triples. Our construction yields an additional two medium triples, each of weight
2W while all decomposed triples which are not shifted to a different gadget have weight at most
W . Thus, we replace a total of at most six triples to obtain a solution of strictly higher cost.

(3): Small Weights. The above two cases show that the assignment part of S is that of a standard
assignment. In detail, for every variable x ∈ X , there exists some i ∈ [r] such that the two
large triples are from the same gadget assign(i, x). For every blue variable x this implies that
elements bx1(i) and bx2(i) are not in any large or medium triple; analogously for every red and
white variable. By construction, for every Ci ∈ C, only one small triple with strictly positive
weight can be uniquely chosen. Without loss of generality, let x ∈ X be a blue variable with
s ∈ [2] and i ∈ [r] such that boy bxs (i) is not in any large or medium triple. Without loss of
generality, let y ∈ X be a red variable with t ∈ [2] and j ∈ [r] such that girl gyt (j) is not in any
large or medium triple. Without loss of generality, let z ∈ X be a white variable with u ∈ [2]
and l ∈ [r] such that home hxu(l) is not in any large or medium triple. Let Cp(x, y, z) ∈ C be
such that x appears for the s-th time, y appears for the t-th time, and z appears for the u-th
time with respect to the given ordering σ. Assume that S deviates in the evaluation part. Thus,
elements bxs (i), gyt (j), and hxu(`) are in at most three triples, each of weight zero. By building the
small triple (bxs (i), gyt (j), hxu(`)) of weight wCp(i, j, `), we replace at most three triples to obtain
a neighboring solution with strictly improved cost. ut

Lemma 2. (3, 2, r)-MCA ≤pls W3DM-(p, q) for all p ≥ 6 and q ≥ 12.

Proof. Assume there exists a feasible solution S ∈ FW3DM-(6,12)(Φ(I)) which is locally optimal
for Φ(I), but is not locally optimal for I . By Lemma 1, S is a standard assignment. This implies
that Ψ(I,S) is a legal assignment to all variables x ∈ X . Since Ψ(I,S) is not locally optimal for
I , there exists a (w.l.o.g.) white variable z ∈ X from instance I ∈ (3, 2, r)-MCA, which can be
set from value i ∈ [r] to a value j ∈ [r] such that the objective function strictly increases by some
z > 0. Let variable z appear in constraints Cp, Cq ∈ C. The neighboring solution of S, where the
two large triples are on gadget assign(j, z) and all medium triples are on gadgets assign(`, z) for
all ` ∈ [r] and ` 6= j, and all small triples are chosen according to the new assignment of value j to
z improves the cost of S by z by construction. This exchange involves the six triples (∗, ∗, hz1(0)),
(∗, ∗, hz2(0)), (∗, ∗, hz1(i)), (∗, ∗, hz2(i)), (∗, ∗, hz1(j)), and (∗, ∗, hz2(j)). The involved homes are
hz1(i) and hz2(i) from gadget assign(i, z), homes hz1(j) and hz2(j) from gadget assign(j, z) and
homes hz1(0) and hz2(0) which are in every gadgets assign(∗, z). On gadget assign(i, x), girl
gz2(i) and boy bz1(i) move to home hz1(i), and girl gz1(i) and boy bz2(i) move to home hz2(i). On
gadget assign(j, x), girl gz1(j) and boy bz1(j) move to home hz1(0), and girl gz2(j) and boy bz2(j)
move to home hz2(0). All boys and girls in small triples move from homes hz2(i) and hz1(i) to
respective homes hz2(j) and hz1(j). Thus, 12 boys or girls move to different homes. For all other
colors of variables which switch assignment, at most 10 boys or girls move to new homes. ut

3.2 The Exact Complexity of SETPACKING-(k)

In this subsection, we prove that SP-(k) is PLS-complete for all k ≥ 2 and polynomial-time
solvable for k = 1. Given an instance I ∈ D(3,2,r)-MCA, we construct a reduced instance Φ(I) =
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(M, w) ∈ DSP-(2), consisting of a collection M of sets over a finite set B, a weight function
w : M 7→ N that maps sets in collectionM to positive integer weights, and a positive integer
m ≤ |M|. W.l.o.g., we assume that in instance I ∈ D(3,2,r)-MCA, every constraint Ci ∈ C has
length 3 and the weight of every non-zero assignment is strictly larger than 1. Furthermore, we
assume that every variable x ∈ X appears in 2 constraints and takes values from [r]. Additionally,
we may assume that the variables are ordered by appearance.

The Reduction In a nutshell, the main idea is to define sets representing assignments of vari-
ables to values in constraints such that inconsistent assignments intersect. The weight of a set
corresponds to the weight of the constraint for the variable assignment the set represents. Addi-
tional intersection-free sets of weight 1 offer a relatively small incentive in situations where sets
intersect.

In more detail, we create a reduced instance of SP-(2) with m := |C|. Sets in collectionM
are defined on elements from the finite set B := {ei, ci | i ∈ [m]} ∪ {xi | x ∈ X , i ∈ [r]}.
Collection M consists of the following sets: For all i ∈ [m], we introduce sets CSPi := {ei}
of weight w(CSPi ) := 1 in M. For every constraint Ci(u, v, w) ∈ C and every assignment
a, b, c ∈ [r], we introduce sets Ca,b,ci of weight w(Ca,b,ci ) := wCi(a, b, c) in M. Here, set
Ca,b,ci := {ci, u′a, v′b, w′c | a, b, c ∈ [r]} and

u′a :=

{
ua if u ∈ X appears in Ci(u, v, w) for the first time
u1, . . . , ua−1, ua+1, . . . , ur otherwise,

analogously for v′b and w′c. We call an element xj for some variable x ∈ X and asssignment
j ∈ [r] enclosed in a set fromM due to the first appearance of x direct representative of x. We
say that a family of sets C∗,∗,∗i ∈ M is incident to a family of sets C∗,∗,∗j ∈ M if the clauses
Ci, Cj ∈ C have a common variable.

Solution Mapping We call a feasible solution S ∈ FSP-(2)(Φ(I)) set-consistent if |S| = m and
for every i ∈ [m] there is exactly one set Ca,b,ci in S for some a, b, c ∈ [r], which is pairwise
disjoint from all other sets in S. For a feasible and set-consistent solution S, function Ψ(I,S)
returns for every set C∗,∗,∗i ∈ S and every direct-representative of xj the assignment j to variable
x ∈ X . If S is not set-consistent, then the assignment computed by INIT(3,2,r)-MCA(I) is returned.

Lemma 3. Every locally optimal solution S ∈ FSP-(2)(Φ(I)) is set-consistent.

Proof. Assume there exists a locally optimal solution S′ ∈ FSP-(2)(Φ(I)) with |S′| < m. By
pigeonhole principle and construction of our reduction, this implies that there exists a set CSPj ∈
M with j ∈ [m] which is not in S′. Adding CSPj to S′ strictly improves the cost of S′, since
by construction CSPj is pairwise disjoint from all sets inM. A contradiction to S′ being locally
optimal.

Assume there exists a locally optimal solution S′ ∈ FSP-(2)(Φ(I)) with |S′| = m and there
exists an i ∈ [m] such that (1) at least two set Ca,b,ci , Cd,e,fi are in S′ for some a, b, c, d, e, f ∈ [r]

or (2) no set C∗,∗,∗i is in S′. First, consider case (1). Note that sets Ca,b,ci , Cd,e,fi ∈ S′ are not
pairwise disjoint, since by construction they both contain element ci ∈ B. By definition of SP-(k)
this implies that they do not contribute to the cost of S′. By pigeonhole principle and construction
of our reduction there exists a set CSPj ∈ M for some j ∈ [m] which is not in S′. Replacing

set Cd,e,fi ∈ S′ for set CSPj ∈ M strictly improves the cost of S′, since w(CSPj ) = 1 and

CSPj is pairwise disjoint from all sets inM. Set Ca,b,ci may only become pairwise disjoint and
thus contribute to the cost of S′. A contradiction to S′ being locally optimal. Now, consider case
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(2). Let C∗,∗,∗i ∈ S′ be incident to families of sets C∗,∗,∗o , C∗,∗,∗p , C∗,∗,∗q ∈ M. From case (1),
we have that for every j ∈ [m], at most one set C∗,∗,∗j ∈ S′. If present in S′, assume that sets

Ca,∗,∗o , Cb,∗,∗p , Cc,∗,∗q are in S′ for some a, b, c ∈ [r]. Since there does not exist a set C∗,∗,∗i ∈ S′,
this implies that there exists a set CSPj ∈ S′ for some j ∈ [m]. Exchanging set CSPj ∈ S′ for set

Ca,b,ci ∈M—if sets from incident families are not present in S′, choose an arbirary value for the
respective variable—strictly increases the cost of S′, since Ca,b,ci is pairwise disjoint from all sets
in S′ and w(Ca,b,ci ) > w(CSPj ). A contradiction to S′ being locally optimal. ut

Lemma 4. (3, 2, r)-MCA ≤pls SP-(k) for all r ∈ N, k ≥ 2.

Proof. Assume there exists a feasible solution S ∈ FSP-(2)(Φ(I)) which is locally optimal for
Φ(I), but is not locally optimal for I . By Lemma 3, S is set-consistent. This implies that Ψ(I,S)
is a legal assignment of values to variables x ∈ X . Since Ψ(I,S) is not locally optimal for I ,
there exists a variable x ∈ X from instance I ∈ (3, 2, r)-MCA, which can be set from value
i ∈ [r] to some value j ∈ [r] such that the objective function strictly increases by some z > 0.
Let variable x appear in constraints Cp, Cq ∈ C. Exchanging the sets Ci,∗,∗p and Ci,∗,∗q by sets
Cj,∗,∗p and Cj,∗,∗p in S yields a feasible and set-consistent solution and by construction this strictly
increases the cost of S by z. A contradiction. ut

Despite the negative result for SP-(k) for all k ≥ 2, it is possible to compute a locally optimal
solution for all instances I ∈ SP-(1) in polynomial time.

Lemma 5. SP-(1) is polynomial-time solvable.

Proof. Given an instance I ∈ DSP-(1), we use the following algorithm GREEDYPACKING: Start-
ing from the feasible solution S := ∅, process all sets inM by weight in descending order and
add the heaviest yet unprocessed set to S, if it is disjoint from all sets Si ∈ S. In order to prove
that a solution S ∈ FSP-(1)(I) computed by GREEDYPACKING is locally optimal, assume that
GREEDYPACKING terminated and S is not locally optimal. This implies that there either exists a
set Si ∈ M that can be added, or a set Sj ∈ S that can be deleted, or exchanged for another set
S` ∈ M with S` 6∈ S. Assume there exists a set Si ∈ M with Si 6∈ S which can be added to S
such that the cost strictly improves by some z ∈ N. This implies that Si is pairwise disjoint from
all sets from S and thus, GREEDYPACKING would have included set Si. A contradiction. Assume
there exists a set Sj ∈ S which can be deleted from S such that the cost strictly improves by
some z ∈ N. This implies that Sj intersects with some set from S and GREEDYPACKING would
have not included Sj . A contradiction. Assume there exists a set Sj ∈ S which can be exchanged
for some set S` ∈ M with S` 6∈ S such that the cost strictly improves by some z ∈ N. This
implies that S` is pairwise disjoint from all sets in S \ Sj and has a larger weight than Sj . Thus,
GREEDYPACKING would have included S` instead of Sj . A contradiction. ut

3.3 On the Complexity of SETSPLITTING-(k)

In this subsection, we prove that SSP-(k) is PLS-complete for all k ≥ 1. Given an instance
I ∈ POSNAE, we construct a reduced instance Φ(I) = (M, w) ∈ DSSP-(1) consisting of a
collectionM of sets over a finite set B and a weight function w : M 7→ N that maps sets from
collectionM to positive integer weights.

The Reduction Since SETSPLITTING is similar to HYPERGRAPH-2-COLORABILITY, we use a
direct reduction: From instance I , we define the reduced instance of SSP-(1) over the finite set
B := X . For every clause Ci(x, y) ∈ C, we introduce sets CSSpi := {x, y} inM and we define
w(CSSpi ) := wCi . Here, function Ψ(I,S) returns for a feasible solution S ∈ FSSP-(1)(Φ(I))
assignment 0 for all variables in S1 and assignment 1 for all variables in S2.
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Lemma 6. POSNAE ≤pls SSP-(k) for all k ≥ 1.

Proof. Assume there exists a feasible solution S ∈ FSSP-(1)(Φ(I)) which is locally optimal for
Φ(I), but is not locally optimal for I . This implies that there exists a variable x ∈ X in I which
can be flipped such that clauses Ci, . . . , Cj ∈ C now have literals with non-identical assignments,
clauses Cp, . . . , Cq ∈ C now have literals with identical assignments and the cost of Ψ(I,S)
strictly increases by z > 0. By construction, this implies that in Φ(I), element x ∈ B can switch
partition and now setsCSSpi , . . . , CSSpj ∈M are not entirely contained in either S1 or S2 and sets

CSSpp , . . . , CSSpq ∈ M are entirely contained in either S1 or S2. By definition of w, this strictly
increases the cost of S by z. Thus, S is not locally optimal. A contradiction. ut

3.4 The Exact Complexity of SETCOVER-(k)

In this subsection, we prove that SC-(k) is PLS-complete for all k ≥ 2 and polynomial-time
solvable for k = 1.

The Reduction In a nutshell, the main idea is to reuse the encoding of variable assignments and
constraints presented in Subsection 3.2 such that for every consistent assignment of variables to
values, there exists a covering where no element is covered by two sets of the solution. Shifting
the weights by a large constant incentivizes dropping sets which double cover elements.

In more detail, given an instance I ∈ D(3,2,r)-MINCA, we construct a reduced instance Φ(I) =
(M, w) ∈ DSC-(2), consisting of a collectionM of sets over a finite set B, and a weight func-
tion w : M 7→ N that maps sets in collection M to positive integer weights. As in proof of
Lemma 4, we assume that in instance I , every constraint Ci ∈ C has length 3, every variable
x ∈ X appears in 2 constraints and takes values from [r]. Denote m := |C|. We create a reduced
instance of SC-(2) over the finite set B := {ci | i ∈ [m]} ∪ {xi | x ∈ X , i ∈ [r]}. For every
constraint Ci(u, v, w) ∈ C and every assignment a, b, c ∈ [r], we introduce sets Ca,b,ci of weight
w(Ca,b,ci ) := wCi(a, b, c) + W inM. Here, sets Ca,b,ci are defined as in proof of Lemma 4. The
definition of an incident familiy, a set-consistent solution, and the solution mapping Ψ(I,S) is as
in proof of Lemma 4, except that for a non-set-consistent solution, now the assignment computed
by INIT(3,2,r)-MINCA(I) is returned.

Lemma 7. Every locally optimal solution S ∈ FSC-(2)(Φ(I)) is set-consistent.

Proof. Assume there exists a locally optimal solution S′ ∈ FSC-(2)(Φ(I)) with |S′| < m. By
pigeonhole principle and construction of our reduction, this implies that there exists an element
ci ∈ B for some i ∈ [m] which is not covered. A contradiction to S′ being a feasible solution.

Assume there exists a locally optimal solution S′ ∈ FSC-(2)(Φ(I)) with |S′| > m. By pigeo-
hole principle, this implies that there are two sets Ca,b,ci and Cd,e,fi with total weight at least 2W
in S for some a, b, c, d, e, f ∈ [r] and i ∈ [m]. Since S′ is a feasible solution, there exist sets
Co,∗,∗h , Cp,∗,∗j , Cq,∗,∗l ∈ S′ for some o, p, q ∈ [r] and h, j, l ∈ [m] from families indicent to sets

Ca,b,ci , Cd,e,fi ∈ S′. Exchanging the two sets Ca,b,ci , Cd,e,fi for set Co,p,qi yields a feasible solution
and strictly decreases the cost of S′, since w(Co,p,qi ) < 2W . A contradiction. ut

Lemma 8. (3, 2, r)-MINCA ≤pls SC-(k) for all r ∈ N, k ≥ 2.

Proof. Assume there exists a feasible solution S ∈ FSC-(2)(Φ(I)) which is locally optimal for
Φ(I), but is not locally optimal for I . By Lemma 7, S is a set-consistent assignment. This implies
that Ψ(I,S) is a legal assignment of values to variables x ∈ X . Since Ψ(I,S) is not locally
optimal for I , there exists a variable x ∈ X from instance I ∈ (3, 2, r)-MINCA, which can be
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set from value i ∈ [r] to a value j ∈ [r] such that the objective function strictly increases by some
z > 0. Let variable x appear in constraints Cp, Cq ∈ C. Exchanging sets Ci,∗,∗p and Ci,∗,∗q for sets
Cj,∗,∗p and Cj,∗,∗q in S yields a feasible and set-consistent solution and this strictly decreases the
cost of S by z, by construction. A contradiction. ut

Despite the negative result for SC-(k) for all k ≥ 2, it is again possible to compute a locally
optimal solution for all instances I ∈ SP-(1) in polynomial time.

Lemma 9. SC-(1) is polynomial-time solvable.

Proof. Given an instance I ∈ DSC-(1), we use the following algorithm GREEDYCOVER: Starting
from the initial feasible solution S :=M, process all sets in S by weight in descending order and
remove the heaviest yet unprocessed set if S is still a legal cover of B after the removal. In order
to prove that a solution S ∈ FSP-(1)(I) computed by GREEDYCOVER is locally optimal, assume
that GREEDYCOVER terminated and S is not locally optimal. This implies that there exists a set
Si ∈ S that can be deleted or exchanged for another set Sj ∈ M with Sj 6∈ S such that the cost
strictly improves by some z > 0. Assume there exists a set Si ∈ S which can be removed. This
implies that S is still a legal cover of B after the removal of Si and thus, GREEDYCOVER would
have removed set Si as well. A contradiction. Assume there exists a set Si ∈ S which can be
exchanged for a set Sj ∈ M with Sj 6∈ S. This implies that set Sj of smaller weight covers all
elements B \

⋃
S`∈(S\Si)

S`, i.e. all elements which are uncovered if Si would be removed from
S. Since Si has larger weight and after its removal, S is still a legal cover, GREEDYCOVER would
have deleted Si from S. A contradiction. ut

3.5 On the Complexity of TESTSET-(k)

In this subsection, we prove that TS-(k) is PLS-complete for all k ≥ 1. Given an instance
I ∈ POSNAE, we construct an instance Φ(I) = (M, w,m) ∈ DTS-(1). Here, Φ(I) consists of a
collectionM of sets over a finite set B, a weight function w :M×M 7→ N that maps tuples of
elements of B to positive integer weights, and a positive integer m ≤ |M|.

The Reduction The main idea is on the one hand to encode the assignment of variables to values
in the choice of singleton sets representing literals in some solution and on the other hand to
simulate the evaluation of clauses in the weight function w. Additional small incentives reward
the inclusion of singleton sets whereas medium incentives reward the inclusion of distinct literals
for variables.

In more detail, given instance I , we construct the reduced instance of TS-(1) over the finite
set B := {x0, x1 | x ∈ X}. We set m := |X | and define M := {{x0}, {x1} | x ∈ X}. For
every clause Ci(x, y) ∈ C, we define w(x0, y1) = w(x1, y0) := wCi + 1 + W . For all pairs
(xi, yi) with xi, yi ∈ B, i ∈ {0, 1}, xi 6= yī, and xi 6= yi where there does not exist a clause
Cj(x, y) ∈ C, we define w(x, y) := W + 1. All other function values of w are defined as 1.
We call a feasible solution S positive-element-consistent if |S| = m and for every set {xi} ∈ S
it holds that {xī} 6∈ S. Here, function Ψ(I,S) returns for every feasible and positive-element-
consistent solution S ∈ FTS-(1)(Φ(I)) the assignment induced by the indices of the elements in
the sets in S. If S is not positive-element-consistent, the assignment computed by INITPOSNAE(I)
is returned.

Lemma 10. Every locally optimal solution S ∈ FTS-(1)(Φ(I)) is positive-element-consistent.

Proof. Assume there exists a locally optimal solution S′ ∈ FTS-(1)(Φ(I)) with |S′| < m. Since
by construction |M| = 2m, there exists a sets {x} ∈ M with {x} 6∈ S′. Adding {x} to S′

increases the cost of S′ by at least 1, since w(x, r) ≥ 1 for all r ∈ B. A contradiction.
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Assume there exists a locally optimal solution S′ ∈ FTS-(1)(Φ(I)) with |S′| = m, S′ contains
two sets {x0} ∈ S′ and {x1} ∈ S′. By pigeonhole principle, there exist sets {y0} ∈ M and
{y1} ∈ M with {y0} 6∈ S′ and {y1} 6∈ S′. Thus, exchanging {x0} for {y0} increases the cost of
S′, since no weight W is lost and the additional weight of w(x1, y0) ≥ W dominates the sum of
the weights lost due to the removal of {x0}. A contradiction. ut

Lemma 11. POSNAE ≤pls TS-(k) for all k ≥ 1.

Proof. Assume there exists a feasible solution S ∈ FTS-(1)(Φ(I)) which is locally optimal for
Φ(I), but is not locally optimal for I . By Lemma 10, S is positive-element-consistent. This implies
that Ψ(I,S) is a legal assignment for variables x ∈ X . Since Ψ(I,S) is not locally optimal
for I , there exists a variable x ∈ X from instance I , which can be flipped such that clauses
Ci, . . . , Cj ∈ C now have literals with non-identical assignments, clauses Cp, . . . , Cq ∈ C now
have literals with identical assignments and the cost strictly increases by z > 0. This implies that
in Φ(I), set {xi} ∈ S can be replaced by set {xī} ∈ M. On the one hand, for every variable
y ∈ X with y 6= x which appears in a clause Cl from {Ci, . . . , Cj} we have that element yi ∈ S
and w(xī, yi) := wCl

+ 1 + W . On the other hand, for every variable z ∈ X with z 6= x which
appears in a clause Ct from {Cp, . . . , Cq} we have that element yī ∈ S and w(xī, yī) := W + 1
by construction. All other pairs of elements of B remain unchanged in S. By definition of w, this
strictly increases the cost of S by z. Thus, S is not locally optimal. A contradiction. ut

3.6 On the Complexity of SETBASIS-(k)

In this subsection, we prove that SB-(k) is PLS-complete for all k ≥ 1. Given an instance
I ∈ (h)-CNFSAT, we construct an instance Φ(I) = (M, w,m) ∈ DSB-(1) consisting of a
collection M of sets over a finite set B, a weight function w : M 7→ N that maps sets in
collectionM to positive integer weights, and a positive integer m ≤ |M|.

The Reduction In a nutshell, the main idea is to encode every satisfying assignment of a clause via
sets containing the respective literals and possessing the weight of the clause. This is polynomial
in the size of the input since the length of a clause in I is at most h. For feasible solutions to
be a collection of singleton sets, we add large incentives to include singleton sets and medium
incentives to include literals for distinct variables.

From instance I , we construct a reduced instance of SB-(1) over the finite set B := {x, x̄ |
x ∈ X} and we define m := |X |. For every x ∈ X , we introduce sets CSBx := {x}, CSBx̄ :=
{x̄} in M with weight w(CSBx ) = w(CSBx̄ ) := 2W . For every x, y ∈ X with x 6= y and
y 6= x̄, we introduce sets CSBxy := {x, y}, CSBx̄y := {x̄, y}, CSBxȳ := {x, ȳ}, and CSBx̄ȳ :=
{x̄, ȳ} in M which all have weight w(·) = W . We encode every satisfying assignment for
every clause Ci ∈ C by the respective set, define it to possess the weight of clause Ci, and
add it to M. In detail, for every clause Ci(xi1 , . . . , xik) ∈ C and every satisfying assignment

ϕ : {xi1 , . . . , xik} 7→ {0, 1}ik for Ci, we introduce sets C
SB[ϕ(xi1 ,...,xik )]

i in M with weight

w(C
SB[ϕ(xi1 ,...,xik )]

i ) := wCi . Here, C
SB[ϕ(xi1 ,...,xik )]

i := {ϕ′(xi1), . . . , ϕ′(x̄ij ), . . . , ϕ
′(xik)},

where ϕ′(xi) := xi if Pi(ϕ(xi1 , . . . , xik)) = 1 and ϕ′(xi) := x̄i otherwise. We call a feasible
solution S single-set-consistent if |S| = m, |Si| = 1 for all Si ∈ S and for every set {xi} ∈ S
it holds that {x̄i} 6∈ S. Here, function Ψ(I,S) returns for a feasible and element-consistent so-
lution S ∈ FSB-(1)(Φ(I)) for every set {x} ∈ S assignment 1 for variable x ∈ X and for every
set {x̄} ∈ S assignment 0 for variable x ∈ X . If S is not single-set-consistent, the assignment
computed by INIT(h)-CNFSAT(I) is returned.

Lemma 12. Every locally optimal solution S ∈ FSB-(1)(Φ(I)) is single-set-consistent.
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Proof. Assume there exists a locally optimal solution S′ ∈ FSB-(1)(Φ(I)) which contains a set
Si ∈ S′ with |Si| > 1. Since set Si has cardinality at least two, Si is only used in the union of
sets which by construction have total weight strictly smaller than 2W . By pigeonhole principle,
there exists a set {x} ∈ 2|B| which is not in S′. Exchanging set Si for {x} strictly increases the
cost function. Now, set CSBx can be constructed and w(CSBx ) is larger than the sum of the weights
of the sets which cannot be generated any more due to the removal of Si. Thus, S′ is not locally
optimal. A contradiction.

Assume there exists a locally optimal solution S′ ∈ FSB-(1)(Φ(I)) and S′ contains two sets
{x}, {x̄} ∈ S′. By pigeonhole principle, there exists a set {y} ∈ B with {y} 6∈ S′ and {ȳ} 6∈ S′.
Thus, by exchanging {x̄} for {y}, the additional set CSBxy can now be constructed. No weight 2W

is lost due to the exchange operation. Set CSBxy has weight W and this dominates the sum of the
weights of the sets which may not be constructed any more due to the removal of {x̄}. Thus, the
cost of S′ increased and S′ is not locally optimal. A contradiction. ut

Lemma 13. (h)-CNFSAT ≤pls SB-(k) for all k ≥ 1.

Proof. Assume there exists a feasible solution S ∈ FSB-(1)(Φ(I)) which is locally optimal for
Φ(I), but is not locally optimal for I . By Lemma 12, S is single-set-consistent. This implies that
Ψ(I,S) is a legal assignment for all variables x ∈ X . Since Ψ(I,S) is not locally optimal for I ,
there exists a variable x ∈ X in (h)-CNFSAT, which can be flipped such that clausesCi, . . . , Cj ∈
C become satisfied, clauses Cp, . . . , Cq ∈ C become unsatisfied and the cost strictly increases by
z > 0. This implies that in Φ(I), set {x} ∈ 2|B| can be replaced by set {x̄} ∈ 2|B|. Now, sets

C
SB[ϕ(xi1 ,...,xik )]

i , . . . , C
SB[ϕ(xj1 ,...,xjk )]

j ∈ M corresponding to the satisfying assignment for the
respective clauses can be generated by the union of subcollections of sets of S involving {x̄},
and all sets C

SB[ϕ(xi1 ,...,xpk )]
p , . . . , C

SB[ϕ(xq1 ,...,xqk )]
q ∈ M cannot be formed by the union of

subcollections of sets of S. By definition of w, this strictly increases the cost of S by z. Thus, S
is not locally optimal. A contradiction. ut

3.7 On the Complexity of HITTINGSET-(k)

In this subsection, we prove that HS-(k) is PLS-complete for all k ≥ 1. Given an instance
I ∈ CNFSAT, we construct an instance Φ(I) = (M, w,m) ∈ DHS-(1) consisting of a collection
M of sets over a finite set B, a weight function w : M 7→ N mapping sets in collectionM to
positive integer weights, and a positive integer m ≤ |B|.

The Reduction In a nutshell, the main idea is to encode every clause as some set containing the
respective literals and possessing the weight of the clause. To ensure consistency, we add large
incentives to include at least one literal from every variable, but not both.

In more detail, from instance I , we create a reduced instance of HS-(1) over the finite set
B := {x, x̄ | x ∈ X} where we define m := |X |. For every variable x ∈ X , we introduce sets
CHSx := {x, x̄} inMwithw(CHSx ) := W . For every clause, we introduce a single set possessing
the weight of the respective clause and the elements of the set correspond to the literals in the
clause. In detail, for every clause Ci(xi1 , . . . , xil) ∈ C, we introduce sets CHSi := {xi1 , . . . , xil}
inM, and we define w(CHSi ) := wCi . We call a feasible solution S element-consistent if |S| =
|C| and for every element x ∈ S it holds that x̄ 6∈ S. Here, function Ψ(I,S) returns for a feasible
and element-consistent solution S ∈ FHS-(1)(Φ(I)) for every element x ∈ S assignment 1 for
variable x ∈ X and for every element x̄ ∈ S assignment 0 for variable x ∈ X . If S is not
element-consistent, then the assignment computed by INITCNFSAT(I) is returned.

Lemma 14. For every locally optimal solution, S ∈ FHS-(1)(Φ(I)) is element-consistent.
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Proof. Assume there exists a locally optimal solution S′ ∈ FHS-(1)(Φ(I)) with |S′| < m. Since
|B| = 2m, there exists an element x ∈ B with x 6∈ S′ and x̄ 6∈ S′. Thus, adding x to S′ increases
the cost of S′, since no weight is lost and set w(CHSx ) is hit. A contradiction.

Assume there exists a locally optimal solution S′ ∈ FHS-(1)(Φ(I)) with |S′| = m and S′

contains two elements x ∈ S′ and x̄ ∈ S′. By pigeonhole principle, there exists an element y ∈ B
with y 6∈ S′. Exchanging x for y in solution S′ increases the cost of S′. All sets of weight W that
were previously hit are still hit. Additionally, set CHSy is now hit and w(CHSy ) is larger than the
sum of all sets that where hit due to the membership of x ∈ S′. A contradiction. ut

Lemma 15. CNFSAT ≤pls HS-(k) for all k ≥ 1.

Proof. Assume there exists a feasible solution S ∈ FHS-(1)(Φ(I)) which is locally optimal for
Φ(I), but is not locally optimal for I . By Lemma 14, S is element-consistent. This implies that
Ψ(I,S) is a legal assignment to all variables x ∈ X . Since Ψ(I,S) is not locally optimal for I ,
there exists a variable x ∈ X in CNFSAT, which can be flipped such that clauses Ci, . . . , Cj ∈ C
become satisfied, clauses Cp, . . . , Cq ∈ C become unsatisfied and the cost strictly increases by
z > 0. This implies that in Φ(I), element x ∈ S can be replaced by element x̄ ∈ B and now sets
CHSi , . . . , CHSj ∈ M are hit, and sets CHSp , . . . , CHSq ∈ M are not hit. By definition of w, this
strictly increases the cost of S by z. Thus, S is not locally optimal. A contradiction. ut

3.8 On the Complexity of INTERSECTIONPATTERN-(k)

In this subsection, we prove that IP-(k) is PLS-complete for all k ≥ 1. Given an instance I ∈
POSNAE, we construct an instance Φ(I) = (A,B,M) ∈ DIP-(1) consisting of two symmetric
n × n matrices A := (aij)i,j∈[n], and B := (bij)i,j∈[n], and a collectionM of sets over a finite
set B. W.l.o.g., we assume that in I , every pair of variables x, y ∈ X occurs in some clause
Ci(x, y) ∈ C. Furthermore, let σ be an ordering of X and let γxi denote the number of clauses
Cj ∈ C variable xi ∈ X appears in.

The Reduction In a nutshell, the main idea is for every variable x ∈ X to introduce sets of
identical cardinality for both assignments, but which have distinct cardinality from all other sets.
These sets contain elements encoding satisfying assignments for all clauses variable x appears in.
If a clause is satisfied by a given assignment, then the intersection of the two corresponding sets
has cardinality two. In this case, the weight of the clause is added to the solution. Large incentives
ensure that, identified by cardinality, the sets for variables are placed in the right position in the
solution.

In more detail, let v := |X | and m := 2|C|. We create a reduced instance of IP-(1) over
the finite set B := {xCj

i | x ∈ X , i ∈ {0, 1}, x appears in clause Cj ∈ C} ∪ {xli | x ∈ X , i ∈
{0, 1}, l ∈ [m−2γxi +σ(x)]}. For every variable x ∈ X and i ∈ {0, 1}, we introduce setsCIPxi in

M, whereCIPxi := {xCj

i , y
Cj

ī
| x appears in clause Cj(x, y) ∈ C}∪{xli | l ∈ [m−2γxi +σ(x)]}.

Note that by construction, for every x ∈ X , |CIPx∗ | = m+ σ(x). In the v × v matrix A for Φ(I),
we define aii := m + i for all i ∈ [n] and for all i, j ∈ [n] with i 6= j, we define aij := 2.
In the v × v matrix B for Φ(I), we define bii := W for all i ∈ [n] and for all i, j ∈ [n] with
i 6= j, we define bij := wCk

, where wCk
is the weight of clause Ck(xi, xj) ∈ C. We say that

a feasible solution S ∈ FIP-(1)(Φ(I)) is position-consistent if for every i ∈ [n], set CIPx∗ on
position i has cardinality aii. Here, function Ψ(I,S) returns for a feasible and position-consistent
solution S ∈ FIP-(1)(Φ(I)) for every CIPxi ∈ S assignment i for variable x ∈ X . If S is not
position-consistent, then the assignment computed by INITPOSNAE(I) is returned.

Lemma 16. Every locally optimal solution S ∈ FIP-(1)(Φ(I)) is position-consistent.
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Proof. Assume there exists a locally optimal solution S′ ∈ FIP-(1)(Φ(I)) which is not position-
consistent. This implies that there exists a set CIPx∗ ∈ S′ on position i ∈ [v] with |CIPx∗ | 6= aii.
Replacing CIPx∗ ∈ S′ for set CIPy∗ ∈ M on position i in S with |CIPy∗ | = aii strictly improves the
cost of S′, since bii >

∑
p<q∈[n],p 6=q bpq and entries bpq are the only terms that may be lost in the

cost of S′ due to the replacement. A contradiction. ut

Lemma 17. POSNAE ≤pls IP-(k) for all k ≥ 1.

Proof. Assume there exists a feasible solution S ∈ FIP-(1)(Φ(I)) which is locally optimal for
Φ(I), but is not locally optimal for I . By Lemma 16, S is position-consistent. This implies that
Ψ(I,S) is a legal assignment of values to variables x ∈ X . Since by assumption, Ψ(I,S) is not
locally optimal for I , there exists a variable x ∈ X in instance I ∈ POSNAE, which can be flipped
such that clauses Cs(x, y), . . . , Ct(x, z) ∈ C now have literals with non-identical assignments,
clauses Cp(x, u), . . . , Cq(x, v) ∈ C ∈ C now have literals with identical assignments and the cost
strictly increases by z > 0. This implies that in Φ(I), set CIPxi ∈ S on position σ(x) in S can
be replaced by set CIPxī ∈ C. Now, by construction |CIPxī ∩ C

IP
y∗ | = · · · = |CIPxī ∩ C

IP
z∗ | = 2 =

aσ(x)σ(y) = · · · = aσ(x)σ(z) and |CIPxī ∩ C
IP
u∗ | = · · · = |CIPxī ∩ C

IP
v∗ | = 0 6= aσ(x)σ(u) = · · · =

aσ(x)σ(v). By definition of B, this strictly increases the cost of S by z. Thus, S is not locally
optimal. A contradiction. ut

3.9 On the Complexity of COMPARATIVECONTAINMENT-(k)

In this subsection, we prove that CC-(k) is PLS-complete for all k ≥ 1. Given an instance
I ∈ (h)-CNFSAT, we construct an instance Φ(I) = (M,N , w) ∈ DCC-(1). Here, Φ(I), consists
of two collectionsM and N of sets over a finite set B and a weight function w : M∪N 7→ N

that maps sets from collectionsM∪N to positive integer weights.

The Reduction In a nutshell, the main idea is to encode every satisfying assignment of a clause via
sets containing the respective literals and possessing the weight of the clause. This is polynomial
in the size of the input since the length of a clause in I is at most h. Additionally, we add large
incentives to exclude both literals of a variable and medium incentives to include literals.

In more detail, we create an instance of CC-(1) over the finite set B := {x, x̄ | x ∈
X}. For every x ∈ X , we introduce sets XCC

x in N with w(XCC
x ) := 2W , where XCC

x :=
{y, ȳ | y ∈ X ; y 6= x}. This terminates the description of N . Now, we define collection
M. Let Rx := {y, ȳ | y ∈ X ; y 6= x}. For every x ∈ X , we introduce sets CCCx :=
Rx ∪ {x} and CCCx̄ := Rx ∪ {x̄} in N with w(CCCx ) = w(CCCx̄ ) := W . Let FCi

:= {x, x̄ |
x does not appear in Ci} denote the set of all fan-out variables in B which are irrelevant for sat-
isfying Ci. Extending the technique from proof of Lemma 13, for every clause Ci ∈ C, we
encode every satisfying assignment for Ci by the respective set, add all variables irrelevant for
satisfying the clause, define it to possess the weight of clause Ci and add it to N . In detail,
for every clause Ci(xi1 , . . . , xik) ∈ C and every satisfying assignment ϕ : {xi1 , . . . , xik} 7→
{0, 1}ik for Ci, we introduce sets C

CC[ϕ(xi1 ,...,xik )]
x in M with w(C

CC[ϕ(xi1 ,...,xik )]

i ) := wCi .

Here, C
CC[ϕ(xi1 ,...,xik )]
x := FCi

∪ {ϕ′(xi1), . . . , ϕ′(x̄ij ), . . . , ϕ
′(xik)} where ϕ′(xi) := xi if

Pi(ϕ(xi1 , . . . , xik)) = 1 and ϕ′(xi) := x̄i otherwise. The definition of an element-consistent
solution S ∈ FCC-(1)(Φ(I)) and the function Ψ(I,S) is as in proof of Lemma 15.

Lemma 18. Every locally optimal solution S ∈ FCC-(1)(Φ(I)) is element-consistent.

Proof. Assume there exists a solution S′ ∈ FCC-(1)(Φ(I)) with |S′| < |B|/2 and S′ is locally
optimal. Thus, there exists an element x ∈ B with x 6∈ S′ and x̄ 6∈ S′. Adding x to S′ increases
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the cost of S′, since now S′ 6⊆ XCC
x . The weight of XCC

x both dominates the sum of the weights
lost due to S′ 6⊆ CCCx̄ and the sum of the weights of the remaining sets inM in which S′ is not
entirely contained any more. A contradiction.

Assume there exists a solution S′ ∈ FCC-(1)(Φ(I)) with |S′| > |B|/2 and S′ is locally op-
timal. By pigeonhole principle there exists an element y ∈ S′ with ȳ ∈ S′. Removing ȳ ∈ S′

increases the cost of S′, since, on the one hand, it does not alter any containment of S′ in N . On
the other hand, S′ ⊆ CCCy and the weight of w(CCCy ) = W dominates the sum of the smaller
weights of sets inM in which S′ is not entirely contained any more. A contradiction.

Assume there exists a solution S′ ∈ FCC-(1)(Φ(I)) with |S′| = |B|/2 and S′ contains two
elements x ∈ S′ and x̄ ∈ S′, and is locally optimal. By pigeonhole principle, there exists an
element y ∈ B with y 6∈ S′ and ȳ 6∈ S′. Thus, exchanging x for y increases the cost of S′,
since now S′ 6⊆ XCC

y and the weight of XCC
y dominates both the sum of the weight lost due

to S′ 6⊆ CCCx̄ and the sum of the remaining weights of sets in M in which S′ is not entirely
contained any more. A contradiction. ut

Lemma 19. (h)-CNFSAT ≤pls CC-(k) for all k ≥ 1.

Proof. Assume that there exists a feasible solution S ∈ FCC-(1)(Φ(I)) which is locally optimal
for Φ(I), but is not locally optimal for I . By Lemma 18, S is element-consistent. This implies that
Ψ(I,S) is a legal assignment for all variables y ∈ X . Since Ψ(I,S) is not locally optimal for I ,
there exists a variable x ∈ X in (h)-CNFSAT, which can be flipped such that clausesCi, . . . , Cj ∈
C become satisfied, clauses Cp, . . . , Cq ∈ C become unsatisfied and the cost strictly increases by
z > 0. This implies that in Φ(I), element x ∈ S can be replaced by element x̄ ∈ B. Now, S is
entirely contained in exactly one satisfying assignment encoded in some set C∗t ∈ M from each

family of sets C
CC[ϕ(xi1 ,...,xik )]

i , . . . , C
CC[ϕ(xj1 ,...,xjk )]

j ∈ M, and S is not entirely contained in

all sets C
CC[ϕ(xp1 ,...,xpk )]
p , . . . , C

CC[ϕ(xq1 ,...,xqk )]
q ∈ M. By definition of w, this strictly increases

the cost of S by z. Thus, S is not locally optimal. A contradiction. ut
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