Skip to main content

Energy-Efficient Task Scheduling and Data Aggregation Techniques in Wireless Sensor Networks for Information Explosion Era

  • Chapter
Wireless Sensor Network Technologies for the Information Explosion Era

Part of the book series: Studies in Computational Intelligence ((SCI,volume 278))

Abstract

This chapter presents our approaches for energy-efficient techniques in wireless sensor networks. First, we present requirements on scheduling mechanism in a wireless sensor network and introduce our approaches on energy-efficient and adaptive control mechanisms. Second, we introduce our data aggregation method that exploits the characteristics of data and communication in a wireless sensor network. Finally, we discuss our future plan to interoperate our lower layer and higher layer techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alippi, C., Anastasi, G., Galperti, C., Mancini, F., Roveri, M.: Adaptive sampling for energy conservation in wireless sensor networks for snow monitoring applications. In: Proc. IEEE Int’l Conf. on Mobile Ad-hoc and Sensor Systems (MASS 2007), pp. 1–6 (2007)

    Google Scholar 

  2. Anastasi, G., Conti, M., Francesco, M.D., Passarella, A.: An adaptive and low-latency power management protocol for wireless sensor networks. In: Proc. ACM Int’l Workshop on Mobility Management and Wireless Access, MobiWac 2006 (2006)

    Google Scholar 

  3. Arici, T., Altunbasak, Y.: Adaptive sensing for environment monitoring using wireless sensor networks. In: Proc. IEEE Wireless Communications and Networking Conf. (IWNC 2004), vol. 4, pp. 2347–2352 (2004)

    Google Scholar 

  4. Banerjee, T., Choudhury, K., Agrawal, D.P.: Tree based data aggregation in sensor networks using polynomial regression. In: Proc. Int’l Conf. on Information Fusion (FUSION 2005), vol. 2, pp. 25–29 (2005)

    Google Scholar 

  5. Banerjee, T., Choudhury, K., Agrawal, D.P.: Distributed data aggregation in sensor networks by regression based compression. In: Proc. Int’l. Conf. on Mobile Ad-hoc and Sensor Systems (MASS 2005), pp. 290–293 (2005)

    Google Scholar 

  6. Bonabeau, E., Sobkowski, A., Theraulaz, G., Deneubourg, J.L.: Adaptive task allocation inspired by a model of division of labor in social insects. In: Proc. Biocomputing and Emergent Computation, pp. 36–45 (1997)

    Google Scholar 

  7. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  8. Cerpa, A., Estrin, D.: ASCENT: Adaptive self-configuring sensor networks topologies. IEEE Trans. Mobile Computing 3(3), 272–285 (2004)

    Article  Google Scholar 

  9. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. ACM Wireless Network Journal 8(5), 481–494 (2002)

    Article  MATH  Google Scholar 

  10. Chu, D., Deshpande, A., Hellerstein, J.M., Hong, W.: Approximate data collection in sensor networks using probabilistic models. In: Proc. Int’l Conf. on data engineering (ICDE 2006), pp. 48–60 (2006)

    Google Scholar 

  11. Dai, H., Han, R.: TSync: a lightweight bidirectional time synchronization service for wireless sensor networks. SIGMOBILE Mobile Computing and Communications Review 8(1), 125–139 (2004)

    Article  Google Scholar 

  12. Deshpande, A., Guestrin, C., Madden, S.R., Hellerstein, J.M., Hong, W.: Model-driven data acquisition in sensor networks. In: Proc. Int’l Conf. on Very Large Data Bases (VLDB 2004), pp. 588–599 (2004)

    Google Scholar 

  13. Goel, P., Ermentrout, B.: Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D 163, 191–216 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guestin, C., Bodi, P., Thibau, R., Paski, M., Madden, S.: Distributed regression: an efficient framework for modeling sensor network data. In: Proc. Int’l Symposium on Information Processing in Sensor Networks (IPSN 2004), pp. 1–10 (2004)

    Google Scholar 

  15. Huang, C.F., Tseng, Y.C., Wu, H.L.: Distributed protocols for ensuring both coverage and connectivity of a wireless sensor network. ACM Trans. Sensor Networks 3(1) (2007)

    Google Scholar 

  16. Iima, Y., Kanzaki, A., Hara, T., Nishio, S.: Overhearing-based data transmission reduction for periodical data gathering in wireless sensor networks. In: Proc. Int’l Workshop on Data Management for Information Explosion in Wireless Networks (DMIEW 2009), pp. 1048–1053 (2009)

    Google Scholar 

  17. Iima, Y., Kanzaki, A., Hara, T., Nishio, S.: An evaluation of overhearing-based data transmission reduction in wireless sensor networks. In: Proc. Int’l Workshop on Sensor Network Technologies for Information Explosion Era (SeNTIE 2009), pp. 519–524 (2009)

    Google Scholar 

  18. Kotidis, Y.: Snapshot queries: towards data-centric sensor networks. In: Proc. Int’l Conf. on Data Engineering (ICDE 2005), pp. 131–142 (2005)

    Google Scholar 

  19. Labella, T.H., Dressler, F.: A bio-inspired architecture for division of labour in SANETs. In: Proc. Int’l Conf. on Bio-inspired Models of Network, Information and Computing Systems (Bionetics 2006), pp. 211–230 (2006)

    Google Scholar 

  20. Low, K.H., Leow, W.K., Marcelo, H., Ang, J.: Autonomic mobile sensor network with self-coordinated task allocation and execution. IEEE Trans. Systems, Man, and Cybernetics 36(3), 315–327 (2006)

    Article  Google Scholar 

  21. Lu, G., Krishnamachari, B., Raghavendra, C.S.: An adapive energy-efficient and low-latency MAC for tree-based data gathering in sensor networks. Wireless Communications & Mobile Computing 7(7), 863–875 (2007)

    Article  Google Scholar 

  22. MICAz_Datasheet.pdf, http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf. (Cited June 8, 2009)

  23. Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. Society for Industrial and Applied Mathematics. Journal on Applied Mathematics 50(6), 1645–1662 (1990)

    MATH  MathSciNet  Google Scholar 

  24. Simeone, O., Spagnolini, U.: Distributed time synchronization in wireless sensor networks with coupled discrete-time oscillators. EURASIP Journal on Wireless Communications and Networking (2007), doi:10.1155/2007/57054

    Google Scholar 

  25. Sun, Y., Gurewitz, O., Johnson, D.B.: RI-MAC: A receiver initiated asynchronous duty cycle MAC protocol for dynamic traffic load. In: Proc. ACM Conf. on Embedded Networked Sensor Systems, SenSys 2008 (2008)

    Google Scholar 

  26. Taniguchi, Y., Wakamiya, N., Murata, M.: A traveling wave based communication mechanism for wireless sensor networks. Academy Publisher Journal of Networks 2(5), 24–32 (2007)

    Google Scholar 

  27. Taniguchi, Y., Wakamiya, N., Murata, M., Fukushima, T.: An autonomous data gathering scheme adaptive to sensing requirements for industrial environment monitoring. In: Proc. IFIP Int’l Conf. on New Technologies, Mobility and Security (NTMS 2008), pp. 52–56 (2008)

    Google Scholar 

  28. Tulone, D., Madden, S.: PAQ: time series forecasting for approximate query answering in sensor networks. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS, vol. 3868, pp. 21–37. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  29. Tulone, D., Madden, S.: An energy-efficient querying framework in sensor networks for detecting node similarities. In: Proc. Int’l Symposium on Modeling, Analysis and Simulatoin of Wireless and Mobile Systems (MSWiM 2006), pp. 291–300 (2006)

    Google Scholar 

  30. Wakamiya, N., Murata, M.: Synchronization-based data gathering scheme for sensor networks. IEICE Trans. Communicatios (Special Issue on Ubiquitous Networks) E88-B(3), 873–881 (2005)

    Google Scholar 

  31. Xing, G., Wang, X., Zhang, Y., Lu, C., Pless, R., Gill, C.: Integrated coverage and connectivity configuration for energy conservation in sensor networks. ACM Trans. Sensor Networks 1(1), 36–72 (2005)

    Article  Google Scholar 

  32. Younis, O., Fahmy, S.: Distributed clustering in ad-hoc sensor networks: a hybrid, energy-efficient approach. In: Proc. IEEE INFOCOM 2004 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kanzaki, A., Wakamiya, N., Hara, T. (2010). Energy-Efficient Task Scheduling and Data Aggregation Techniques in Wireless Sensor Networks for Information Explosion Era. In: Hara, T., Zadorozhny, V.I., Buchmann, E. (eds) Wireless Sensor Network Technologies for the Information Explosion Era. Studies in Computational Intelligence, vol 278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13965-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13965-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13964-2

  • Online ISBN: 978-3-642-13965-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics