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Abstract. In a model-based testing approach as well as for the verifi-
cation of properties, B models provide an interesting solution. However,
for industrial applications, the size of their state space often makes them
hard to handle. To reduce the amount of states, an abstraction function
can be used, often combining state variable elimination and domain ab-
stractions of the remaining variables. This paper complements previous
results, based on domain abstraction for test generation, by adding a pre-
liminary syntactic abstraction phase, based on variable elimination. We
define a syntactic transformation that suppresses some variables from a
B event model, in addition to a method that chooses relevant variables
according to a test purpose. We propose two methods to compute an
abstraction A of an initial model M. The first one computes A as a sim-
ulation of M, and the second one computes A as a bisimulation of M.
The abstraction process produces a finite state system. We apply this
abstraction computation to a Model Based Testing process.

Keywords: Abstraction, Test Generation, (Bi-)Simulation, Slicing.

1 Introduction

B models are well suited for producing tests of an implementation by means of a
model-based testing approach [1, 2] and to verify dynamic properties by model-
checking [3]. But model-checking as well as test generation require the models
to be finite, and of tractable size. This is not usually the case with industrial
applications, for which the exploration of the executions modelled frequently
comes up against combinatorial explosion problems. Abstraction techniques al-
low for projecting the (possibly infinite or very large) state space of a system
onto a small finite set of symbolic states. Abstract models make test generation
or model-checking possible in practice [4]. In [5], we have proposed and experi-
mented with an approach of test generation from abstract models. It appeared
that the computation time of the abstraction could be very expensive, as evi-
denced by the Demoney [6] case study. We had replaced a problem of time for
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searching in a state graph with a problem of time for solving proofs, as the ab-
straction was computed by proving enabledness and reachability conditions on
symbolic states [7].

In this paper, we contribute to solving this proving time problem by defining a
syntactic abstraction function that requires no proof. Inspired from slicing tech-
niques [8], the function works by suppressing some state variables from a model.
In order to produce a state system that is both finite and sufficiently small, we
still have to perform a semantic abstraction. This requires that some proof obli-
gations are solved, but there are less of them than with the initial model, since
it has been syntactically simplified. This approach results in semantic pruning
of generated proof obligations as proposed in [9].

In Sec. 2, we introduce the notion of B event system and some of the main
properties of substitution computation. Section 3 presents an Electrical System
case study that illustrates our approach. In Sec. 4, we first define the set of
variables to be preserved by the abstraction function and then we define the
abstraction function itself. We prove that this function is correct in the sense
that the generated abstract model A simulates or bisimulates the initial model
M. In this way, the abstraction can be used to verify safety properties and to
generate tests. In Sec. 5, we present an end to end process to compute test cases
from a set of observed variables by using both the semantic and the syntactic
abstractions. In Sec. 6, we compare this process to a completely semantic one
on several examples, and we evaluate the practical interest for test cases gener-
ation. Section 7 concludes the paper, gives some future research directions and
compares our approach to other abstraction methods.

2 B Event Systems and Refinement

We use the B notation [10] to describe our models: this section gives the back-
ground required for reading the paper. Let us first define the following B notions:
primitive forms of substitution, substitution properties and refinement. Then we
will summarize the principles of before-after predicates, and conjunctive form
(CF) of B predicates.

First introduced by J.-R. Abrial [11], a B event system defines a closed
specification of a system by a set of events. In the sequel, we use the following
notations: x, xi, y, z are variables and X , Y , Z are sets of variables. Pred is
the set of B predicates. I (∈ Pred) is an invariant, and P , P1 and P2 (∈ Pred)
denote other predicates. The modifications of the variables are called substitu-
tions in B, following [12] where the semantics of an assignment is defined as a
substitution. In B, substitutions are generalized : they are the semantics of every
kind of action, as expressed by formulas 1 to 4 below. We use S, S1 and S2 to de-
note B generalized substitutions, and E, Ei and F to denote B expressions. The
B events are defined as generalized substitutions. All the substitutions allowed
in B event systems can be rewritten by means of the five B primitive forms of
substitutions of Def. 1. Notice that the multiple assignment can be generalized
to n variables. It is commutative, i.e. x, y := E, F =̂ y, x := F, E.



Definition 1 (Substitution). The following five substitutions are primitive:

– single and multiple assignments, denoted as x := E and x, y := E, F
– substitution with no effect, denoted as skip
– guarded substitution, denoted as P ⇒ S
– bounded nondeterministic choice, denoted as S1[]S2

– substitution with local variable z, denoted as @z.S.

Notice that the substitution with local variable is mainly used to express the
unbounded nondeterministic choice denoted by @z.(P ⇒ S). Let us specify that
among the usual structures of specification languages, the conditional substitu-
tion IF P THEN S1 ELSE S2 END is denoted by (P ⇒ S1)[](¬P ⇒ S2) with
the primitive forms.

Given a substitution S and a post-condition P , it is possible to compute
the weakest precondition such that if it is satisfied, then P is satisfied after the
execution of S. The weakest precondition is denoted by [S]P . [x := E]P is the
usual substitution of all the free occurrences of x in P by E. For the four other
primitive forms, the weakest precondition is computed as indicated by formulas 1
to 4 below, proved in [10].

[skip]P ⇔ P (1)

[P1 ⇒ S]P2 ⇔ (P1 ⇒ [S]P2) (2)

[S1[]S2]P ⇔ [S1]P ∧ [S2]P (3)

[@z.S]P ⇔ ∀z.[S]P if z is not free in P (4)

Distributivity: [S](P1 ∧ P2) ⇔ [S]P1 ∧ [S]P2 (5)

Definition 2 defines correct B event systems. To explicitly refer to a given
model, we add the name of that model as a subscript to the symbols X , I, Init
and Ev. IM is for example the invariant of a model M.

Definition 2 (Correct B Event System). A correct B event system is a
tuple 〈X, I, Init, Ev〉 where:

– X is a set of state variables,
– I (∈ Pred) is an invariant predicate over X,
– Init is a substitution called initialization, such that the invariant holds in

any initial state: [Init]I,
– Ev is a set of event definitions in the shape of evi =̂ Si such that every event

preserve the invariant: I ⇒ [Si]I.

In Sec. 4, we will prove that an abstraction A that we compute is refined by
its source event system M, and so we give in Def. 3 the definition of a B event
system refinement.

Definition 3 (B Event System Refinement). Let A and R be two correct
B event systems. Let IR be their gluing invariant, i.e. a predicate that indicates
how the values of the variables in R and A relate to each other. R refines A if:



– any initialization of R is associated to an initialization of A according to IR:
[InitR]¬[InitA]¬IR

– any event ev =̂ SR of R is an event of A defined by ev =̂ SA in EvA that
satisfy IR: IA ∧ IR ⇒ [SR]¬[SA]¬IR.

This paper also relies on two more definitions: the before-after predicate and
the CF form. We denote by PrdX(S) the before-after predicate of a substitution
S. It defines the relation between the values of the variables of the set X before
and after the substitution S. A primed variable denotes its after value. From [10],
the before-after predicate is defined by:

PrdX(S) =̂ ¬[S]¬(
∧

x∈X

(x = x
′)). (6)

Definition 4 (Conjunctive Form). A B predicate P ∈ Pred is in CF when it
is a conjunction p1∧p2∧ . . .∧pn where every pi is a disjunction p1i ∨p2i ∨ . . .∨pmi
such that any pji is an elementary predicate in one of the following two forms:

– E(Y ) r F (Z), where E(Y ) and F (Z) are B expressions on the sets of vari-
ables Y and Z and r is a relational operator,

– ∀z.P or ∃z.P , where P is a B predicate in CF.

Section 4 will define predicate transformation rules. We put the predicates in
CF according to Def. 4 before their transformation. This allows the transforma-
tion to be correct although the negation is not monotonic w.r.t a transformation
T of the predicates: T (¬P ) 6= ¬T (P ).

3 Electrical System Example

We describe in this section a B event system that we will use in this paper as a
running example to illustrate our proposal.

Fig. 1. Electrical System

A device D is powered by one of three batteries B1, B2, B3 as shown in Fig. 1.
A switch connects (or not) a battery Bi to the device D. A clock H periodically
sends a signal that causes a commutation of the switches, i.e. a change of the
battery in charge of powering the device D. The working of the system must
satisfy the three following requirements:



– Req1: no short-circuit, i.e. there is only one switch closed at a time,
– Req2: continuous power supply, i.e. there is always one switch closed,
– Req3: a signal from the clock always changes the switch that is closed.

The batteries are subject to electrical failures. If it occurs to the battery that
is powering D, the system triggers an exceptional commutation to satisfy the
requirement Req2. The broken batteries are replaced by a maintenance service.
We assume that it works fast enough for not having more than two batteries
down at the same time. When two batteries are down, the requirement Req3 is
relaxed and the clock signal leaves unchanged the switch that is closed.

This system is modeled in Fig. 2 by means of three variables. H models the
clock and takes two values: tic when it asks for a commutation and tac when
this commutation has occurred. Sw models the state of the three switches by
an integer between 1 and 3: Sw = i indicates that the switch i is closed while
the others are opened. This modelling makes that requirements Req1 and Req2
necessarily hold. Bat models the electrical failures by a total function. The ko
value for a battery indicates that it is down. In addition to the typing of the
variables, the invariant I expresses the assumption that at least one battery is
not down by stating that Bat(Sw) = ok. Notice that the requirement Req3 is
a dynamic property, not formalized in I. The initial state is defined by Init in
Fig. 2. The behavior of the system is described by four events:

– Tic sends a commutation command,
– Com1 performs a commutation (i.e. changes the closed switch),
– Fail simulates an electrical failure on one of the batteries,
– Rep simulates a maintenance intervention replacing a down battery.

X =̂ {H, Sw, Bat}
I =̂ H ∈ {tic, tac} ∧ Sw ∈ 1..3 ∧ (Bat ∈ 1..3 → {ok, ko}) ∧ Bat(Sw) = ok
Init =̂ H, Sw, Bat := tac, 1, {1 7→ ok, 2 7→ ok, 3 7→ ok}
Tic =̂ H = tac ⇒ H := tic
Com =̂ card(Bat⊲ {ok}) > 1 ∧ H = tic ⇒

@ns.(ns ∈ 1..3 ∧ Bat(ns) = ok ∧ ns 6= Sw ⇒ H,Sw := tac, ns)
Fail =̂ card(Bat ⊲ {ok}) > 1 ⇒

@nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat ⊲ {ok}) ⇒
(nb = Sw ⇒ @ns.(ns ∈ 1..3 ∧ ns 6= Sw ∧ Bat(ns) = ok ⇒ Sw,Bat(nb) := ns, ko))

[](nb 6= Sw ⇒ Bat(nb) := ko))
Rep =̂ @nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat ⊲ {ko}) ⇒ Bat(nb) := ok)

Fig. 2. B Specification of the Electrical System

4 Syntactic Abstraction

We define in this paper a syntactical abstraction method that applies to B mod-
els. Similar rules could be adapted for more generic formalisms such as pre-post
models or transition systems.

1 An expression r ⊲ E denotes a relation where the range is restricted by the set E.
For example, {1 7→ ok, 2 7→ ko, 3 7→ ok} ⊲ {ok} = {1 7→ ok, 3 7→ ok}.



Our intention is to obtain an abstract model A of a modelM by observing only
a subset XA of the state variables XM of M. For instance, to test the electrical
system in the particular cases where two batteries are down, we observe only
the variable Bat. But to preserve the behaviors of M related to the variables of
XA, we also keep in A the variables used to assign the observed variables or to
define the conditions under which they are assigned.

We first present two methods to compute a set of abstract variables accord-
ing to a set of observed variables. Using these variables we define a predicate
and substitution transformation function. Then we describe how to compute an
abstraction of a B event model M. The abstraction is a bisimulation of M when
the abstract variables were computed according to the second method. We also
prove that if they were computed according to the first method, the abstraction
is a simulation of M.

4.1 Choosing the Abstract Variables

As proposed in [13], we distinguish between the observed variables and the ab-
stract ones. A set XA of abstract variables is the union of a set of observed
variables with a set of relevant variables. The Observed variables are the ones
used by the tester in a test purpose, while the relevant variables are the ones
used to describe the evolutions of the observed variables. More precisely, the
relevant variables are the ones used to assign an observed variable (data-flow
dependency), augmented with the variables used to express when such an as-
signment occurs (control-flow dependency).

A naive method to define XA is to syntactically collect the variables that are
either on the right side or in the guard of the assignment of an observed variable.
But this method will in most cases select a very large amount of variables, mainly
because of the guard. For instance, if x is the observed variable, then y is not
relevant in (y ⇒ x, z := E,F )[](¬y ⇒ x := E). A similar weakness goes for the
unbounded non-deterministic choice @z.(P ⇒ S).

Hence our contribution consists of two methods for identifying the relevant
variables. The first one only considers the data-flow dependency. It is efficient,
but may select a set too small of relevant variables, resulting in a set with too
many behaviors in the abstracted model. The second one uses both data and
control flow dependencies, but requires a predicate simplification to restrict the
size of XA. It produces abstract models that have the same set of behaviors as
the original model, w.r.t. the abstract variables. This second method may select
a set with too many relevant variables because predicate simplification is an
undecidable problem.

Proposition 1: Data-Flow Dependency Only This first method considers
as relevant only the variables that appear on the right side of an assignment
symbol to an abstract variable. Starting from the set of observed variables, the
set of all abstract variables is computed as the least fix-point when adding the
relevant variables. For instance, the set of relevant variables of the electrical



system is empty if the set of observed variables is {Bat}. Hence if a test purpose
is only based on Bat, then XA = {Bat}. A drawback of this method is that it
can introduce in A new execution traces w.r.t. M. Indeed, it may weaken the
guards of some of the events, that would thus become enabled more often.

Proposition 2: Data-Flow and Control-Flow Dependencies This second
method first computes a predicate characterizing a condition under which an
abstract variable is modified, then simplifies it, and finally considers all its free
variables as relevant. We express by means of formula 7 the modifications really
performed by a substitution S on a set XA:

ModXA
(S) =̂ PrdXA

(S) ∧ (
∨

x∈XA

x 6= x
′). (7)

Our intention is that the predicate, that defines the condition under which an
abstract variable is modified, only involves the variables really required to modify
it. Hence primed variables are not quantified, but are allowed to be free. For
instance, consider XA = {x} and the substitution x :=y[](z>0 ⇒ x :=w)[]v :=3.
The predicate has to be in the shape of: x′ = y ∨ (z > 0 ∧ x′ = w), where the
variables y, w and z are relevant whereas v is not.

The ModXA
predicate can also be defined by induction on the primitive

substitutions, as described in appendix A.
Finally, XA is computed as a least fix-point, by iteratively incrementing for

each event the initial set of observed variables with the relevant variables. This
process terminates since the set of variables is finite. For instance, Mod{Bat}

gives an empty set of relevant variables when applied to the example, as shown
in Fig. 3, while Mod{H} gives XA = {Bat,H}.

Mod{Bat}(Init) ⇔ Bat = {1 7→ ok, 2 7→ ok, 3 7→ ok}
Mod{Bat}(Tic) ⇔ false (no assignment of Bat)
Mod{Bat}(Com) ⇔ false (no assignment of Bat)
Mod{Bat}(Fail) ⇔ card(Bat ⊲ {ok}) > 1

∧∃nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat ⊲ {ok}) ∧Bat′(nb) = ko)
Mod{Bat}(Rep) ⇔ ∃nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat ⊲ {ko}) ∧ Bat′(nb) = ok)

Fig. 3. Mod{Bat} Computation Applied to the Example

4.2 Predicate Transformation

Once the set of abstract variables XA(⊆ XM) is defined, we have to describe
how to abstract a model according to XA. We first define the transformation
function TXA

(P ) that abstracts a predicate P according to XA. We define TX on
predicates in the conjunctive form (see Def. 4) by induction with the rules given
in Fig. 4.

An elementary predicate is left unchanged when all the variables used in
the predicate are considered in the abstraction (see the rule R1). Otherwise,



when an expression depends on some variables not kept in the abstraction, an
elementary predicate is undetermined (see the rule R2). As we want to weaken
the predicate, we replace an undetermined elementary predicate by true. Con-
sequently, a predicate P1 ∧ P2 is transformed into P1 when P2 is undetermined,
and a predicate P1 ∨P2 is transformed into true when P1 or P2 is undetermined
(see the rules R3 and R4). Finally, the transformation of a quantified predicate
is the transformation of its body w.r.t. the observed variables, augmented with
the quantified variable (see the rule R5).

TX(E(Y ) r E(Z)) =̂ E(Y ) r E(Z) if Y ⊆ X and Z ⊆ X (R1)

TX(E(Y ) r E(Z)) =̂ true if Y 6⊆ X or Z 6⊆ X (R2)

TX (P1 ∨ P2) =̂ TX (P1) ∨ TX (P2) (R3)

TX (P1 ∧ P2) =̂ TX (P1) ∧ TX (P2) (R4)

TX (αz.P ) =̂ αz.TX∪{z}(P ) (R5)

Fig. 4. CF Predicate Transformation Rules

For example the invariant I of the electrical system is transformed, according
to the single variable Bat, into T{Bat}(I) = Bat ∈ 1..3 → {ok, ko} as in Fig. 5.

T{Bat}(H∈{tic, tac} ∧ Sw∈1..3 ∧ Bat∈1..3 → {ok, ko} ∧ Bat(Sw)=ok)

=
T{Bat}(H∈{tic, tac}) ∧ T{Bat}(Sw∈1..3)

∧ T{Bat}(Bat∈1..3 → {ok, ko}) ∧ T{Bat}(Bat(Sw) = ok)
applying R4

= Bat ∈ 1..3 → {ok, ko} applying R1 and R2

Fig. 5. Example of Predicate Transformation

Property 1. Let P be a CF predicate in Pred and let X be a set of variables.
P ⇒ TX(P ) is valid.

Proof. As we said before, TX(P ) is weaker than P . Indeed, for any predicate P in
CF there exist p1 and p2 such that P = p1 ∧ p2 and such that it is transformed
either into p1 ∧ p2, or into p1, or into p2, or into true, by application of the
transformation rules Ri. For any disjunctive predicate P there exist p1 and p2
such that P = p1 ∨ p2 and p1 ∨ p2 is transformed either into p1 ∨ p2 or into true.

4.3 Substitution Transformation

The abstraction of substitutions is defined through cases in Fig. 6 on the primi-
tive forms of substitutions. Intuitively, any assignment x := E is preserved into
the transformed model if and only if x is an abstract variable. According to both
of the two methods described in sec. 4.1, if x is an abstract variable, then so are
all the variables in E. Therefore, in rules R6 to R11, we do not transform the
expressions E and F .

A substitution is abstracted by skip when it does not modify any variable
from X (see rules R6, R8, R9 and R10 in which y := F is abstracted by skip).



The assignment of a variable x is left unchanged if x is an abstract variable (see
rules R7, R10, R11). The transformation of a guarded substitution S is such that
TX(S) is enabled at least as often as S, since TX(P ) is weaker than P from
Prop. 1 (see rule R12). The bounded non deterministic choice S1 []S2 becomes a
bounded non deterministic choice between the abstraction of S1 and S2 (see rule
R13). The quantified substitution is transformed by inserting the bound variable
into the set of abstract variables (see rule R14).

TX (x := E) =̂ skip if x /∈ X (R6)

TX (x := E) =̂ x := E if x ∈ X (R7)

TX(skip) =̂ skip (R8)

TX (x, y := E, F ) =̂ skip if x /∈ X and y /∈ X (R9)

TX (x, y := E, F ) =̂ x := E if x ∈ X and y /∈ X (R10)

TX (x, y := E, F ) =̂ x, y := E, F if x ∈ X and y ∈ X (R11)

TX (P ⇒ S) =̂ TX (P ) ⇒ TX (S) (R12)

TX (S1[]S2) =̂ TX (S1)[]TX(S2) (R13)

TX(@z.S) =̂ @z.TX∪{z}(S) (R14)

Fig. 6. Primitive Substitution Transformation Rules

4.4 B Event System Transformation

According to the predicate and substitution transformation functions (see fig-
ure 4 and figure 6), we define the transformation of a B event model according to
a set of abstract variables (section 4.1) in Def. 5. This transformation translates
a correct model M into a model A that simulates M (Sec. 4.5). The electrical
system is transformed as shown in Fig. 7 for the set of abstract variables {Bat}.

Definition 5 (B Event System Transformation). Let XA be a set of ab-
stract variables, defined as in Sec. 4.1 from a set of observed variables X with
X ⊆ XM. A correct B event system M =〈XM, IM, InitM, EvM〉 is abstracted as
the B event system A = 〈XA, IA, InitA, EvA〉 as follows:

– XA ⊆ XM, the set of abstract variables is a subset of the state variables,
– IA = TXA

(IM), the invariant is transformed,
– InitA = TXA

(InitM), the initialization is transformed,
– to each event ev =̂ SM in EvM is associated ev =̂ TXA

(SM) in EvA.

4.5 Correctness

When the set of abstract variables XA preserve both the data and control flows
as defined in Sec. 4.1 (Proposition 2), the transition relation, restricted to XA, is
preserved, as proved (see appendix C) by theorem 1. A and M have an equivalent
before-after relation PrdXA

, therefore they are bisimilar. Hence when a CTL*
property is verified on A it holds on M and test cases generated from A can
always be instantiated on M.



Theorem 1. Let S be a substitution. Let X be a set of abstract variables com-
posed of any free variable of ModX(S), we have PrdX(S) ⇔ PrdX(TX(S)).

With the method defined in Sec. 4.1 by Proposition 1, A is a simulation of
M. The B refinement relation (see Def. 3) is proven in [14] to be a simulation:
A simulates M by a τ -simulation. τ is a silent action corresponding in our case
to an event reduced to skip or to P ⇒ skip. Theorems 2 and 3 establish that M
refines A, and thus that A simulates M. The safety properties are preserved, but
some tests generated from A might be impossible to instantiate on M.

Theorem 2. Let I be a CF invariant of a correct B event system, let S be a
substitution and let X be a set of abstract variables. The transformation rules
R6 to R14 are such that S refines TX(S) according to the invariant I.

Theorem 3. Let X be a set of abstract variables defined as in Proposition 1.
Let TX be the transformation defined in Fig. 6, and let A be an abstraction of
an event system M defined according to Def. 5. A is refined by M in the sense of
Def. 3.

Theorem 2 establishes that any substitution S refines its transformation
TX(S) for a given set of abstract variables X . The proof is given in Appendix B.
Theorem 3 establishes that a B event system M refines the B abstract system
obtained according to Def. 5 by applying to M the transformation rules of Fig. 4
and Fig. 6.

Proof (of theorem 3). This is a direct consequence of theorem 2 and Def. 5 since
the substitution InitA =̂ TX(InitM) is refined by InitM, and that for any event
ev =̂ SM, the substitution SA =̂ TX(SM) is refined by SM.

X =̂ {Bat}
I =̂ Bat ∈ 1..3 → {ok, ko}
Init =̂ Bat := {1 7→ ok, 2 7→ ok, 3 7→ ok}
Tic =̂ skip
Com =̂ card(Bat ⊲ {ok}) > 1 ⇒ @ns.(ns ∈ 1..3 ∧ Bat(ns) = ok ⇒ skip)
Fail =̂ card(Bat ⊲ {ok}) > 1 ⇒

@nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat ⊲ {ok}) ⇒ Bat(nb) := ko)
Rep =̂ @nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat ⊲ {ko}) ⇒ Bat(nb) := ok)

Fig. 7. B Syntactically Abstracted Specification of the Electrical System

5 Application of the Method to a Testing Process

We show in this section how to use the syntactic abstraction in a model-based
testing approach.



5.1 Test Generation from an Abstraction

We have described in [5] a model-based testing process using an abstraction as
input. It can be summarized as follows. A validation engineer describes by means
of a handwritten test purpose TP how he intends to test the system, according to
his know-how. We have proposed in [15] a language based on regular expressions,
to describe a TP as a sequence of actions to fire and states to reach (targeted
by these actions). The actions can be explicitly called in the shape of event
names, or left unspecified by the use of a generic name. The unspecified calls
then have to be replaced with explicit event names. However, a combinatorial
explosion problem occurs, when searching in a concrete model for the possible
replacements that lead to the target states. This leads us to use abstractions
instead of concrete models. Figure 8 shows our approach.

Fig. 8. Generating Tests from Test Purpose by Abstraction

We perform a synchronized product between an abstraction A and the au-
tomaton of a TP. This results in a model SP whose executions are the executions
of A that match the TP. An implementation [16] of the Chinese Postman algo-
rithm is applied to SP to cover its transitions. The result is a set of abstract
symbolic tests AST. These tests are instantiated from M as a set IT of instanti-
ated tests.

5.2 Abstraction Computation

We show in this section two ways of producing an abstraction A that can be
used as an input of the process of Fig. 8. The syntactic abstraction of Sec. 4 is
used in one of these two ways.

In order to compute the synchronized product of an abstraction A with the
automaton of a TP, we compute the semantics of A as a labelled transition
system. We use GeneSyst [7] for that purpose. This tool computes a semantic
abstraction of a B model in the shape of a symbolic labelled transition system.
The semantic abstraction relies on feasibility proofs of the transitions between
two symbolic states. GeneSyst generates proof obligations (POs) for each of
the potential transitions between two symbolic states, and tries to solve them
automatically.

The two main drawbacks of this process are its time cost and the proportion
of POs not automatically solved. Indeed, each unsolved PO results in a transition
that is kept in the symbolic labelled transition system, although it is possibly
unfeasible. An abstract symbolic test going through such a transition may be



impossible to instantiate from the concrete model M. By applying a preliminary
phase of syntactic abstraction, we reduce the impact of that problem by reducing
the number and the size of the POs, since GeneSyst operates on an already
abstracted model. For example, no proof obligation is generated for an event
reduced to skip (it becomes a reflexive transition on any symbolic state).

Fig. 9. Abstraction Process

The experimental results presented in Sec. 6 compare two approaches. The
first one (see Fig. 9/Process 1) is only semantic, while the second one (see
Fig. 9/Process 2) combines a syntactic and a semantic abstraction.

6 Experimental Results

We have applied our method to four case studies. They are various cases of
reactive systems: an automatic conveying system (Robot [17]), a reverse phone
book service (Qui-Donc [2]), the electrical system2 (Electr.) and an electronic
purse (DeMoney [6]). Each one is abstracted w.r.t. two sets of abstract variables.
These sets have been computed according to Proposition 1 of Sec. 4.1. We also
have tried to compute the abstract variables according to Proposition 2, but all
the variables have been computed as abstract in three case studies. Only for the
electrical system the set of abstract variables was the same as with Proposition 1.
These case studies reveal a limit in the application of Proposition 2.

In Sec. 6.1 we present an experimental evaluation of the syntactic abstraction.
Then, in Sec. 6.2 we compareAM with AA respectively computed by the semantic
abstraction process or by its combination with the syntactic one.

6.1 Impact of the Syntactic Abstraction on Models

Table 1 indicates the size of the case studies and the syntactically abstracted
models. The Symbols “♯”, “Ev.”, “Var.” and “Pot.” respectively stand for num-
ber of, Events, Variables and Potential. For example the Robot, defined by 9
events and 6 variables is abstracted w.r.t. two sets of respectively 3 and 4 ab-
stract variables.
2 The 100 lines length of the model, in Table 1, refer to a “verbose” version of the
model, much more readable than our version of Fig. 2.



Case Study ♯Ev.
Model M Syntactically abstracted model A

♯Var. ♯B lines ♯Pot. states ♯Var. ♯B lines ♯Pot. states ♯Symb. states

Robot 9 6 100 384
3 90 48 6
4 90 144 8

QuiDonc 4 3 170 13
2 160 16 5
2 160 16 6

Electr. 4 3 100 36
1 50 5 2
1 40 2 2

DeMoney 11 9 330 1030
1 140 65536 3
2 180 7 4

Table 1. Size of the Case Studies and of their Syntactical Abstractions

A direct observable result of the syntactic abstraction is a reduction of the
number of potential states of the model. Also notice that the simplification
reduces from 10% up to 50% the number of lines of the model.

6.2 Comparison of the Abstraction Processes 1 and 2

Case
Process 1 : AM Process 2 : AA Traces

study ♯Trans.
♯Unau.

♯PO
Time ♯Inst./ Trans. Cover.

♯Trans.
♯Unau.

♯PO
Time ♯Inst./ Trans. Cover.

inclusion
Trans. (s) ♯Tests. of AM Trans. (s) ♯Tests. of AA

Robot
42 5 263 64 4/11 29/37 (78%) 36 0 143 35 7/11 31/36 (86%) AA ⊂ AM
51 0 402 76 4/23 35/51 (68%) 50 0 242 49 8/23 38/50 (76%) AA ⊂ AM

Qui- 20 2 71 19 9/11 12/18 (66%) 25 7 89 21 6/11 11/18 (61%) AA * AM
Donc 25 2 89 21 4/10 6/23 (26%) 29 6 103 23 4/10 6/23 (26%) AA * AM

Electr.
13 5 26 7 2/2 8/8 (100%) 13 5 16 5 2/2 8/8 (100%) AA = AM
7 0 21 5 3/3 7/7 (100%) 7 0 9 2 3/3 7/7 (100%) AA = AM

De- 38 5 116 189 17/18 25/33 (76%) 38 5 68 38 17/18 25/33 (76%) AA ⊂ AM
Money 53 0 290 172 22/38 30/53 (56%) 50 0 130 65 20/35 26/50 (52%) AA ⊂ AM

Table 2. Comparison of the semantic and syntactic/semantic abstraction processes

Table 2 compares the abstractions computed either directly from the behav-
ioral models (see process 1 in Fig. 9), or from their syntactic abstractions (see
process 2 in Fig. 9). The abbreviations “Trans.”, “Unau.”, “Inst.” and “Cover.”
stand respectively for transitions, unauthorized, instantiated and coverage.

We see on our examples that there is between 1.8 and 2.3 fewer POs to com-
pute with process 2 than with process 1, except for the Qui-Donc. The semantic
abstraction computation in process 2 takes from twice up to five times less time
than in process 1, where no previous syntactic abstraction have been performed.
For the Qui-Donc, the syntactical abstraction has too much over-approximated
the initial model, which explains the augmentation of the POs w.r.t. the pro-
cess 1. Finally, there are four cases out of eight where the abstraction AA is more
precise than AM in the sense that it has less transitions, due to the reduction
of the number of unproved POs. In these four cases, the set of traces of AA

is included in the set of traces of AM. In the case of the electrical system, the
set of traces are equal. In the Qui-Donc case, the traces cannot be compared.
The simplification by the syntactic abstraction of the events and of the invariant
makes that AA may contain more transitions (thus more traces) than AM. But
the number and the difficulty of the POs is greater to get AM than to get AA,



so that proof failures may occur more often with AM. As a result, AM can also
contain transitions that are not in AA.

As for the ratios of tests instantiated and of transitions covered of the abstrac-
tion, we observe their stability with or without syntactic abstraction. Although
the ratios are a bit better (or equal) for the Robot and the Electrical System,
and a bit worse for Qui-Donc and Demoney, they are mainly very close to each
other. But, due to the reduction of the number of POs, the time to obtain these
comparable results is improved with process 2, i.e. when there is a preliminary
syntactic abstraction phase. Again, this is not true for the Qui-Donc since on
the contrary, its number of POs has increased.

Finally, the method had no interest with the Qui-Donc, which was the small-
est example. But, as shown by DeMoney, its efficiency in terms of gain of the
abstraction computation time, of reduction of the number of unproved POs and
of precision of the abstraction, grows with the size of the examples.

7 Conclusion, Related Works and Further works

We have presented in the B framework a method for abstracting an event system
by elimination of some state variables. In this context, we have proposed two
methods to compute the set of variables kept in the abstraction according to
the set of observed variables. We have proved that when using the first method,
the generated abstraction simulates the concrete model, while when using the
second method, the generated abstraction bi-simulates the concrete model. This
is useful for verifying safety properties and generating tests.

In the context of test generation, our method consists in initializing the
test generation process from event B model described in [5], by a syntactic
abstraction. Since the syntactic abstraction reduces the size of the model, the
main advantage of this method is that it reduces the set of uninstantiable tests,
by reducing the level of abstraction (reduces the number of PO generated and
facilitates the proof of the remaining PO). Moreover, this results in a gain of
computation time. We believe that the bigger the ratio of the number of state
variables to the number of observed variables is, the bigger the gain is. This
conjecture needs to be confirmed by experiments on industrial size applications.

Many other works define model abstraction methods to verify properties
or to generate tests. The method of [18] uses an extension of the model-checker
Murφ to compute tests from projected state coverage criteria that eliminate some
state variables and project others on abstract domains. In [19], an abstraction is
computed by partition analysis of a state-based specification, based on the pre
and post conditions of the operations. Constraint solving techniques are used.
The methods of [20–22] use theorem proving to compute the abstract model,
which is defined over boolean variables that correspond to a set of a priori fixed
predicates. In contrast, our method first introduces a syntactical abstraction
computation from a set of observed variables, and further abstracts it by theorem
proving. [23] also performs a syntactic transformation, but requires the use of a
constraint solver during a model checking process.



Other automatic abstraction methods [24] are limited to finite state systems.
The deductive model checking algorithm of [25] produces an abstraction w.r.t.
a LTL property by an iterative refinement process that requires human exper-
tise. Our method can handle infinite state space specifications. The paper [26]
presents a syntactic abstraction method for guarded command programs based
on assignment substitution. The method is sound and complete for programs
without unbounded non determinism. However, the method is iterative and does
not terminate in the general case. It requires the user to give an upper-bound of
the number of iterations. The paper also presents an extension for unbounded
non deterministic programs that is sound but not complete, due to an expo-
nential number of predicates generated at each iteration step. In contrast, our
syntactic method is iterative on the syntactic structure of the specifications. It
is sound but not complete. It handles unbounded non deterministic specifica-
tions with no need for other iterative process and always terminates. Above all,
our method does not compute any weakest precondition whereas the approach
in [26] does, which possibly introduces infinitely many new predicates.

The syntactic method that we have presented is correct, but, in the case of
Proposition 1, may sometimes produce inaccurate over-approximations due to
a too strong abstraction (see for example the experiments on the Qui-Donc).
Proposition 2 produces a bisimulation, but may leave the initial model un-
changed, i.e. not abstracted, if all the variables are computed as abstract. We
have to find a compromise between the two propositions, that would reduce the
number of abstract variables, but that would keep at least partially the control
structure of the operations. Also, we think that rules could be improved to get
a finer approximation. For instance, improving the rules is possible when the
invariant contains an equivalence such as x = c ⇔ y = c′. If y is an eliminated
variable and x an observed one, we could substitute all the occurrences of the
elementary predicate y = c′ with x = c. This would preserve the property in
the syntactic abstraction AA, so that the following semantic abstraction would
be more accurate. Such rules should prevent the addition of transitions in the
Qui-Donc abstraction AA w.r.t. AM.

We think that extending the test generation method introduced in [5] by
using a combination of syntactic and semantic abstractions will improve the
method, since the abstraction is more accurate if there are less unproved POs.
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A Inductive Definition of ModX

The ModX predicate can be defined by induction through primitive substitu-
tions, as described in Table 3. Intuitively, an assignment x := E is associated to
false if and only if x is not in X or x already has the same value as E. Other
assignment cases are just some generalizations. This implements the data-flow
dependency. For control flow dependency, a non-deterministic choice is an union
between control-flow branches, thus a disjunction between predicates, and a
guarded substitution P ⇒ S is associated to the whole condition P augmented
with the result of the analysis of S. Once this predicate is expressed, it needs to
be logically simplified.

Substitution Modification Predicate Condition

ModX(x := E) =̂ false x /∈ X
ModX(x := E) =̂ x′ = E ∧

∧
z∈X−{x}(z

′ = z) ∧ x 6= x′ x ∈ X

ModX(x, y := E,F ) =̂ false x /∈ X ∧ y /∈ X
ModX(x, y := E,F ) =̂ x′ = E ∧

∧
z∈X−{x}(z

′ = z) ∧ x 6= x′ x ∈ X ∧ y /∈ X

ModX(x, y := E,F ) =̂ x′=E ∧ y′=F ∧
∧

z∈X−{x,y}(z
′=z) ∧

∨
z∈{x,y}(z 6=z′) x ∈ X ∧ y ∈ X

ModX(skip) =̂ false
ModX(P ⇒ S) =̂ P ∧ ModX (S)
ModX(S1 [] S2) =̂ ModX(S1) ∨ ModX(S2)
ModX(@z · S) =̂ ∃(z, z′) · ModX∪{z}(S)

Table 3. ModX(S) Predicate Defined through Primitive Substitutions

Property 2. ModX(S) defined in Table 3 satisfy the definition in formula (7).

Proof (of property 2). For any case of S, we prove that ModX(S) defined as
in Formula (7) replacing PrdX(S) by its definition given in formula (6) and
transformed by the formulas (1) to (4) is equal to its value in Table 3.

B Proof of Theorem 2

Proof. The refinement theory as defined in B [10], requires that variable sets
from abstraction and variable sets from refinement are disjoint. If a variable
x is preserved through the refinement process, then it has to be renamed, i.e.
xrenamed, and associated by a gluing invariant, i.e. x = xrenamed. In order to
prove the correctness of the refinement, we introduce the Ren() function, which
renames every variable from a substitution or a predicate. Hence, the invariant IA
abstracted from IM and the substitution SA abstracted from any SM are defined
as follows:

IA =̂ Ren(TX(IM)) SA =̂ Ren(TX(SM))

To prove that SM is a correct refinement of SA, we need to prove (Def. 3):

PCA ∧ PCM ∧ IA ∧ IM ∧ IG ⇒ [SM]¬[SA]¬(IM ∧ IG) (R15)



where IG is the gluing invariant IG =̂
∧

xi∈X(xi = Ren(xi)). In order to prove

formula (R15), it is sufficient to establish that the following two formulas hold:
PCA ∧ PCM ∧ IA ∧ IM ∧ IG ⇒ [SM]¬[SA]¬IM (R16)

PCA ∧ PCM ∧ IA ∧ IM ∧ IG ⇒ [SM]¬[SA]¬IG (R17)

Since free variable sets from IA and IM are strictly disjoint, (R16) can be rewritten
as: PCA ∧PCM ∧ IA ∧ IM ∧ IG ⇒ [SM]IM, that holds, since the initial model M is
correct. Hence, we only have to establish (R17) to prove Theorem 2. The proof
is by induction on the five primitive forms of substitutions. We make a case
analysis for each rule in Fig. 6. We use Prop. 1 of Sec. 4.2 and axioms (1 to 5)
defined in Sec. 2.

We denote by Hyps the repetitive predicate Hyps =̂ PCA ∧PCM ∧ IA ∧ IM ∧ IG.

Case SM =̂ x := E
Rule R6 SA =̂ skip when x 6∈ X

is Hyps ⇒ [x := E]¬[skip]¬IG valid ?
It is valid, according to (1), since x is not free in IG.

Rule R7 SA =̂ Ren(x) := Ren(E) when x ∈ X

is Hyps ⇒ [x := E]¬[Ren(x) := Ren(E)]¬IG valid ?
It is valid since Rule R7 is the identity.

Case SM =̂ skip
Rule R8 SA =̂ skip

Hyps ⇒ [skip]¬[skip]¬IG is obviously valid according to (1).
Case SM =̂ x, y := E, F

Rules R9 to R11 proofs are similar to the first case.
Case SM =̂ P ⇒ S

Rule R12 SA =̂ Ren(TX(P )) ⇒ Ren(TX(S))
is Hyps ⇒ [P ⇒ S]¬[Ren(TX(P )) ⇒ Ren(TX(S))]¬IG valid ?
≡ Hyps ⇒ P ⇒ [S](Ren(TX(P )) ∧ ¬[Ren(TX(S))]¬IG) – applying (2)

≡

{
(R12.1) (Hyps ∧ P ⇒ [S]Ren(TX(P )))

∧ (R12.2) (Hyps ∧ P ⇒ [S]¬[Ren(TX(S))]¬IG)
– applying (5)

According to Prop 1, (R12.1) holds since S variables are not free in Ren(TX(P ))
and since IG is in Hyps. (R12.2) is valid w.r.t. the induction hypothesis:
Hyps⇒ [S]¬[Ren(TX(S))]¬IG.

Case SM =̂ S [] S′

Rule R13 SA =̂ Ren(TX(S))[]Ren(TX(S′))
is Hyps ⇒ [S [] S′]¬[Ren(TX(S))[]Ren(TX(S′))]¬IG valid ?
≡Hyps⇒ [S []S′](¬[Ren(TX(S))]¬IG∨¬[Ren(TX(S′))]¬IG) – applying (3)

≡

{
(Hyps⇒ [S](¬[Ren(TX(S))]¬IG∨¬[Ren(TX(S′))]¬IG))

∧ (Hyps⇒ [S′](¬[Ren(TX(S))]¬IG∨¬[Ren(TX(S′))]¬IG))
– applying (3)

This formula is valid because the two induction hypotheses are valid:
1. Hyps ⇒ [S]¬[Ren(TX(S))]¬IG,
2. Hyps ⇒ [S′]¬[Ren(TX(S′))]¬IG.

Case SM =̂ @z.S
Rule R14 SA =̂ Ren(@z.TX∪{z}(S))

is Hyps ⇒ [@z.S]¬[Ren(@z.TX∪{z}(S))]¬IG valid ?
≡ Hyps ⇒ ∀z.[S]¬∀Ren(z).[Ren(TX∪{z}(S))]¬IG – applying (4)
It is valid since the following formula is implied by the induction hypothesis:

Hyps ⇒ ∀z.∃Ren(z).(z = Ren(z) ∧ [S]¬[Ren(TX∪{z}(S))]¬(IG ∧ z = Ren(z)))

Hence, Theorem 2 holds.



C PrdX(M) = PrdX(TX(M)) ?

Let S be a substitution. Let X be a set of abstract variables composed of any
free variable of ModX(S) (see Proposition 2 in Sec. 4.1). We propose to prove
that the following formula holds: PrdX(S) ⇔ PrdX(TX(S)).

Since PrdX(S) =̂ ¬[S]¬
∧

x∈X x = x′ (see formula (6) in Sec. 2), we verify
it by induction through primitive substitutions proving that [S]P ⇔ [TX(S)]P
holds when P is defined only in terms of abstract variables in X .

Let [TX(S)]P ⇔ [S]P be the induction hypothesis:

[TX(S)]P ⇔ [S]P Condition or justification

[skip]P ⇔ [x := E]P if x /∈ X

[x := E]P ⇔ [x := E]P if x ∈ X

[skip]P ⇔ [skip]P

[skip]P ⇔ [x, y := E, F ]P if x /∈ X and y /∈ X

[x := E]P ⇔ [x, y := E, F ]P if x ∈ X and y /∈ X

[y := F ]P ⇔ [x, y := E, F ]P if x /∈ X and y ∈ X

[x, y := E, F ]P ⇔ [x, y := E, F ]P if x ∈ X and y ∈ X

TX (P1) ⇒ [TX(S)]P ⇔ P1 ⇒ [S]P since TX (P1) = P1 according to

ModX(P1 ⇒ S) definition.

[TX (S1)[]TX(S2)]P ⇔ [S1[]S2]P by induction hypothesis

[@z.TX∪{z}(S)]P ⇔ [@z.S]P by formula 5 and induction hypothesis

Notice that the hypothesis when P is defined only in terms of abstract vari-
ables X induces that [x := E]P = P when x /∈ X because there is no occurrence
of x in P .

We can then conclude that the set of behaviors on the set of abstract variables
X of an event ev is unchanged when we simplify it by TX .


