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Abstract. Let G be a simple, undirected, finite graph with vertex set V (G) and edge set E(G). A k-

dimensional box is a Cartesian product of closed intervals [a1, b1]× [a2, b2]× · · ·× [ak, bk]. The boxicity of G,

box(G) is the minimum integer k such that G can be represented as the intersection graph of k-dimensional

boxes, i.e. each vertex is mapped to a k-dimensional box and two vertices are adjacent in G if and only if

their corresponding boxes intersect. Let P = (S, P ) be a poset where S is the ground set and P is a reflexive,

anti-symmetric and transitive binary relation on S. The dimension of P , dim(P) is the minimum integer t

such that P can be expressed as the intersection of t total orders.

Let GP be the underlying comparability graph of P , i.e. S is the vertex set and two vertices are adjacent if and

only if they are comparable in P . It is a well-known fact that posets with the same underlying comparability

graph have the same dimension. The first result of this paper links the dimension of a poset to the boxicity

of its underlying comparability graph. In particular, we show that for any poset P , box(GP)/(χ(GP)− 1) ≤

dim(P) ≤ 2box(GP), where χ(GP) is the chromatic number of GP and χ(GP) 6= 1. It immediately follows

that if P is a height-2 poset, then box(GP) ≤ dim(P) ≤ 2box(GP) since the underlying comparability graph

of a height-2 poset is a bipartite graph.

The second result of the paper relates the boxicity of a graph G with a natural partial order associated with

the extended double cover of G, denoted as Gc: Note that Gc is a bipartite graph with partite sets A and

B which are copies of V (G) such that corresponding to every u ∈ V (G), there are two vertices uA ∈ A and

uB ∈ B and {uA, vB} is an edge in Gc if and only if either u = v or u is adjacent to v in G. Let Pc be

the natural height-2 poset associated with Gc by making A the set of minimal elements and B the set of

maximal elements. We show that box(G)
2

≤ dim(Pc) ≤ 2box(G) + 4.

These results have some immediate and significant consequences. The upper bound dim(P) ≤ 2box(GP)

allows us to derive hitherto unknown upper bounds for poset dimension such as dim(P) ≤ 2 tree-width (GP)+

4, since boxicity of any graph is known to be at most its tree-width + 2. In the other direction, using the

already known bounds for partial order dimension we get the following: (1) The boxicity of any graph with

maximum degree ∆ is O(∆ log2 ∆) which is an improvement over the best known upper bound of ∆2 + 2.

(2) There exist graphs with boxicity Ω(∆ log∆). This disproves a conjecture that the boxicity of a graph is

O(∆). (3) There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on n

vertices with a factor of O(n0.5−ǫ) for any ǫ > 0, unless NP = ZPP .

Keywords: Boxicity, partial order, poset dimension, comparability graph, extended double cover.

1 Introduction

1.1 Boxicity

A k-box is a Cartesian product of closed intervals [a1, b1] × [a2, b2] × · · · × [ak, bk]. A k-box representation of a

graph G is a mapping of the vertices of G to k-boxes in the k-dimensional Euclidean space such that two vertices
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in G are adjacent if and only if their corresponding k-boxes have a non-empty intersection. The boxicity of a graph

denoted box(G), is the minimum integer k such that G has a k-box representation. Boxicity was introduced by

Roberts [24]. Cozzens [9] showed that computing the boxicity of a graph is NP-hard. This was later strengthened

by Yannakakis [31] and finally by Kratochv̀ıl [22] who showed that determining whether boxicity of a graph is at

most two itself is NP-complete.

It is easy to see that a graph has boxicity at most 1 if and only if it is an interval graph, i.e. each vertex of the

graph can be associated with a closed interval on the real line such that two intervals intersect if and only if the

corresponding vertices are adjacent. By definition, boxicity of a complete graph is 0. Let G be any graph and Gi,

1 ≤ i ≤ k be graphs on the same vertex set as G such that E(G) = E(G1) ∩ E(G2) ∩ · · · ∩ E(Gk). Then we say

that G is the intersection graph of Gi s for 1 ≤ i ≤ k and denote it as G =
⋂k

i=1 Gi. Boxicity can be stated in

terms of intersection of interval graphs as follows:

Lemma 1. Roberts [24]: The boxicity of a non-complete graph G is the minimum positive integer b such that G

can be represented as the intersection of b interval graphs. Moreover, if G =
⋂m

i=1 Gi for some graphs Gi then

box(G) ≤
∑m

i=1 box(Gi).

Roberts, in his seminal work [24] proved that the boxicity of a complete k-partite graph is k. Chandran

and Sivadasan [6] showed that box(G) ≤ tree-width (G) + 2. Chandran, Francis and Sivadasan [5] proved that

box(G) ≤ χ(G2) where, χ(G2) is the chromatic number of G2. In [14] Esperet proved that box(G) ≤ ∆2(G) + 2,

where ∆(G) is the maximum degree of G. Scheinerman [25] showed that the boxicity of outer planar graphs is

at most 2. Thomassen [26] proved that the boxicity of planar graphs is at most 3. In [11], Cozzens and Roberts

studied the boxicity of split graphs.

1.2 Poset Dimension

A partially ordered set or poset P = (S, P ) consists of a non empty set S, called the ground set and a reflexive,

antisymmetric and transitive binary relation P on S. A total order is a partial order in which every two elements

are comparable. It essentially corresponds to a permutation of elements of S. A height-2 poset is one in which

every element is either a minimal element or a maximal element. A linear extension L of a partial order P is a

total order which satisfies (x ≤ y in P ⇒ x ≤ y in L). A realizer of a poset P = (S, P ) is a set of linear extensions

of P , say R which satisfy the following condition: for any two distinct elements x and y, x < y in P if and only if

x < y in L, ∀L ∈ R. The poset dimension of P (sometimes abbreviated as dimension of P) denoted by dim(P) is

the minimum integer k such that there exists a realizer of P of cardinality k. Poset dimension was introduced by

Dushnik and Miller [12]. Clearly, a poset is one-dimensional if and only if it is a total order. Pnueli et al. [23] gave

a polynomial time algorithm to recognize dimension 2 posets. In [31] Yannakakis showed that it is NP-complete

to decide whether the dimension of a poset is at most 3. For more references and survey on dimension theory

of posets see Trotter [28,29]. Recently, Hegde and Jain [21] showed that it is hard to design an approximation

algorithm for computing the dimension of a poset.

A simple undirected graph G is a comparability graph if and only if there exists some poset P = (S, P ), such

that S is the vertex set of G and two vertices are adjacent in G if and only if they are comparable in P . We will

call such a poset an associated poset of G. Likewise, we refer to G as the underlying comparability graph of P .

Note that for a height-2 poset, the underlying comparability graph is a bipartite graph with partite sets A and

B, with say A corresponding to minimal elements and B to maximal elements. For more on comparability graphs

see [19]. It is easy to see that there is a unique comparability graph associated with a poset, whereas, there can be

several posets with the same underlying comparability graph. However, Trotter, Moore and Sumner [30] proved

that posets with the same underlying comparability graph have the same dimension.
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2 Our Main Results

The results of this paper are the consequence of our attempts to bring out some connections between boxicity

and poset dimension. As early as 1982, Yannakakis had some intuition regarding a possible connection between

these problems when he established the NP-completeness of both poset dimension and boxicity in [31]. But

interestingly, no results were discovered in the last 25 years which establish links between these two notions.

Perhaps the researchers were misled by some deceptive examples such as the following one: Consider a complete

graph Kn where n is even and remove a perfect matching from it. The resulting graph is a comparability graph

and the dimension of any of its associated posets is 2, while its boxicity is n/2. In this context it may be worth

recalling a result from [16] which relates the poset dimension to another parameter namely the dimension of box

orders. A poset P = (S, P ) is said to be a box order in m dimensions if there exists a mapping of its elements

to m-dimensional axis-parallel boxes such that x < y in P if and only if the box of y strictly contains the box

of x. Box order is a particular type of geometrical containment order (See [16,28]). The result is as follows: the

dimension of P is at most 2m if and only if it is a box order in m dimensions [18,20]. But note that boxicity is

fundamentally different from box orders. As in the case of the above example, we can demonstrate families of

posets of constant dimension whose underlying comparability graphs have arbitrarily high boxicity, which is in

contrast with the above result on box orders.

First we state an upper bound and a lower bound for the dimension of a poset in terms of the boxicity of its

underlying comparability graph.

Theorem 1. Let P = (V, P ) be a poset such that dim(P) > 1 and GP its underlying comparability graph. Then,

dim(P) ≤ 2box(GP ).

Theorem 2. Let P = (V, P ) be a poset and let χ(GP) be the chromatic number of its underlying comparability

graph GP such that χ(GP) > 1. Then, dim(P) ≥ box(GP)
χ(GP )−1 .

Note that if P is a height-2 poset, then GP is a bipartite graph and therefore χ(GP) = 2. Thus, from the above

results we have the following:

Corollary 1. Let P = (V, P ) be a height-2 poset and GP its underlying comparability graph. Then, box(GP ) ≤

dim(P) ≤ 2box(GP ).

The double cover and extended double cover of a graph are popular notions in graph theory. They provide a natural

way to associate a bipartite graph to the given graph. In this paper we make use of the latter construction.

Definition 1. The extended double cover of G, denoted as Gc is a bipartite graph with partite sets A and B

which are copies of V (G) such that corresponding to every u ∈ V (G), there are two vertices uA ∈ A and uB ∈ B

and {uA, vB} is an edge in Gc if and only if either u = v or u is adjacent to v in G.

We prove the following lemma relating the boxicity of G and Gc.

Lemma 2. Let G be any graph and Gc its extended double cover. Then,

box(G)

2
≤ box(Gc) ≤ box(G) + 2.

Let Pc be the natural height-2 poset associated with Gc, i.e. the elements in A are the minimal elements and the

elements in B are the maximal elements. Combining Corollary 1 and Lemma 2 we have the following theorem:

Theorem 3. Let G be a graph and Pc be the natural height-2 poset associated with its extended double cover.

Then, dim(Pc)
2 − 2 ≤ box(G) ≤ 2 dim(Pc) and therefore box(G) = Θ(dim(Pc)).
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2.1 Consequences

New upper bounds for poset dimension: Our results lead to some hitherto unknown bounds for poset

dimension. Some general bounds obtained in this manner are listed below:

1. It is proved in [6] that for any graph G, boxicity of G is at most tree-width(G) + 2. For more information on

tree-width see [2]. Applying this bound in Theorem 1 it immediately follows that, for a poset P , dim(P) ≤

2 tree-width(GP ) + 4.

2. The threshold dimension of a graph G is the minimum number of threshold graphs such that G is the edge

union of these graphs. For more on threshold graphs and threshold dimension see [19]. Cozzens and Halsey

[10] proved that box(G) ≤ threshold-dimension(G), where G is the complement of G. From this it follows

that dim(P) ≤ 2 threshold-dimension(GP ).

3. In [3] it is proved that box(G) ≤

⌊

MVC(G)
2

⌋

+ 1, where MVC(G) is the cardinality of the minimum vertex

cover of G. Therefore, we have dim(P) ≤ MVC(GP ) + 2.

Some more interesting results can be obtained if we restrict GP to belong to certain subclasses of graphs. Note

that there are several research papers in the partial order literature which study the dimension of posets whose

underlying comparability graph has some special structure – interval order, semi order and crown posets are some

examples.

4. Scheinerman [25] proved that the boxicity of outer planar graphs is at most 2 and later Thomassen [26] proved

that the boxicity of planar graphs is at most 3. Therefore, it follows that dim(P) ≤ 4 if GP is outer planar

and dim(P) ≤ 6 if GP is planar.

5. Bhowmick and Chandran [1] proved that boxicity of AT-free graphs is at most χ(GP). Hence, dim(P) ≤

2χ(GP), if GP is AT-free.

6. If GP is an interval graph, then, we get from Theorem 1, dim(P) ≤ 2, since box(GP) = 1. However, observing

that interval graphs are co-comparability graphs this result would follow also as a consequence of a result by

Dushnik and Miller [12]: dim(P) ≤ 2 if and only if GP is a co-comparability graph.

7. The boxicity of a d-dimensional hypercube is O(d/ log(d)) [7]. Therefore, if GP is a height-2 poset which

corresponds to a d-dimensional hypercube, then from Corollary 1 we have dim(P) = O(d/ log(d)).

8. Chandran et al. [4] recently proved that chordal bipartite graphs have arbitrarily high boxicity. From Corollary

1 it follows that height-2 posets whose underlying comparability graph are chordal bipartite graphs can have

arbitrarily high dimension.

Improved upper bound for boxicity based on maximum degree: Füredi and Kahn [17] proved the

following

Lemma 3. Let P be a poset and ∆ be the maximum degree of GP . Then, there exists a constant c such that

dim(P) < c∆(log∆)2.

From Lemma 2 and Corollary 1 we have box(G) ≤ 2box(Gc) ≤ 2 dim(Pc), where Gc is the extended double cover

of G. Note that by construction ∆(Gc) = ∆(G) + 1. On applying the above lemma, we have

Theorem 4. For any graph G having maximum degree ∆ there exists a constant c′ such that box(G) < c′∆(log∆)2.

This result is an improvement over the previous upper bound of ∆2 + 2 by Esperet [14].
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Counter examples to the conjecture of [5]: Chandran et al. [5] conjectured that boxicity of a graph is O(∆).

We use a result by Erdős, Kierstead and Trotter [13] to show that there exist graphs with boxicity Ω(∆ log∆),

hence disproving the conjecture. Let P(n, p) be the probability space of height-2 posets with n minimal elements

forming set A and n maximal elements forming set B, where for any a ∈ A and b ∈ B, Prob(a < b) = p(n) = p.

They proved the following:

Theorem 5. [13] For every ǫ > 0, there exists δ > 0 so that if (log1+ǫ n)/n < p < 1 − n−1+ǫ, then, dim(P) >

(δpn log(pn))/(1 + δp log(pn)) for almost all P ∈ P(n, p).

When p = 1/ logn, for almost all posets P ∈ P(n, 1/ logn), ∆(GP ) < δ1n/ logn and by the above theorem

dim(P) > δ2n, where δ1 and δ2 are some positive constants (see [29] for a discussion on the above theorem). From

Theorem 1, it immediately implies that for almost all P ∈ P(n, 1/ logn), box(GP) ≥
dim(P)

2 > δ′∆(GP ) log∆(GP )

for some positive constant δ′, hence proving the existence of graphs with boxicity Ω(∆ log∆).

Approximation hardness for the boxicity of bipartite graphs: Hegde and Jain [21] proved the following

Theorem 6. There exists no polynomial-time algorithm to approximate the dimension of an n-element poset

within a factor of O(n0.5−ǫ) for any ǫ > 0, unless NP = ZPP .

This is achieved by reducing the fractional chromatic number problem on graphs to the poset dimension problem.

In addition they observed that a slight modification of their reduction will imply the same result for even height-2

posets. From Corollary 1, it is clear that for any height-2 poset P , dim(P) = Θ(box(GP )). Suppose there exists an

algorithm to compute the boxicity of bipartite graphs with approximation factor O(n0.5−ǫ), for some ǫ > 0, then,

it is clear that the same algorithm can be used to compute the dimension of height-2 posets with approximation

factor O(n0.5−ǫ), a contradiction. Hence,

Theorem 7. There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on n-

vertices with a factor of O(n0.5−ǫ) for any ǫ > 0, unless NP = ZPP .

3 Notations

Let [n] denote {1, 2, . . . , n} where n is a positive integer. For any graph G, let V (G) and E(G) denote its vertex

set and edge set respectively. If G is undirected, for any u, v ∈ V (G), {u, v} ∈ E(G) means u is adjacent to v and

if G is directed, (u, v) ∈ E(G) means there is a directed edge from u to v. Whenever we refer to an AB bipartite

(or co-bipartite) graph, we imply that its vertex set is partitioned into non-empty sets A and B where both these

sets induce independent sets (cliques respectively).

In a poset P = (S, P ), the notations aPb, a ≤ b in P and (a, b) ∈ P are equivalent and are used interchangeably.

GP denotes the underlying comparability graph of P . A subset of P is called a chain if each pair of distinct

elements is comparable. If each pair of distinct elements is incomparable, then it is called an antichain. Given an

AB bipartite graph G, the natural poset associated with G with respect to the bipartition is the poset obtained

by taking A to be the set of minimal elements and B to be the set of maximal elements. In particular, if Gc is

the extended double cover of G, we denote by Pc the natural associated poset of Gc.

Suppose I is an interval graph. Let fI be an interval representation for I, i.e. it is a mapping from the vertex

set to closed intervals on the real line such that for any two vertices u and v, {u, v} ∈ E(I) if and only if

fI(u) ∩ fI(v) 6= ∅. Let l(u, fI) and r(u, fI) denote the left and right end points of the interval corresponding to

the vertex u respectively. In this paper, we will never consider more than one interval representation for an interval
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graph. Therefore, we will simplify the notations to l(u, I) and r(u, I). Further, when there is no ambiguity about

the graph under consideration and its interval representation, we simply denote the left and right end points as

l(u) and r(u) respectively. Note that for any interval graph there exists an interval representation with all end

points distinct. Such a representation is called a distinguishing interval representation. It is an easy exercise to

derive such a distinguishing interval representation starting from an arbitrary interval representation of the graph.

4 Proof of Theorem 1

Let box(GP) = k. Note that since dim(P) > 1, GP cannot be a complete graph and therefore k ≥ 1. Let

I = {I1, I2, . . . , Ik} be a set of interval graphs such that GP =
⋂k

i=1 Ii. Now, corresponding to each Ii we will

construct two total orders L1
i and L2

i such that R = {Lj
i |i ∈ [k] and j ∈ [2]} is a realizer of P .

Let I ∈ I and fI be an interval representation of I. We will define two partial orders PI and P I as follows:

∀a ∈ V , (a, a) belongs to PI and P I and for every non-adjacent pair of vertices a, b ∈ V with respect to I,

(a, b) ∈ PI

(b, a) ∈ P I

}

if and only if r(a, fI) < l(b, fI).

Partial orders constructed in the above manner from a collection of closed intervals are called interval orders (See

[29] for more details). It is easy to see that I (the complement of I) is the underlying comparability graph of both

PI and P I .

Let G1 and G2 be two directed graphs with vertex set V and edge set E(G1) = (P ∪ PI) \ {(a, a)|a ∈ V }

and E(G2) = (P ∪ P I) \ {(a, a)|a ∈ V } respectively. Note that from the definition it is obvious that there are no

directed loops in G1 and G2.

Lemma 4. G1 and G2 are acyclic directed graphs.

Proof. We will prove the lemma for G1 – a similar proof holds for G2. First of all, since GP is not a complete

graph PI 6= ∅. Suppose PI is a total order, i.e. if P is an antichain, then it is clear that E(G1) = PI and therefore

G1 is acyclic. Henceforth, we will assume that PI is not a total order.

Suppose G1 is not acyclic. Let C = {(a0, a1), (a1, a2), . . . , (at−2, at−1), (at−1, a1)} be a shortest directed cycle

in G1.

First we will show that t > 2 (t is the length of C). If t = 2, then there should be a, b ∈ V such that

(a, b), (b, a) ∈ E(G1). Since P is a partial order, (a, b) and (b, a) cannot be simultaneously present in P . The same

holds for PI . Thus, without loss of generality we can assume that (a, b) ∈ P and (b, a) ∈ PI . But if (a, b) ∈ P ,

then, a and b are adjacent in GP and thus adjacent in I. Then clearly the intervals of a and b intersect and

therefore (b, a) /∈ PI , a contradiction.

Now, we claim that two consecutive edges in C cannot belong to P (or PI). Suppose there do exist such edges,

say (ai, ai+1) and (ai+1, ai+2) which belong to P (or PI) (note that the addition is modulo t). Since P (or PI) is

a partial order, it implies that (ai, ai+2) ∈ P (or PI) and as a result we have a directed cycle of length t − 1, a

contradiction to the assumption that C is a shortest directed cycle. Therefore, the edges of C alternate between

P and PI . It also follows that t ≥ 4.

Without loss of generality we will assume that (a1, a2), (a3, a4) ∈ PI . We claim that {(a1, a2), (a3, a4)} is an

induced poset of PI . First of all a2 and a3 are not comparable in PI as they are comparable in P . If either

{a1, a3} or {a2, a4} are comparable, then we can demonstrate a shorter directed cycle in G1, a contradiction.

Finally we consider the pair {a1, a4}. If t = 4, then they are not comparable as they are comparable in P while

if t 6= 4 and if they are comparable, then, it would again imply a shorter directed cycle, a contradiction. Hence,
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{(a1, a2), (a3, a4)} is an induced subposet. In the literature such a poset is denoted as 2 + 2 where + refers to

disjoint sum and 2 is a two-element total order. Fishburn [15] has proved that a poset is an interval order if and

only if it does not contain a 2+ 2. This implies that PI is not an interval order, a contradiction.

We have therefore proved that there cannot be any directed cycles in G1. In a similar way we can show that

G2 is an acyclic directed graph. ⊓⊔

Since G1 and G2 are acyclic, we can construct total orders, say L1 and L2 using topological sort on G1 and G2

such that P ∪ PI ⊆ L1 and P ∪ P I ⊆ L2 (For more details on topological sort, see [8] for example).

For each Ii, we create linear extensions L1
i and L2

i as described above. We claim that R = {Lj
i |i ∈ [k], j ∈ [2]}

is a realizer of P . For each Lj
i , it is clear from construction that P ⊂ Lj

i . If a and b are not comparable in P , then

{a, b} /∈ E(GP ), and therefore there exists some interval graph Iq ∈ I such that {a, b} /∈ E(Iq). Assuming that

the interval for a occurs before the interval for b in the interval representation of Iq, it follows by construction

that (a, b) ∈ PIq and (b, a) ∈ P Iq and therefore (a, b) ∈ L1
q and (b, a) ∈ L2

q. Hence proved.

4.1 Tight Example for Theorem 1

Consider the crown poset S0
n: a height-2 poset with n minimal elements a1, a2, . . . , an and n maximal elements

b1, b2, . . . , bn and ai < bj , for j = i+1, i+2, . . . , i−1, where the addition is modulo n. Its underlying comparability

graph is the bipartite graph obtained by removing a perfect matching from the complete bipartite graph Kn,n.

The dimension of this poset is n (see [27,29]) while the boxicity of the graph is
⌈

n
2

⌉

[3].

5 Proof of Theorem 2

We will prove that box(GP ) ≤ (χ(GP ) − 1) dim(P). Let (χ(GP ) − 1) = p, dim(P) = k and R = {L1, . . . , Lk}

a realizer of P . Now we color the vertices of GP as follows: For a vertex v, if γ is the length of a longest chain

in P such that v is its maximum element, then we assign color γ to it. This is clearly a proper coloring scheme

since if two vertices x and y are assigned the same color, say γ and x < y, then it implies that the length of a

longest chain in which y occurs as the maximum element is at least γ+1, a contradiction. Also, this is a minimum

coloring because the maximum number that gets assigned to any vertex equals the length of a longest chain in

P , which corresponds to the clique number of GP .

Now we construct pk interval graphs I = {Iij |i ∈ [p], j ∈ [k]} and show that GP is an intersection graph of

these interval graphs. Let Πj be the permutation induced by the total order Lj on [n], i.e. xLjy if and only if

Π−1
j (x) < Π−1

j (y). The following construction applies to all graphs in I except Ipk. Let Iij ∈ I \ {Ipk}. We

assign the point interval
[

Π−1
j (v), Π−1

j (v)
]

for all vertices v colored i. For all vertices v colored i′ < i, we assign
[

Π−1
j (v), n+ 1

]

and for those colored i′ > i, we assign
[

0, Π−1
j (v)

]

. The interval assignment for the last interval

graph Ipk is as follows: for all vertices v colored p + 1 = χ(GP ) we assign the point interval
[

Π−1
k (v), Π−1

k (v)
]

and for the rest of the vertices we assign the interval
[

Π−1
k (v), n+ 1

]

. Next, we will show that GP =
⋂

I∈I
I.

Claim 1. If u and v are adjacent in GP , then they are adjacent in all I ∈ I.

Proof. Let u be colored i and v be colored i′. It is clear that i 6= i′ and without loss of generality we will assume

that i < i′. By the way we have colored, it implies that u < v in P and therefore Π−1
j (u) < Π−1

j (v), ∀j ∈ [k]. Let

Ihj , h ∈ [p] and j ∈ [k] be the interval graph under consideration. There are 5 possible cases which we consider

one by one:
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Case 1: (h < i, i′) By construction in Ihj , u and v are assigned intervals
[

0, Π−1
j (u)

]

and
[

0, Π−1
j (v)

]

respectively

and therefore u and v are adjacent in Ihj , ∀j ∈ [k].

Case 2: (i, i′ < h) u and v are assigned intervals
[

Π−1
j (u), n+ 1

]

and
[

Π−1
j (v), n+ 1

]

respectively and therefore

are adjacent in Ihj , ∀j ∈ [k].

Case 3: (i < h < i′) u is assigned interval
[

Π−1
j (u), n+ 1

]

and v is assigned interval
[

0, Π−1
j (v)

]

. Since 0 <

Π−1
j (u) < Π−1

j (v) < n+ 1, it follows that u is adjacent to v in Ihj , ∀j ∈ [k].

Case 4: (h = i) If h = p and j = k, then i′ = p+ 1 and therefore u is assigned
[

Π−1
k (u), n+ 1

]

and v is assigned
[

Π−1
k (v), Π−1

k (v)
]

. If not, then u is assigned the point interval
[

Π−1
j (u), Π−1

j (u)
]

and v is assigned
[

0, Π−1
j (v)

]

.

In either case, since Π−1
j (u) < Π−1

j (v), the two vertices are adjacent.

Case 5: (h = i′) Since h ≤ p = χ(GP ) − 1, it implies that i, i′ ≤ p. Therefore, if h = p and j = k, then u

and v are assigned
[

Π−1
j (u), n+ 1

]

and
[

Π−1
j (v), n+ 1

]

respectively. If not, then v is assigned the point interval
[

Π−1
j (v), Π−1

j (v)
]

and u is assigned
[

Π−1
j (u), n+ 1

]

. Again, since Π−1
j (u) < Π−1

j (v), in either case the two

vertices are adjacent. Hence proved.

Claim 2. If u and v are not adjacent in GP , then there exists some I ∈ I such that {u, v} /∈ E(I).

Proof. Again let u be colored i and v be colored i′. Recall that k ≥ 2. If i = i′, then by construction it is clear

that u and v are not adjacent in Ii1 if i 6= p+1 and when i = p+1, then they are not adjacent in Ipk. Therefore,

without loss of generality we will assume that i < i′. Since u and v are not adjacent in GP , they are incomparable

in P and therefore, there exists some l ∈ [k] such that u > v in Ll which in turn implies that Π−1
l (u) > Π−1

l (v).

There are 2 possible cases:

Case 1: (i < p) Since i < i′, in Iil, u and v are assigned intervals
[

Π−1
l (u), Π−1

l (u)
]

and
[

0, Π−1
l (v)

]

respectively

and therefore, since Π−1
l (u) > Π−1

l (v) u and v are not adjacent in Iil.

Case 2: (i = p) Clearly i′ = p+1. If l < k, then it is similar to the previous case. If l = k, then, in Ipk, u and v are

assigned
[

Π−1
k (u), n+ 1

]

and
[

Π−1
k (v), Π−1

k (v)
]

respectively. Since Π−1
l (u) > Π−1

l (v), u and v are not adjacent

in Ipk.

Hence we have proved Theorem 2.

Consider a complete k-partite graph G on n = qk vertices where q, k > 1, i.e. V (G) = V1 ⊎ V2 ⊎ · · · ⊎ Vk is a

partition of V (G) where |Vi| = q. For any two vertices x ∈ Vi and y ∈ Vj , {x, y} ∈ E(G) if and only if i 6= j. G is

a comparability graph and here is one transitive orientation of G: for every pair of adjacent vertices u ∈ Vi and

v ∈ Vj , where u, v ∈ [k] and i 6= j, make u < v if and only if i < j. Let P be the resulting poset. It is an easy

exercise to show that dim(P) = 2. The chromatic number of G is k and Roberts [24] showed that its boxicity is k.

From Theorem 2 it follows that dim(P) ≥ k
k−1 . Therefore, the complete k-partite graph serves as a tight example

for Theorem 2.

However, it would be interesting to see if there are posets of higher dimension for which Theorem 2 is tight.

6 Boxicity of the extended double cover

In this section, we will prove Lemma 2. But first, we will need some definitions and lemmas.
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Definition 2. Let H be an AB bipartite graph. The associated co-bipartite graph of H, denoted by H∗ is the

graph obtained by making the sets A and B cliques, but keeping the set of edges between vertices of A and B

identical to that of H, i.e. ∀u ∈ A, v ∈ B, {u, v} ∈ E(H∗) if and only if {u, v} ∈ E(H).

The associated co-bipartite graph H∗ is not to be confused with the complement of H (i.e. H) which is also a

co-bipartite graph.

Definition 3. (Canonical interval representation of a co-bipartite interval graph:) Let I be an AB co-bipartite

interval graph. A canonical interval representation of I satisfies: ∀u ∈ A, l(u) = l and ∀u ∈ B r(u) = r, where

the points l and r are the leftmost and rightmost points respectively of the interval representation.

We claim that such a representation exists for every AB co-bipartite interval graph. Note that if I is a complete

graph, the claim is trivially true. Therefore we take I to be non-complete. Consider any interval representation of

I. Since A is a clique there exists a point, say l which is contained in all intervals corresponding to vertices in A.

Similarly, let r be a point in the intersection of intervals corresponding to vertices of B. Since I is non-complete,

it is clear that l 6= r. By definition of l and r we have l(u) ≤ l ≤ r(u), ∀u ∈ A and l(u) ≤ r ≤ r(u) ∀u ∈ B.

Without loss of generality we can assume that l < r and as a result r(u) ≥ l and l(u) ≤ r for all vertices u. This

means no interval ends before the point l and no interval starts after the point r. Hence, it follows that for any

interval containing l, we can make l its left end point and for an interval containing r, we can make r its right

end point. Therefore, we have a canonical interval representation of I.

The following lemma is easy to verify.

Lemma 5. Consider two closed intervals on the real line with left end points l1, l2 and right end points r1, r2.

Then, the two intervals intersect if and only if l1 ≤ r2 and l2 ≤ r1. In other words, the two intervals do not

intersect if and only if r1 < l2 or r2 < l1.

Lemma 6. Let H be an AB bipartite graph and H∗ its associated co-bipartite graph. If H∗ is a non-interval

graph, then
box(H∗)

2
≤ box(H) ≤ box(H∗).

If H∗ is an interval graph, then box(H) ≤ 2.

Proof. We first show that box(H) ≤ box(H∗). Let box(H∗) = k ≥ 2 and H∗ = I1 ∩ I2 ∩ . . . ∩ Ik, where Ii are

interval graphs. Note that since Ii is a supergraph of a co-bipartite graph, it is a co-bipartite interval graph. Let

us consider a canonical interval representation for each Ii and further assume that the right end points of all

vertices in A and left end points of all vertices in B are distinct. Let I ′1 be the interval graph obtained by making

r(u, I ′1) = l(u, I ′1) = l(u, I1) ∀u ∈ B and keeping the rest of the intervals unchanged. Similarly, let I ′2 be the

interval graph obtained by making l(u, I ′2) = r(u, I ′2) = r(u, I2) ∀u ∈ A. Due to our assumption of distinct end

points it is clear that A and B are independent sets in I ′1 and I ′2 respectively. Suppose u ∈ A and v ∈ B. For

i ∈ [2]:

{u, v} ∈ E(I ′i) ⇐⇒ r(u, I ′i) ≥ l(v, I ′i)

(by construction of I ′ from I) ⇐⇒ r(u, Ii) ≥ l(v, Ii)

⇐⇒ {u, v} ∈ E(Ii)

From this, we immediately see that H = I ′1 ∩ I ′2 ∩ I3 ∩ . . . ∩ Ik.
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Now suppose box(H∗) = 1, i.e. H∗ is an interval graph. Then we set I1 = I2 = H∗ and proceed as in the

previous case. Hence, box(H) ≤ 2. Note that this inequality is tight: take for example H = C4, the cycle of length

4. H∗ is K4 and therefore an interval graph, but C4 is not.

Now we show that box(H∗) ≤ 2box(H). Let box(H) = l and H = I1∩I2∩ . . .∩Il, where Ii are interval graphs.

For each Ii, we create two interval graphs I ′2i−1 and I ′2i as follows: Consider an interval representation of Ii. Let

li = minu∈V l(u, Ii) and ri = maxu∈V r(u, Ii), the leftmost and rightmost points in the interval representation

respectively. I ′2i−1 and I ′2i are defined as follows:

l(u, I ′2i−1) = li and r(u, I ′2i−1) = r(u, Ii), ∀u ∈ A,

r(u, I ′2i−1) = ri and l(u, I ′2i−1) = l(u, Ii), ∀u ∈ B,

l(u, I ′2i) = li and r(u, I ′2i) = r(u, Ii), ∀u ∈ B,

r(u, I ′2i) = ri and l(u, I ′2i) = l(u, Ii), ∀u ∈ A.

Now we show that H∗ =
⋂2l

i=1 I
′
i. From the definitions it is clear that in each I ′i, A and B are cliques– for example,

the interval corresponding to every vertex in A in I ′2i−1 contains li. Therefore we will assume that u ∈ A and

v ∈ B.
{u, v} ∈ E(H∗) =⇒ {u, v} ∈ E(H)

=⇒ {u, v} ∈ E(Ii), ∀i = 1, 2, . . . , l

(From Lemma 5) =⇒ l(u, Ii) ≤ r(v, Ii) and l(v, Ii) ≤ r(u, Ii)

In I ′2i−1, l(u, I
′
2i−1) = li ≤ ri ≤ r(v, I ′2i−1) and l(v, I ′2i−1) = l(v, Ii) ≤ r(u, Ii) = r(u, I ′2i−1) and in I ′2i, l(v, I

′
2i) =

li ≤ ri ≤ r(u, I ′2i) and l(u, I ′2i) = l(u, Ii) ≤ r(v, Ii) = r(v, I ′2i). Therefore u and v are adjacent in both I ′2i−1 and

I ′2i. Now suppose

{u, v} /∈ E(H∗) =⇒ {u, v} /∈ E(H)

=⇒ ∃Ij such that {u, v} /∈ E(Ij)

In the interval representation of Ij , if r(u, Ij) < l(v, Ij), then, by definition r(u, I ′2j−1) < l(v, I ′2j−1) and hence,

{u, v} /∈ E(I ′2j−1). If r(v, Ij) < l(u, Ij), then, r(v, I
′
2j) < l(u, I ′2j) and therefore, {u, v} /∈ E(I ′2j). Hence proved. ⊓⊔

6.1 Proof of Lemma 2

box(Gc) ≤ box(G) + 2: Let box(G) = k and G = I1 ∩ I2 ∩ . . . ∩ Ik where Iis are interval graphs. For each Ii, we

construct interval graphs I ′i with vertex set V (Gc) as follows: Consider an interval representation for Ii. For every

vertex u in Ii, we assign the interval of u to uA and uB in I ′i . Let I
′
k+1 and I ′k+2 be interval graphs where (1) all

vertices in A are adjacent to all the vertices in B (2) In I ′k+1 A induces a clique and B induces an independent

set while in I ′k+2 it is the other way round. Now we show that Gc = I ′1 ∩ I ′2 ∩ . . .∩ I ′k+2. It is very easy to see that

{uA, uB} ∈ E(I ′i) ∀i ∈ [k + 2]. Suppose u and v are distinct vertices in G.

{uA, vB} ∈ E(Gc) =⇒ {u, v} ∈ E(G)

=⇒ {u, v} ∈ E(Ii), i ∈ [k]

=⇒ {uA, vB} ∈ E(I ′i), i ∈ [k].

Also, by definition it is clear that {uA, vB} is an edge in both I ′k+1 and I ′k+2. Therefore, I
′
is are all supergraphs

of Gc.

{uA, vB} /∈ E(Gc) =⇒ {u, v} /∈ E(G)

=⇒ ∃Ij , j ∈ [k] such that {u, v} /∈ E(Ij)

=⇒ {uA, vB} /∈ E(I ′j).
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A and B induce independent sets in I ′k+2 and I ′k+1 respectively. Hence, Gc = I ′1 ∩ I ′2 ∩ · · · ∩ I ′k ∩ I ′k+1 ∩ I ′k+2 and

therefore box(Gc) ≤ box(G) + 2.

box(G) ≤ 2box(Gc): We will assume without loss of generality that |V (G)| > 1. This implies Gc is not a complete

graph and therefore box(Gc) > 0. Let us consider the associated co-bipartite graph of Gc, i.e. G
∗
c . We will show

that box(G) ≤ box(G∗
c) and the required result follows from Lemma 6. Let box(G∗

c) = p and G∗
c = J1∩J2∩. . .∩Jp

where Jis are interval graphs. Let us assume canonical interval representation for each Ji (recall Definition 3).

Corresponding to each Ji, we construct an interval graph J ′
i with vertex set V (G) as follows: The interval for any

vertex u is the intersection of the intervals of uA and uB, i.e. l(u, J
′
i) = l(uB, Ji) and r(u, J ′

i) = r(uA, Ji). Note

that since uA and uB are adjacent in Ji, their intersection is non-empty.

Now we show that G =
⋂p

i=1 J
′
i . First we consider two adjacent vertices u and v.

{u, v} ∈ E(G) =⇒ {uA, vB}, {uB, vA} ∈ E(G∗
c)

=⇒ {uA, vB}, {uB, vA} ∈ E(Ji), ∀i ∈ [p]

(From Lemma 5) =⇒ l(vB, Ji) ≤ r(uA, Ji) and l(uB, Ji) ≤ r(vA, Ji), ∀i ∈ [p]

(By definition of J ′
i) =⇒ l(v, J ′

i) ≤ r(u, J ′
i) and l(u, J ′

i) ≤ r(v, J ′
i), ∀i ∈ [p]

(From Lemma 5) =⇒ {u, v} ∈ E(J ′
i), ∀i ∈ [p]

Therefore, each J ′
i is a supergraph of G. Now, suppose u and v are not adjacent.

{u, v} /∈ E(G) =⇒ {uA, vB} /∈ E(G∗
c)

=⇒ ∃Jj such that {uA, vB} /∈ E(Jj)

(From Lemma 5) =⇒ r(uA, Jj) < l(vB, Jj) or r(uB , Jj) < l(vA, Jj)

(Since Jj has a canonical interval representation) =⇒ r(uA, Jj) < l(vB, Jj)

(By definition of J ′
j) =⇒ r(u, J ′

j) < l(v, J ′
j)

(From Lemma 5) =⇒ {u, v} /∈ E(J ′
j)

Hence, G = J ′
1 ∩ J ′

2 ∩ · · · ∩ J ′
p and from Lemma 6 we have box(G) ≤ box(G∗

c) ≤ 2box(Gc).

References

1. D. Bhowmick, L. S. Chandran, Boxicity and cubicity of AT-free graphs, Accepted in Disc. Math.

2. H. L. Bodlaender, A tourist guide through treewidth, Acta Cybernetica 11 (1993) 1–21.

3. L. S. Chandran, A. Das, C. D. Shah, Cubicity, boxicity, and vertex cover, Disc. Math. 309 (2009) 2488–2496.

4. L. S. Chandran, M. C. Francis, R. Mathew, Boxicity of chordal bipartite graphs, in: Japan conference on computation

geometry and graphs, Kanazawa, 2009.

5. L. S. Chandran, M. C. Francis, N. Sivadasan, Boxicity and maximum degree, J. Combin. Theory Ser. B 98 (2) (2008)

443–445.

6. L. S. Chandran, N. Sivadasan, Boxicity and treewidth, J. Combin. Theory Ser. B 97 (5) (2007) 733–744.

7. L. S. Chandran, N. Sivadasan, The cubicity of hypercube graphs, Disc. Math. 308 (23) (2008) 5795–5800.

8. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, MIT press, Cambridge, MA, 2001.

9. M. B. Cozzens, Higher and multi-dimensional analogues of interval graphs, Ph.D. thesis, Department of Mathematics,

Rutgers University, New Brunswick, NJ (1981).

10. M. B. Cozzens, M. D. Halsey, The relationship between the threshold dimension of split graphs and various dimensional

parameters, Disc. Appl. Math. 30 (1991) 125–135.

11



11. M. B. Cozzens, F. S. Roberts, Computing the boxicity of a graph by covering its complement by cointerval graphs,

Disc. Appl. Math. 6 (1983) 217–228.

12. B. Dushnik, E. W. Miller, Partially ordered sets, Amer. J. Math 6 (3) (1941) 600–610.
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