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Abstract. When many objects are counted simultaneously in large data
streams, as in the course of network traffic monitoring, or Webgraph and
molecular sequence analyses, memory becomes a limiting factor. Robert
Morris [Communications of the ACM, 21:840–842, 1978] proposed a prob-
abilistic technique for approximate counting that is extremely economi-
cal. The basic idea is to increment a counter containing the value X with
probability 2−X . As a result, the counter contains an approximation of
lgn after n probabilistic updates, stored in lg lgn bits. Here we revisit
the original idea of Morris. We introduce a binary floating-point counter
that combines a d-bit significand with a binary exponent, stored together
on d + lg lgn bits. The counter yields a simple formula for an unbiased
estimation of n with a standard deviation of about 0.6 · n2−d/2.
We analyze the floating-point counter’s performance in a general frame-
work that applies to any probabilistic counter. In that framework, we
provide practical formulas to construct unbiased estimates, and to assess
the asymptotic accuracy of any counter.

1 Introduction

Motivation

An elementary information-theoretic argument shows that
⌈
lg(n + 1)

⌉
bits are

necessary to represent integers between 0 and n (lg denotes binary logarithm
throughout the paper). Counting thus takes logarithmic space. Certain applica-
tions need to be more economical because they need to maintain many counters
simultaneously while, say, tracking patterns in large data streams. Such is the
case typically in network processors and embedded systems, where time and
space constraints impose strict requirements on computational solutions. For
instance, when measuring network traffic, per-packet updates may occur more
often than allowed by Dynamic RAM access times. Faster, Static RAMs are
prohibitively expensive for storing exact counters [1, 2].

Memory may become a limiting factor even on mainstream desktop com-
puters in demanding applications such as Webgraph analyses [3, 4]. Numerous
bioinformatics studies also require space-efficient solutions when searching for re-
current motifs in protein and DNA sequences. These frequent sequence motifs are
associated with mobile, structural, regulatory or other functional elements, and



have been studied since the first molecular sequences became available [5]. Some
recent studies have concentrated on patterns involving long oligonucleotides, i.e.,
“words” of length 16–40 over the 4-letter DNA alphabet, revealing potentially
novel regulatory features [6, 7], and general characteristics of copying processes
in genome evolution [8, 9]. Hashtable-based indexing techniques [10] used in ho-
mology search and genome assembly procedures also rely on counting in order to
identify repeating sequence patterns. In these applications, billions of counters
need to be handled, making implementations difficult in mainstream computing
environments. The need for many counters is aggravated by the fact that the
counted features often have heavy-tailed frequency distributions [8, 4, 9], and
there is thus no “typical” size for individual counters that could guide the mem-
ory allocation at the outset. As a numerical example, consider a study [8] of the
16-mer distribution in the human genome sequence, which has a length surpass-
ing three billion. More than four billion (416) different words need to be counted,
and the counter values span more than sixteen binary magnitudes even though
the average 16-mer occurs only once or twice.

The idea of approximate counting

One way to greatly reduce memory usage is to relax the requirement of exact
counts. Namely, approximate counting to n is possible using lg lg n + O(1) bits
with probabilistic techniques [11, 12]. The idea of probabilistic counting was in-
troduced by Morris [12]. In the simplest case, a counter is initialized as X = 0.
The counter is incremented by one at the occurrence of an event with proba-
bility 2−X . The counter is meant to track the magnitude of the true number of
events. More precisely, after n events, the expected value of 2X is exactly (n+1).

A generalization of the binary Morris counter is the so-called q-ary counter
with some r ≥ 1 and q = 21/r. In such a setup, the counter is incremented
with probability q−X . The actual event count is estimated as f(X), using the
transformation

f(x) =
qx − 1
q − 1

=
2x/r − 1
21/r − 1

.

The function f yields an unbiased estimate, as Ef(X) = n after n probabilistic
updates. The accuracy of a probabilistic counting method is characterized by
the variance of the estimated count. For the q-ary counter,

Var f(X) = (q − 1)
n(n+ 1)

2
, (1)

which is approximately ln 2
2r n

2 for large n and r. The parameter r governs the
tradeoff between memory usage and accuracy. The counter stores X (with n =
f(X)) using lg r+lg lg n bits; larger r thus increases the accuracy at the expense
of higher storage costs.

Approximate counting is perhaps the simplest of many related problems
where probabilistic techniques can lead to efficient solutions (e.g., estimating
the number of distinct elements in a multiset of size n using lg lgn + O(1) bits



[13]). Flajolet [11] gave a precise analysis of the q-ary counter. Kirschenhoffer
and Prodinger [14] performed the same analysis using Rice’s method instead of
the Mellin transform. Kruskal and Greenberg [15] analyzed approximate count-
ing in a general framework (see Section 2) from a Bayesian viewpoint, assuming
a known distribution for the true count.

Approximate counting revisited

The main goal of this study is to introduce a novel algorithm for approximate
counting. Our floating-point counter is defined with the aid of a design parame-
ter M = 2d, where d is a nonnegative integer. As we discuss later, M determines
the tradeoff between memory usage and accuracy, analogously to parameter r
of the q-ary counter. The procedure relies on a uniform random bit genera-
tor RandomBit(). Algorithm FP-Increment below shows the incrementation pro-
cedure for a floating-point counter, initialized with X = 0. Notice that the
first M updates are deterministic.

FP-Increment(X) // returns new value of X
1 set t← bX/Mc // bitwise right shift by d positions
2 while t > 0 do
3 if RandomBit() = 1 then return X
4 set t← t− 1
5 return X + 1

The counter value X = 2d · t + u, where u denotes the lower d bits, is
used to estimate the actual count f(X) = (M + u) · 2t − M . The estimate
reaches n with d+

⌈
lg lg n+M

M−1/2

⌉
bits. The estimate’s standard deviation is c√

M
n

where c fluctuates between about 0.58 and 0.61 asymptotically (see Corollary 3
for a precise characterization). The random updates in the floating-point counter
occur with exact integer powers 2−i, and such random values can be generated
using an average of 2 random bits. Specifically, the FP-Increment procedure uses
an expected number of

(
2− t

2t−1

)
calls to RandomBit().

Notice that a q-ary counter with r = M has asymptotically the same memory
usage, and a standard deviation of about 0.59√

r
n (see Eq. (1)). Our algorithm thus

has similar memory usage and accuracy as q-ary counting. The floating-point
counter is more advantageous in two aspects. First, the updates at the beginning
are deterministic, i.e., small values are exactly represented with convenience. But
more importantly, our counter can be implemented with a few elementary integer
and bitwise operations, whereas a q-ary counter needs floating-point arithmetic
(for random increments with irrational probabilities and the decoding by f)
which may not be available on a specialized processor.

The rest of the paper is organized as follows. In order to quantify the perfor-
mance of floating-point counters, we found it fruitful to develop a general anal-
ysis of probabilistic counting, which is of independent mathematical interest.
Section 2 presents the general results. First, Theorem 1 shows that every prob-
abilistic counting method has a unique unbiased estimator f with Ef(X) = n



after n probabilistic updates. Second, Theorem 2 shows that the accuracy of
any such method is computable directly from the counter value. Finally, The-
orem 3 gives relatively simple upper and lower bounds on the asymptotic ac-
curacy of the unbiased estimator. Section 3 presents floating-point counters in
detail, and mathematically characterizes their utility by relying on the results of
Section 2. Section 3 further illustrates the theoretical analyses with simulation
experiments. The proofs of the theorems are given in the Appendix, which can
be safely skipped on first reading.

2 Probabilistic counting

For a formal discussion of probabilistic counting, consider the Markov chain
formed by the successive counter values.

Definition 1. A counting chain is a Markov chain (Xn : n = 0, 1, . . . ) with

X0 = 0; (2a)

P
{
Xn+1 = k + 1

∣∣∣ Xn = k
}

= qk (2b)

P
{
Xn+1 = k

∣∣∣ Xn = k
}

= 1− qk, (2c)

where 0 < qk ≤ 1 are the transition probabilities defining the counter.

It is a classic result associated with probabilities in pure-birth processes [16]
that the n-step probabilities pn(k) = P{Xn = k} are computable by a simple
recurrence (see Equations (12a–12b) later). In case of probabilistic counting, we
want to infer n from the value of Xn alone through a computable function f .
A given probabilistic counting method is defined by the transition probabilities
and the function f . As we will see later (Theorem 1), the transition probabilities
determine a unique function f that gives an unbiased estimate of the update
count n.

Definition 2. A function f : N 7→ N is an unbiased count estimator for a given
counting chain if and only if Ef(Xn) = n holds for all n = 0, 1, . . . .

In the upcoming discussions, we assume that the probabilistic counting method
uses an unbiased count estimator f . The merit of a given method is gauged by
its dispersion, as defined below.

Definition 3. The dispersion of the counter is the coefficient of variation An =√
Var f(Xn)

Ef(Xn) .

The theorems below provide an analytical framework for evaluating prob-
abilistic counters. Theorem 1 shows that the unbiased estimator is uniquely
defined by a relatively simple expression involving the transition probabilities.
Theorem 2 shows that the uncertainty of the estimate can be determined directly
from the counter value. Theorem 3 gives a practical bound on the asymptotic
dispersion of the counter.



Theorem 1. The function

f(0) = 0 (3a)

f(k) =
1
q0

+
1
q1

+ . . .+
1

qk−1
. {k > 0} (3b)

uniquely defines the unbiased count estimator f for any given set of transition
probabilities (qk : k = 0, 1, . . . ). Hence, for any given counting chain, we can
determine efficiently an unbiased estimator. Conversely, we can compute the
counting chain for any given f : N 7→ [0,∞) provided that f(0) = 0 and ∀k : f(k+
1) ≥ f(k) + 1.

Definition 4. The variance function for a given counting chain is defined by

g(0) = 0 (4a)

g(k) =
1− q0
q20

+
1− q1
q21

+ · · ·+ 1− qk−1

q2k−1

{k > 0} (4b)

Theorem 2 below shows that the dispersion is computable directly from the
counter value for any counting chain. The statement has a practical relevance: g
quantifies the uncertainty of the estimate f , The variance function is used later
to evaluate the asymptotic dispersion (see Theorem 3).

Theorem 2. The variance function g of Definition 4 provides an unbiased es-
timate for the variance of f from Theorem 1. Specifically,

Var f(Xn) = Eg(Xn) (5)

holds for all n ≥ 0, where the moments refer to the space of n-step probabilities.

Theorem 3 is the last main result of this section. The statement relates the
asymptotics of the variance function, the unbiased count estimator, and the
counting chain’s dispersion.

Theorem 3. Let An be the dispersion of Definition 3, and let

Bk =

√
g(k)
f(k)

. (6)

Let lim infk→∞Bk = µ. Suppose that lim supk→∞Bk = λ < 1 (and, thus, µ < 1).
Then

µ√
1− µ2

≤ lim inf
n→∞

An; lim sup
n→∞

An ≤
λ√

1− λ2
. (7)

Example. Consider the case of a q-ary counter, where qi = q−i with some
q > 1. Theorem 1 automatically gives the unbiased count estimator f(k) =∑k−1
i=0 q

−1
i = qk−1

q−1 . Theorem 2 yields the variance function g(k) =
∑k−1
i=0

(
q−2
i −

q−1
i

)
= q2k−1

q2−1 −
qk−1
q−1 . In order to use Theorem 3, observe that µ = λ =

limk→∞

√
g(k)
f2(k) =

√
q−1
q+1 < 1. Therefore, we obtain the known result [11] that

limn→∞An =
√

λ2

1−λ2 =
√

q−1
2 .



Assessing accuracy. Interestingly, f(k) corresponds to the expected value of
the hitting time: f(k) = E min{n : Xn = k}. In other words, assuming that the
chain (Xn : n = 0, 1, . . . ) “just reached” k yields an unbiased estimate. The-
orem 3 links the estimator’s coefficient of variation An and the ratio Bk of
Eq. (6) between the estimate’s inferred standard deviation

√
g(k) and value.

For any given k = Xn, Bk reasonably quantifies the uncertainty of the hitting
time estimate n̂ = f(k). Equation (7) states that the estimator has a slightly
larger dispersion than that. In the example of the q-ary counter, the estimator’s
dispersion is asymptotically

√
(q + 1)/2 times larger than Bk.

Counting in (1+c) lg lg n+O(1) space. Theorem 1 confirms the intuition that
the transition probabilities must be exponentially decreasing in order to achieve
storage on lg lg n + O(1) bits. Otherwise, with subexponential q−1

k = 2o(k), one
would have f(k) = 2o(k), leading to lg n = o(k). In other words, lg lg n + O(1)
bits would not suffice to store the counter value k. It is possible, however,
to devise other exotic counting schemes with O(log log n) memory usage by
“reverse engineering” the memory requirements. Consider the subexponential
counter SubExp(β) for 0 < β < 1 defined by the transition probabilities qk =
1/
(
exp((k+1)β)−exp(kβ)

)
, yielding the unbiased estimator f(k) = exp(kβ)−1,

and a memory requirement of β−1 lg lnn + O(1). Using continuous approxi-
mations, q−1

k ≈ βkβ−1 exp(kβ), and g(k) ≈
∫ k
x=1

β2x2β−2 exp(2xβ) dx. Now,
Bk =

√
g(k)/f(k) ∼ k(β−1)/2

√
β/2, since

lim
k→∞

B2
k

β
2 k

β−1
≈ lim
k→∞

∫ k
x=1

β2x2β−2e2x
β

dx

(ekβ − 1)2 β2 k
β−1

= 1

by l’Hospital’s rule. Accodingly (plug in k with f(k) = n, i.e., k = ln1/β(n+ 1)),
we conjecture that the (1 + c) lg lnn + O(1) memory usage of the SubExp((c +
1)−1) counter entails that An goes to 0 at a slow speed of O

(√
1/ logc n

)
(see

illustration in Appendix).

Bayesian count estimation. The same general framework for approximate
counting is used by Kruskal and Greenberg [15] in a Bayesian setting. In partic-
ular, they are interested in the case when the true count N is a random variable.
The actual count is estimated as φ(k) = E

[
N
∣∣ XN = k

]
. They further consider

the case of geometrically distributed N , as well as an improper prior P{N =
n} = ε. For both distributions, φ(k) = E

[
N
∣∣ XN = k

]
= f(k + 1) − 1 and

Var
[
N
∣∣ XN = k

]
= g(k + 1) where f and g are defined in Theorems 1 and 2

above. Kruskal and Greenberg motivate their results by suggesting that the unbi-
ased count estimator may be difficult to find since in order to verify the condition
Ef(Xn) = n, it may be complicated to calculate the expectation for an arbi-
trary nonlinear function f . Theorem 1 shows that this is not so: the unbiased
estimator has a fairly simple form for any counting chain.



3 Floating-point counters

The counting chain for a floating-point counter is defined using a design param-
eter M = 2d with some nonnegative integer d:

P
{
Xn+1 = k + 1

∣∣∣ Xn = k
}

= 2−bk/Mc; (8a)

P
{
Xn+1 = k

∣∣∣ Xn = k
}

= 1− 2−bk/Mc. (8b)

1/21/2

1/2

1,1 ...1,0

1/2

1,M-1

1/2

1/2

2,12,0

3/4

2,M-1

3/4

1/4 ... 1/4

3,0

7/8

3,M-1

7/8

1/8 ... 1/8

1/4

Etc.

0,1 ...0,0 0,M-1

1/4

1/8 3,1

7/8

3/4

1/2

Probabilistic updates
(n=M,M+1,...)

Deterministic updates
(n=0,1,...,M-1)

Fig. 1. States of the counting Markov chain. Each state is labeled with a pair (t, u),
where (u+M) are the most significant digits and t is the number of trailing zeros for
the true count.

Figure 1 illustrates the states of the floating-point counter. The counter’s
designation becomes apparent from examining the binary representation of the
counter value k. Write k = Mt + u with t = bk/Mc and u = k mod M ; i.e.,
u corresponds to the lower d bits of k, and t corresponds to the remaining
upper bits. The pair (t, u) is essentially a floating-point representation of the true
count n, where t is the exponent, and u is a d-bit significand without the hidden
bit for the leading ‘1.’ More precisely, Theorem 1 applies with qk = 2−bk/Mc,
and leads to the following corollary.

Corollary 1. The unbiased estimator for k = Mt+ u is

f(k) = f(t, u) = (M + u)2t −M. (9)

Theorem 2 yields the following variance function.

Corollary 2. The variance function for the floating-point counter is

g(k) = g(t, u) =
(
M

3
+ u

)
4t − (M + u)2t +

2
3
M. (10)

Combining Corollaries 1 and 2, we get the following bounds on the dispersion.



Corollary 3. The dispersion of the floating-point counter is asymptotically bounded
as √

1
3M − 1

≤ lim inf
n→∞

An; lim sup
n→∞

An ≤
√

3
8M − 3

.

Proof. By Equations (9) and (10), we have limt→∞
g(t,u)
f2(t,u) =

M
3 +u

(M+u)2 . Consider-
ing the extreme values at u = 0 and u = bM/3c or u = dM/3e, respectively:

µ2 = lim inf
k→∞

g(k)
f2(k)

=
1

3M
; λ2 = lim sup

k→∞

g(k)
f2(k)

≤ lim
t→∞

g(t, M3 )
f2(t, M3 )

=
3

8M
. (11)

Plugging these limits into Theorem 3 leads to the Corollary. ut

For large M = 2d, the bounds of Corollary 3 become lim supn→∞An /
2−d/2

√
3/8 ≈ 0.612 · 2−d/2 and lim infn→∞An ' 2−d/2

√
1/3 ≈ 0.577 · 2−d/2.

The dispersion is thus comparable to the dispersion of a q-ary counter with q =
22−d , which is approximately 2−d/2

√
0.5 · ln 2 ≈ 0.589 · 2−d/2. The memory re-

quirements of the two counters are equivalent: in order to count up to n = f(k),
d+ lg lg n bits are necessary.

Scaled floating-point counters. A similar floating-point technique of approx-
imate counting is described by Stanojević [2]. In his solution (for measuring net-
work traffic with per-packet counter updates), a so-called “small active counter”
splits a fixed number of ` bits into a d-bit significand u and an (` − d)-bit ex-
ponent t, in successive scale regimes σ = 1, 2, . . . . The scaling factor σ is stored
separately. (The same scaling factor is used for a whole set of counters, but
the analysis is performed for a single counter only.) The counter is incremented
with a probability of 2−σbX/Mc at scaling σ, along with suitable adjustements
to X at scale changes. Stanojević infers the appropriate unbiased estimator, and
calculates the coefficient of variation (Bk of Theorem 3) for the hitting time
f(k) = min{n : Xn = k} at a fixed scaling σ. Consider the scaled version of the
floating-point counter where qk = q−bk/Mc with some q > 1 (q = 2 in the basic
version and q = 2σ with scaling σ). By Theorems 1 and 2,

f(k) = f(t, u) =
( M

q − 1
+ u
)
qt − M

q − 1

g(k) = g(t, u) =
( M

q2 − 1
+ u
)
q2t −

( M

q − 1
+ u
)
qt +M

q

q2 − 1

with t = bk/Mc and u = M{k/M} = k − tM . Consequently, lgM + lg logq n
bits are needed to reach n. The extremes for Bk are attained with u = 0, and
with u = bM/(q + 1)c or u = dM/(q + 1)e:

µ = lim inf
k→∞

Bk = lim
t→∞

√
g(t, 0)
f(t, 0)

= M−1/2 ·
√
q − 1
q + 1

λ = lim sup
k→∞

Bk ≤ lim
t→∞

√
g(t,M/(q + 1))
f(t,M/(q + 1))

= M−1/2 ·

√
q2 − 1

4q



By Theorem 3, the dispersion is bounded as√
q − 1

(q + 1)M − (q − 1)
≤ lim inf

n→∞
An; lim sup

n→∞
An ≤

√
q2 − 1

4qM − (q2 − 1)
.

Simulations. Figures 2 and 3 compare the performance of the floating-point
counters with equivalent base-q counters in simulation experiments. The equiv-
alence is manifest on Figure 2 that illustrates the trajectories of the estimates
by the different counters. Figure 3 plots statistics about the estimates across
multiple experiments: the estimators are clearly unbiased, and the two counters
display the same accuracy.

d=8

d=7

d=6

d=5

d=4

d=3

d=2

d=8

d=7

d=6

d=5

d=4

d=3

d=2

Fig. 2. Error trajectories for floating-point counters (top) and q-ary counters
(bottom). Each trajectory follows the the appropriate counting chain in a random
simulated run. The lines trace the relative error (f(Xn)−n)/n for floating-point coun-
ters with d-bit mantissa, and comparable q-ary counters with q = 21/r where r = 2d.
The shaded areas indicate a relative error of ±0.59 · 2−d/2. The dots at the end of the
trajectories denote the final value for n = 100000.
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Fig. 3. Distribution of the estimates for a floating-point counter (top) and a compara-
ble q-ary counter (bottom). Each plot depicts the result of 1000 experiments, in which
a floating-point counter with d = 4-bit mantissa, and a q-ary counter with q = 21/16

were run until n = 100, 000. The dots in the middle follow the averages; the black
segments depict the standard deviations (for each σ, they are of length σ spaced at
σ from the average), and grey dots show outliers that differ by more than ±2σ from
the average. The shading highlights the asymptotic dispersion of the q-ary counter
(≈ 0.59 · 2−d/2).
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A Subexponential counters

For the subexponential counter SubExp
(
(c + 1)−1

)
with c > 0, the estimate’s

dispersion is asymptotically decreasing as

Bk ∼
k−

c
2(c+1)√

2(c+ 1)
.

Accordingly, we conjecture that An = Θ(log−c/2 n). Figure 4 illustrates the
convergence for the subexponential counter SubExp(1/2) (i.e., c = 1) at a speed
of O(log−1/2 n). The figure also shows that the theoretical advantage does not
immediately translate into a practical one: the accuracy of the SubExp(1/2) is
better than a q-ary or floating-point counter only at very large n.

10 000 10 000 000100 000 1 000 000100 1 000

2.5

0.4

1

estimate/n

n

1-0.5(ln n)-1/2

Fig. 4. Distribution of the estimates for the SubExp(1/2) counter with f(k) =
exp(
√
k) − 1. The plot depicts the result of 1000 experiments, in which the counter

was run for up to 10 million steps. The dots in the middle follow the averages; the
black segments depict the standard deviations (for each σ, they are of length σ spaced
at σ from the average), and grey dots show outliers that differ by more than ±2σ from
the average. The solid line illustrates the fit for the asymptotic decrease An ∼ 1

2
√

ln n
.

For a practical comparison, the shading in the middle highlights the asymptotic dis-
persion of the 4-bit floating-point counter (≈ 0.15).



B Proofs

In what follows, we use the shorthand notation

pn(k) = P{Xn = k}

for the n-step probabilities. By (2), p0(0) = 1, and the recurrences

pn+1(0) = (1− q0)pn(0) (12a)
pn+1(k) = (1− qk)pn(k) + qk−1pn(k − 1) {k > 0} (12b)

hold for all n ≥ 0.

Lemma 1. The unbiased estimator is unique.

Proof. Since Ef(0) = 0 is imposed, and X0 = 0 with certainty, f(0) = 0. For
all n, P{Xn > n} = 0, so

Ef(Xn) =
n∑
k=0

pn(k)f(k) = n.

Thus, for all n > 0,

f(n) =
n−

∑n−1
k=0 pn(k)f(k)
pn(n)

=
n−

∑n−1
k=0 pn(k)f(k)

q0q1 · · · qn−1
,

which shows that f(n) is uniquely determined by f(0), . . . , f(n − 1) and the
n-step probabilities. ut

Proof (of Theorem 1). Define the durations Lk(n) =
∑n−1
i=0 {Xi = k}, i.e., the

number of timesXi = k for i < n. Define also Lk = limn→∞ Lk(n) =
∑∞
i=0{Xi =

k}. Clearly, ELk = 1/qk. By the linearity of expectations,

ELk = ELk(n) + E
∞∑
i=n

{Xi = k}

= ELk(n) + E
[ ∞∑
i=n

{Xi = k}
∣∣∣ Xn ≤ k

]
P{Xn ≤ k}

= ELk(n) + P{Xn ≤ k}ELk,

where we used the memoryless property of the geometric distribution in the last
step. Consequently,

ELk(n) =
P{Xn > k}

qk
. (13)

Now,

E
∞∑
k=0

Lk(n) =
∞∑
k=0

P{Xn > k} 1
qk

=
n∑
k=0

pn(k)
k−1∑
i=0

1
qi

=
n∑
k=0

pn(k)f(k) = Ef(Xn).

Since
∑∞
k=0 Lk(n) = n, we have Ef(Xn) = n for all n. By Lemma 1, no other

function f has the same property. ut



Proof (of Theorem 2). By (12), for all n ≥ 0,

Ef2(Xn+1) =
n+1∑
k=0

pn+1(k)f2(k)

=
n∑
k=0

(1− qk)pn(k)f2(k) +
n+1∑
k=1

qk−1pn(k − 1)f2(k)

= Ef2(Xn)−
n∑
k=0

qkpn(k)f2(k) +
n+1∑
k=1

qk−1pn(k − 1)
(
f(k − 1) + q−1

k−1

)2
= Ef2(Xn) + 2

n∑
k=0

pn(k)f(k) +
n∑
k=0

pn(k)q−1
k

= Ef2(Xn) + 2n+
n∑
k=0

pn(k)q−1
k .

Since Var f(Xn) = Ef2(Xn)−
(
Ef(Xn)

)2

= Ef2(Xn)− n2,

Var f(Xn+1) = Var f(Xn) +
n∑
k=0

pn(k)q−1
k − 1. (14)

By (4) and (12),

Eg(Xn+1) =
n+1∑
k=0

pn+1(k)g(k)

= Eg(Xn)−
n∑
k=0

qkpn(k)g(k) +
n+1∑
k=1

qk−1pn(k − 1)
(
g(k − 1) +

1− qk−1

q2k−1

)
= Eg(Xn) +

n∑
k=0

pn(k)
1− qk
qk

.

= Eg(Xn) +
n∑
k=0

pn(k)q−1
k − 1.

By (14), Var f(Xn+1) − Var f(Xn) = Eg(Xn+1) − Eg(Xn) holds for all n ≥ 0.
Since Var f(X0) = Eg(X0) = 0, Var f(Xn) = Eg(Xn) holds for all n. ut

Proof (of Theorem 3). Define

Wn =
Var f(Xn)
Ef2(Xn)

=
∑∞
k=0 pn(k) · g(k)∑∞
k=0 pn(k) · f2(k)

.



Since Var f(Xn) = Ef2(Xn)− E2f(Xn) and Ef(Xn) = n,

Wn =
Var f(Xn)

Var f(xn) + n2

A2
n =

Var f(Xn)
n2

=
Wn

1−Wn
.

Now, 0 ≤ Wn ≤ 1, and the monotonicity of ϕ(z) = z
1−z on z ∈ [0, 1) implies

that

lim inf
n→∞

An =
√

lim infn→∞Wn

1− lim infn→∞Wn
(15a)

lim sup
n→∞

An =

√
lim supn→∞Wn

1− lim supn→∞Wn
, (15b)

where lim supn→∞An =∞ or limn→∞An =∞ is allowed with lim supn→∞Wn =
1 or limn→∞Wn = 1.

Let ε > 0 be an arbitrary threshold. By the definition of λ, there exists K
such that

g(k)
f2(k)

< (1 + ε)λ2

for all k > K. Therefore,

Wn =
∑K
k=0 pn(k)g(k) +

∑
k>K pn(k) · g(k)∑K

k=0 pn(k)f2(k) +
∑
k>K pn(k)f2(k)

<

∑K
k=0 pn(k)g(k) + (1 + ε)λ2

∑
k>K pn(k)f2(k)∑

k>K pn(k)f2(k)

= (1 + ε)λ2 +
∑K
k=0 pn(k)g(k)∑
k>K pn(k)f2(k)

.

Since qk > 0 for all k, limn→∞ pn(k) = 0 for all k. Consequently, limn→∞
∑K
k=0 pn(k)g(k) =

0. As limn→∞
∑
k>K pn(k)f2(k) =∞, there exists N such that

Wn < (1 + 2ε)λ2 for all n > N. (16)

As ε is arbitrary,
lim sup
n→∞

Wn ≤ λ2

must hold, and (15b) implies lim supn→∞An ≤
√

λ2

1−λ2 .
The lower bound is proven analogously. Let ε > 0 be an arbitrary threshold.

Let K be such that g(k)
f2(k) > (1− ε)µ2 for all k > K. So,

Wn >
(1− ε)µ2

∑
k>K pn(k)f2(k)∑K

k=0 pn(k)f2(k) +
∑
k>K pn(k)f2(k)

.



For n large enough, Wn > (1− 2ε)µ2 holds. Since ε is arbitrarily small,

lim inf
n→∞

Wn ≥ µ2,

and (15a) gives lim infn→∞An ≥
√

µ2

1−µ2 . ut


