Skip to main content

Granular Approach for Evolving System Modeling

  • Conference paper
Computational Intelligence for Knowledge-Based Systems Design (IPMU 2010)

Abstract

In this paper we introduce a class of granular evolving system modeling approach within the framework of interval analysis. Our aim is to present an interval-based learning algorithm which develops both, granular and singular approximations of nonlinear nonstationary functions using singular data. The algorithm is capable of incrementally creating/adapting both model parameters and structure. These are key features in nonlinear systems modeling. In addition, interval analysis provides rigorous bounds on approximation errors, rounding errors, and on uncertainties in data propagated during computations. The learning algorithm is simple and particularly suited to process stream of data in real time. In this paper we focus on the foundations of the approach and on the details of the learning algorithm. An application concerning economic time series forecasting illustrates the usefulness and efficiency of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelov, P., Filev, D.: An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Transactions on SMC - Part B 34(1), 484–498 (2004)

    Google Scholar 

  2. Angelov, P., Zhou, X.: Evolving Fuzzy Rule-Based Classifiers from Data Streams. IEEE Transactions on Fuzzy Systems 16(6), 1462–1475 (2008)

    Article  Google Scholar 

  3. Gabrys, B., Bargiela, A.: General fuzzy min-max neural network for clustering and classification. IEEE Trans. on Neural Networks 11(3), 769–783 (2000)

    Article  Google Scholar 

  4. Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering Approach., 2nd edn., 451 p. Springer, Heidelberg (2007)

    Google Scholar 

  5. Pedrycz, W., Gomide, F.: Fuzzy systems engineering: Toward human-centric computing, 526 p. Wiley, Hoboken (2007)

    Google Scholar 

  6. Leite, D.F., Costa Jr., P., Gomide, F.: Evolving Granular Classification Neural Networks. In: IEEE Int. Joint Conference on Neural Networks, pp. 1736–1743 (2009)

    Google Scholar 

  7. Leite, D.F., Costa Jr., P., Gomide, F.: Interval-Based Evolving Modeling. In: IEEE Workshop on Evolving and Self-Developing Intelligent Systems, pp. 1–8 (2009)

    Google Scholar 

  8. Bouchachia, A., Gabrys, B., Sahel, Z.: Overview of Some Incremental Learning Algorithms. In: IEEE International Conference on Fuzzy Systems, pp. 1–6 (2007)

    Google Scholar 

  9. Angelov, P., Filev, D., Kasabov, N.: Guest ed. Evolving Fuzzy Systems - Preface to the Special Sec. IEEE Trans. on Fuzzy Systems 6(6), 1390–1392 (2008)

    Article  Google Scholar 

  10. Hansen, E.R., Walster, G.W.: Global optimization using interval analysis., 2nd edn., 489 p. Marcel Dekker, New York (2004)

    Google Scholar 

  11. Jaulin, L.; Keiffer, M.; Didrit, O.; Walter, E.: Applied Interval Analysis. 379 p. Springer-Verlag, London (2001)

    MATH  Google Scholar 

  12. Moore, R.E.: Interval Analysis, 145 p. Prentice Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  13. Kreinovich, V.: Interval computations and interval-related statistical techniques. In: Adv. in Data Modeling for Meas. in the Metrology, pp. 119–147. Springer, Heidelberg (2008)

    Google Scholar 

  14. Hickey, T., Ju, Q., van Emden, M.H.: Interval Arithmetic: From Principles to Implementation. Journal of the ACM 48(5), 1038–1068 (2001)

    Article  MathSciNet  Google Scholar 

  15. Mitchell, T.: Machine Learning, 1st edn., 414 p. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  16. Bishop, C.M.: Pattern Recognition and Machine Learning, 738 p. Springer, Heidelberg (2007)

    Google Scholar 

  17. Yao, J.T.: A Ten-year Review of Granular Computing. In: IEEE International Conference on Granular Computing, pp. 734–739 (2007)

    Google Scholar 

  18. Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Sys. 90(2), 111–127 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leite, D., Costa, P., Gomide, F. (2010). Granular Approach for Evolving System Modeling. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds) Computational Intelligence for Knowledge-Based Systems Design. IPMU 2010. Lecture Notes in Computer Science(), vol 6178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14049-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14049-5_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14048-8

  • Online ISBN: 978-3-642-14049-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics