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Abstract. This paper reevaluates the security of GF-NLFSR, a new
kind of generalized unbalanced Feistel network structure that was pro-
posed at ACISP 2009. We show that GF-NLFSR itself reveals a very
slow diffusion rate, which could lead to several distinguishing attacks. For
GF-NLFSR containing n sub-blocks, we find an n2-round integral distin-
guisher by algebraic methods and further use this integral to construct
an (n2 + n − 2)-round impossible differential distinguisher. Compared
with the original (3n− 1)-round integral and (2n− 1)-round impossible
differential, ours are significantly better.

Another contribution of this paper is to introduce a kind of non-
surjective attack by analyzing a variant structure of GF-NLFSR, whose
provable security against differential and linear cryptanalysis can also be
provided. The advantage of the proposed non-surjective attack is that
traditional non-surjective attack is only applicable to Feistel ciphers with
non-surjective (non-uniform) round functions, while ours could be ap-
plied to block ciphers with bijective ones. Moreover, its data complexity
is O(l) with l the block length.

Keywords: block ciphers, generalized unbalanced Feistel network, inte-
gral attack, impossible differential attack, non-surjective attack

1 Introduction

Differential cryptanalysis (DC) [6] and linear cryptanalysis (LC) [23] are the
two most powerful known attacks on block ciphers since 1990s. For a new block
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cipher algorithm, designers must guarantee that it can resist these two attacks.
However, even the security against DC and LC can be proved, the algorithm
may suffer other attacks, such as truncated differential attack [13], higher-order
differential attack [13, 18], impossible differential attack [4, 14], boomerang at-
tack [27], amplified boomerang attack [16], rectangle attack [5], integral attack
[15], interpolation attack [12], non-surjective attack [24], algebraic attack [8],
related-key attack [3], slide attack [1] and so on. Among these methods, inte-
gral attack and impossible differential attack are of special importance. Take
the well-known 128-bit version block cipher Rijndael as an example, six rounds
is sufficient for resisting DC and LC. However, by integral attack or impossible
differential attack, one can break six, seven, even eight rounds [9, 11, 20, 29].

Integral cryptanalysis [15], which is especially well-suited for analyzing ci-
phers with primarily bijective components, was proposed by Knudsen et al.. In
fact, it is a more generalization of Square attack [9], Saturation attack [19] and
Multiset attack [2] proposed by Daemen et al., Lucks, and Biryukov et al., re-
spectively. These methods exploit the simultaneous relationship between many
encryptions, in contrast to differential cryptanalysis, where only pairs of en-
cryptions are considered. Consequently, integral cryptanalysis applies to a lot
of ciphers which are not vulnerable to DC and LC. These features have made
integral an increasingly popular tool in recent cryptanalysis work.

The concept of using impossible differentials (differentials with probability
0) to retrieve the secret key of block ciphers was firstly introduced by Knud-
sen [14] against the DEAL cipher and further by Biham et al. [4] to attack
Skipjack. Unlike differential cryptanalysis which recovers the right key through
the obvious advantage of a high probability differential (differential character-
istic), impossible differential cryptanalysis is a sieving attack that excludes all
the wrong candidate keys using impossible differentials. Since its emergence, im-
possible differential cryptanalysis has been applied to attack many well-known
block ciphers [20, 21, 28, 29].

Non-surjective attack [24] was introduced by Rijmen et al. and it is applica-
ble to Feistel ciphers with non-surjective, or more generally, non-uniform round
functions such as CAST and LOKI 91. If the round function of Feistel ciphers
is non-surjective (non-uniform), then by analyzing the statistical bias of some
expression derived from the round function, one can apply a key recovery attack.
However, if the round function is a surjective (uniform) one, it is impossible to
apply this kind of non-surjective attack.

At ACISP 2009, Choy et al. proposed a new block cipher structure called
n-cell GF-NLFSR [7], which is a kind of generalized unbalanced Feistel network
[26] containing n sub-blocks. The advantages of this structure are that it allows
parallel computations for encryption and that it can provide provable security
against DC and LC, given that the round function is bijective. Meanwhile, the
designers show the existence of a (3n − 1)-round integral distinguisher and a
(2n − 1)-round impossible differential distinguisher. In the same paper, a new
block cipher Four-Cell is designed as an application of the theoretical model of
4-cell GF-NLFSR.



Cryptanalysis of a Generalized Unbalanced Feistel Network Structure 3

Main Contribution. (1) We demonstrate that GF-NLFSR itself reveals a
very slow diffusion rate, which could lead to several distinguishing attacks. We
especially apply algebraic methods to find integral distinguishers in n-cell GF-
NLFSR. In this method, plaintexts of special forms as well as their indeterminate
states are treated as polynomial functions over finite fields, and in many cases,
more precise information among these states could be obtained, which would
lead to a better distinguisher.

Our cryptanalytic results show that, for n-cell GF-NLFSR, there exists an n2-
round integral distinguisher, which could be extended to an (n2 + n− 2)-round
higher-order integral distinguisher. Furthermore, by studying the relationship
between integral and truncated differential, an (n2 + n − 2)-round impossible
differential distinguisher could be constructed. These distinguishers are signifi-
cantly better than the original ones.

(2) We introduce a kind of non-surjective attack by analyzing a variant
structure of GF-NLFSR, whose provable security against DC and LC can also be
provided. The advantage of the proposed attack is that traditional non-surjective
attack is only applicable to Feistel ciphers with non-surjective (non-uniform)
round functions, while ours could be applied to block ciphers with bijective
ones. Moreover, its data complexity is O(l) with l the block length.

Outline. We begin with a brief description of n-cell GF-NLFSR in Section 2.
Encryption properties of n-cell GF-NLFSR by every n rounds are studied in
Section 3. The existence of n2-round integral distinguisher and (n2 + n − 2)-
round impossible differential distinguisher are shown in Section 4 and Section
5, respectively. Section 6 presents a kind of non-surjective attack by analyzing
a variant structure of GF-NLFSR. Section 7 contains results of the experiment
with the proposed non-surjective attack on a toy cipher, and finally Section 8 is
the conclusion.

2 Description of n-cell GF-NLFSR

As shown in Fig. 1, assume the input, output and round key to the i-th round

of n-cell GF-NLFSR are (x
(i)
0 , x

(i)
1 , . . . , x

(i)
n−1) ∈ Fn

2b , (x
(i+1)
0 , x

(i+1)
1 , . . . , x

(i+1)
n−1 ) ∈

Fn
2b , and Ki = (ki, k

′
i), then the round transformation can be described as follow:

(x
(i)
0 , x

(i)
1 , . . . , x

(i)
n−2, x

(i)
n−1) 7→ (x

(i+1)
0 , x

(i+1)
1 , . . . , x

(i+1)
n−2 , x

(i+1)
n−1 ),

where {
x
(i+1)
l = x

(i)
l+1, if l = 0, 1, . . . , n− 2

x
(i+1)
n−1 = F (x

(i)
0 ,Ki)⊕ x

(i)
1 ⊕ x

(i)
2 ⊕ . . .⊕ x

(i)
n−1

and F (·,Ki) , FKi(·) is a permutation on F2b .

From [7], this kind of generalized unbalanced Feistel network can provide
its provable security against DC and LC, which is summarized in the following
proposition.
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Fig. 1. The i-th round transformation of n-cell GF-NLFSR

Proposition 1. [7] Let the round function of n-cell GF-NLFSR F : F2b ×F2b ×
Ω → F2b be of the form F (x, ki, k

′
i) = f(x⊕ ki, k

′
i), where f : F2b ×Ω → F2b is

bijective for all fixed k′i ∈ Ω. If the maximum differential (linear hull) probability
of f satisfies DP (LP )max(f) ≤ p(q), then the differential (linear hull) probability
of the (n+ 1)-round encryption is upper bounded by p2(q2).

3 Encryption Property of n-cell GF-NLFSR

In this section, we study the encryption property of n-cell GF-NLFSR by every
n rounds. From now on, the round function FKi(x) is treated as a permutation
polynomial over F2b .

Firstly, according to the definition of n-cell GF-NLFSR, the following result
could be obtained.

Proposition 2. Let (x0, x1, . . . , xn−1) be the input of the i-th round of n-cell
GF-NLFSR, and (y0, y1, . . . , yn−1) be the output of the (i+n−1)-th round, then{

y0 = FKi
(x0)⊕ x1 ⊕ x2 ⊕ . . .⊕ xn−1

ym = FKi+m−1(xm−1)⊕ FKi+m(xm)⊕ xm, if 1 ≤ m ≤ n− 1

and

n−1⊕
j=0

yj = FKi+n−1(xn−1).

Proposition 2 can be verified directly by the encryption procedure of n-cell GF-
NLFSR, based on which we could deduce the following proposition.
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Proposition 3. Let the input of n-cell GF-NLFSR be (x, c1, . . . , cn−1), where
x is a variable and each ci is some constant with 1 ≤ i ≤ n − 1, let the output

of the r-th round be
(
y
(r)
0 (x), y

(r)
1 (x), . . . , y

(r)
n−1(x)

)
, and 1 ≤ m ≤ n− 1, then

(1) y
(m×n)
i (x) is a permutation polynomial over F2b if i = m,

(2) y
(m×n)
i (x) is a constant if i > m.

Table 1 is the encryption results of every n rounds of n-cell GF-NLFSR when
plaintexts are of the form (x, c1, . . . , cn−1) as described in Proposition 3. Note
that the first column denotes the round number, and each of the other columns
represents the corresponding output sub-block. The letter C denotes some con-
stant which could be different from each other. Pm(x) is some permutation poly-
nomial over F2b with 1 ≤ m ≤ n− 1, and those blank cells (elements under the
diagonal) indicate that their behaviors are unknown.

An immediate conclusion, from Proposition 3 and Table 1, is that the diffu-
sion rate of n-cell GF-NLFSR is very slow, since the input variable x needs at
least (n−1)×n rounds to influence the last (rightmost) sub-block of the output.

Table 1. Output of every n rounds of n-cell GF-NLFSR

0 x C C . . . C . . . C C
n P1(x) C . . . C . . . C C
...

. . .
...

...
...

(m− 1)× n Pm−1(x) C . . . C C
m× n Pm(x) . . . C C

...
. . .

...
...

(n− 2)× n Pn−2(x) C
(n− 1)× n Pn−1(x)

4 Integral Distinguisher of GF-NLFSR

4.1 Preliminaries

To apply integral cryptanalysis, one should first find an integral distinguisher of
the reduced-round cipher, then apply the key recovery attack. In this section, we
show how to construct an n2-round integral distinguisher of n-cell GF-NLFSR
by using algebraic techniques.

Firstly, recall that most traditional methods in finding integral distinguish-
ers are based on the so-called empirical methods. They firstly treat each part
of plaintexts with special forms as active or passive state (see definitions be-
low), then study the property (active, passive or balanced) of its corresponding
intermediate state after passing through several encryption rounds.
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Definition 1. A set {ai|ai ∈ F2b , 0 ≤ i ≤ 2b − 1} is active, if for any 0 ≤ i <
j ≤ 2b − 1, ai ̸= aj. We use A to denote the active set.

Definition 2. A set {ai|ai ∈ F2b , 0 ≤ i ≤ 2b − 1} is passive or constant, if for
any 0 < i ≤ 2b − 1, ai = a0. We use C to denote the passive set.

Definition 3. A set {ai|ai ∈ F2b , 0 ≤ i ≤ 2b − 1} is balanced, if the XOR-sum

of all element of the set is 0, that is ⊕2b−1
i=0 ai = 0. We use B to denote the

balanced set.

Moreover, three principles are widely used when applying empirical methods:
(1) An active set remains active after passing a bijective transform. (2) The linear
combination of several active/balanced sets is a balanced set. (3) The property
of a balanced set after passing a nonlinear transformation is generally unknown.

Obviously, the third one is the bottleneck of empirical methods, thus if one
could determine the property of a balanced set after it passes a nonlinear trans-
formation, integral distinguisher with more rounds can be constructed.

4.2 n2-Round Integral Distinguisher of n-cell GF-NLFSR

By using the empirical method, the designers presented the following (3n− 1)-
round integral distinguisher:

(A,C,C, . . . , C) → (C, ?, ?, . . . , ?),

where A is active in F2b , C is constant in F2b , and ? is unknown.
Now we describe the newly constructed n2-round integral in the following

theorem, the proof is based on algebraic methods. See Appendix B for a 16-
round integral distinguisher of 4-cell GF-NLFSR as an example.

Theorem 1. There is an n2-round integral distinguisher of n-cell GF-NLFSR:

(A,C, . . . , C) → (S0, S1, . . . , Sn−1),

where A is active, C is constant and (S0 ⊕ S1 ⊕ . . .⊕ Sn−1) is active.

Proof. Let the input of n-cell GF-NLFSR be (x, c1, . . . , cn−1) and the output of
the ((n− 1)× n)-th round be(

y
((n−1)×n)
0 (x), y

((n−1)×n)
1 (x), . . . , y

((n−1)×n)
n−1 (x)

)
,

then y
((n−1)×n)
n−1 (x) is a permutation polynomial by Proposition 3.

Assume the output of the n2-round is(
y
(n2)
0 (x), y

(n2)
1 (x), . . . , y

(n2)
n−1(x)

)
,

according to Proposition 2,

y
(n2)
0 (x)⊕ y

(n2)
1 (x)⊕ . . .⊕ y

(n2)
n−1(x) = FKn2

(
y
((n−1)×n)
n−1 (x)

)
.

Since y
((n−1)×n)
n−1 (x) is a permutation polynomial, so is FKn2

(
y
((n−1)×n)
n−1 (x)

)
,

which ends the proof. ⊓⊔
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From the idea of higher-order integral [15], the above n2-round integral can be
extended to an (n2 + n− 2)-round higher-order one.

Theorem 2. There is an (n2 + n− 2)-round higher-order integral distinguisher
of n-cell GF-NLFSR:

(A0, A1, . . . , An−2, C) → (S0, S1, . . . , Sn−1),

where (A0, A1, . . . , An−2) is active in Fn−1
2b

, C is constant and (S0 ⊕ S1 ⊕ . . .⊕
Sn−1) is balanced.

Proof. First, according to bijective property of the encryption structure of n-cell
NLFSR, if the input is (x0, x1, . . . , xn−2, c), where (x0, x1, · · · , xn−1) is active in
Fn−1
2b

, c ∈ F2b is constant, after n− 2 rounds encryption, the intermediate state

must be (y0, c, y2, . . . , yn−1), where (y0, y2, . . . , yn−1) is active in Fn−1
2b

.

Next, let’s focus on the set containing these 2(n−1)b intermediate states after
n− 2 rounds encryption. Fix (y2, y3, . . . , yn−1) ∈ Fn−2

2b
, we thus get a structure

with 2b elements, which is the input of the n2-round integral distinguisher as
shown in Theorem 1(From now on, we call this structure a Λ set).

Now, these 2(n−1)b intermediate states can be divided into 2(n−2)b indistin-
guishable Λ sets. When each Λ set passes through the n2 rounds encryption,
the XOR sum of the n sub-blocks of outputs is active (thus balanced) in F2b .
Consequently, the XOR sum of the n sub-blocks of outputs for these 2(n−2)b

indistinguishable Λ sets is balanced. Let E
(i)
j (·) denote the j-th sub-block after

i rounds encryption of the input, then we can explain the higher-order integral
distinguisher as follows:⊕

x0,x1,...,xn−2

n−1⊕
j=0

E
(n2+n−2)
j (x0, x1, . . . , xn−2, c)

=
⊕

y0,y2,...,yn−1

n−1⊕
j=0

E
(n2)
j (y0, c, y2, . . . , yn−1)

=
⊕

y2,...,yn−1

⊕
y0

n−1⊕
j=0

E
(n2)
j (y0, c, y2, . . . , yn−1)


=

⊕
y2,...,yn−1

0

= 0 ⊓⊔

5 Impossible Differential of GF-NLFSR

By using the U-method [17], the designers of n-cell GF-NLFSR found a (2n−1)-
round impossible differential: (0, 0, 0, . . . , α) 9 (ψ,ψ, 0, . . . , 0), where α ̸= 0,
ψ ̸= 0. In this section, we show how to construct an (n2 + n − 2)-round im-
possible differential by studying the relationship between integral and truncated
differential as described in the following theorem:
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Theorem 3. The n2-round integral distinguisher of Theorem 1 corresponds to
the following n2-round truncated differential with probability 1:

(δ, 0, . . . , 0) → (δ0, δ1, . . . , δn−1),

where δ ̸= 0 and δ0 ⊕ δ1 ⊕ . . .⊕ δn−1 ̸= 0.

Proof. Let the input of the n-cell GF-NLFSR be (x, c1, c2, . . . , cn−1), after n
2

rounds, the output is (q0(x), q1(x), . . . , qn−1(x)), then according to Proposition
2, q0(x)⊕ q1(x)⊕ . . .⊕ qn−1(x) , q(x) ∈ F2b [x] is a permutation polynomial.

Assume two inputs are (x1, c1, c2, . . . , cn−1) and (x2, c1, c2, . . . , cn−1) with
x1 ̸= x2, thus q(x1) ̸= q(x2). Now the input difference is (δ, 0, . . . , 0) with δ =
x1 ⊕ x2 ̸= 0, and the output difference is (δ0, δ1, . . . , δn−1), satisfying δ0 ⊕ δ1 ⊕
. . .⊕ δn−1 = q(x1)⊕ q(x2) ̸= 0. ⊓⊔
Theorem 4. There exists an (n2+n−2)-round impossible differential in n-cell
GF-NLFSR of the following form:

(δ, 0, . . . , 0)9(ψ,ψ, 0, . . . , 0),

where δ ̸= 0 and ψ ̸= 0.

Proof. From encrypt direction, the n2-round truncated differential (δ, 0, . . . , 0) →
(δ0, δ1, . . . , δn−1) is with probability 1, where δ ̸= 0 and δ0⊕ δ1⊕ . . .⊕ δn−1 ̸= 0.
From decrypt direction, the (n−2)-round truncated differential (ψ,ψ, 0, . . . , 0) →
(0, . . . , 0, ψ, ψ) is with probability 1. Since ψ⊕ψ = 0, we find a contradiction. ⊓⊔

Remark. Wu et al. [30] independently found the same (n2+n−2)-round impossi-
ble differential through a more direct approach. By using the 18-round impossible
differential when n = 4, they presented a key recovery attack on the full round
block cipher Four-Cell. Due to these new distinguishers and the full round at-
tack, the designers have modified Four-Cell to Four-Cell+ for better protection
against the integral and impossible differential attacks.

6 A Kind of Non-surjective Attack

Our goal for introducing this kind of attack is that traditional non-surjective
attack is only applicable to Feistel ciphers with non-surjective (non-uniform)
round functions, while ours could be applied to block ciphers with bijective
ones. Moreover, its data complexity is O(l) with l the block length.

To this end, we describe a variant structure of n-cell GF-NLFSR, denoted
as n-cell VGF-NLFSR. As shown in Fig. 2, the main difference between these
two structures is the round function. In n-cell VGF-NLFSR, the round function
is F (x ⊕ Ki) with F bijective. One can easily demonstrate that the provable
security against DC and LC for n-cell VGF-NLFSR can be provided using the
same technique in [7]. Furthermore, Proposition 2 and 3 also suit for n-cell VGF-
NLFSR, thus there exist the same n2-round integral and (n2 + n − 2)-round
impossible differential as in n-cell GF-NLFSR.

Now, we introduce the non-surjective attack by analyzing VGF-NLFSR in
the following two subsections.
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Fig. 2. The i-th round transformation of n-cell VGF-NLFSR

6.1 Description of the Non-surjective Distinguisher

Let the input of n-cell VGF-NLFSR be (x, c1, . . . , cn−1), according to Proposition

2 and Proposition 3, y
((n−2)×n)
n−1 is a constant, say C, and

n−1⊕
j=0

y
(n2−n)
j = F (C ⊕Kn2−n) , C ′.

Thus

y
(n2−n)
0 = C ′ ⊕

n−1⊕
j=1

y
(n2−n)
j .

Assume the output of the n2-th round is (q0(x), q1(x), . . . , qn−1(x)), from Propo-
sition 2, we have

q0(x) = F
(
y
(n2−n)
0 ⊕Kn2−n+1

)
⊕

n−1⊕
j=1

y
(n2−n)
j .

Let t = y
(n2−n)
0 ⊕Kn2−n+1, then

q0(x) = F (t)⊕ t⊕Kn2+n−1 ⊕ C ′

= F (t)⊕ t⊕ C∗,

where C∗ = Kn2+n−1 ⊕ C ′ represents some unknown constant.

Let f(t) = F (t)⊕ t, and define Df = {y|y = f(t), t ∈ F2b}. From the above
fact, we have the following n2-round distinguisher:
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Theorem 5. Let the input to n-cell VGF-NLFSR be (x, c1, . . . , cn−1), where ci
is constant, and the output of the n2-th round be (q0(x), q1(x), . . . , qn−1(x)), then
there exists some constant C∗ ∈ F2b , such that for any x ∈ F2b , q0(x)⊕C∗ ∈ Df .

Consider the distinguisher in Theorem 5, in this situation, the input to the
(n2 + 1)-th round function F is q′(x) = q0(x) ⊕ Kn2+1, let c

∗ = C∗ ⊕ Kn2+1,
then q′(x)⊕ c∗ = q0(x)⊕ C∗. In other words, for all x ∈ F2b , there exists some
constant c∗, such that q′(x)⊕c∗ ∈ Df . Thus we could get the following theorem:

Theorem 6. Let the input of n-cell VGF-NLFSR be (x, c1, . . . , cn−1), where ci
is constant, and the input of the (n2+1)-th round function F be q′(x), then there
exists some constant c∗ ∈ F2b , such that for any x ∈ F2b , q

′(x)⊕ c∗ ∈ Df .

One should note that if Df = F2b , then both F (x) and F (x)⊕x are permutations
on F2b , which indicates that F (x) is an orthormorphic permutation [22]. Since
the number of all orthormorphic permutations is small, in general, for a randomly
chosen permutation F (x), f(x) = F (x) ⊕ x can be seen as a random function
(as the Davies-Meyer construction in hash function), thus Df ( F2b . From now
on, we will call the above distinguisher a non-surjective distinguisher, since the
range of the function f is only a subset of F2b .

6.2 Description of the Non-surjective Attack

By using the non-surjective distinguisher, one can attack (n2 + n′)-round n-cell
VGF-NLFSR by Algorithm 1, where n′ > 1.

Algorithm 1: Non-surjective attack on n-cell VGF-NLFSR
Step 1 Compute and store Df .
Step 2 Given t plaintexts (xi, c1, . . . , cn−1), obtain the corresponding

(n2 + n′)-round ciphertexts, i = 1, . . . , t.
Step 3 Guess the last (n′ − 1) round-keys rk = (rk1, rk2, . . . , rkn′−1),

decrypt the ciphertext to get the input of the (n2 + 1)-round
function F , denoted by q′rk(xi).

Step 4 For all xi in Step 2, test whether there exists some constant c∗

satisfying q′rk(xi)⊕ c∗ ∈ Df . If not, the guessed round-keys rk must
be wrong.

Step 5 If necessary, repeat Step 2 ∼ Step 5 to further filter the wrong
round keys until only one left.

In order to estimate the complexity of the above attack, we need the following
two lemmas and their proofs can be found in Appendix A.

Lemma 1. Given A ⊆ F2b , |A| denotes the number of different elements in A.
For a randomly chosen set X ⊆ F2b(|X| ≤ |A|), let p be the probability that there
exists some constant c ∈ F2b , such that X ⊕ c = {x⊕ c|x ∈ X} ⊆ A, then

p ≤ 2b × |A|
2b

× |A| − 1

2b − 1
× . . .× |A| − (|X| − 1)

2b − (|X| − 1)
.
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Lemma 2. Let f(x) be a random function from Fq to Fq, Df = {f(x)|x ∈ Fq},
let ϵ = E(|Df |) and σ2 = V (|Df |) be the expectation and variance of |Df |,
respectively, then

(i) lim
q→∞

ϵ

q
= 1−

1

e
≈ 0.632,

(ii) lim
q→∞

σ2

q
=
e− 2

e2
≈ 0.097.

From Lemma 1, for a randomly chosen X ⊆ F2b , if |X| ≪ |A|, the upper bound

of p can be well approximated by 2b ×
(
|A|/2b

)|X|
.

From Lemma 2, when q is large, the Chebyshev Inequality [27] indicates

Pr (||Df | − ϵ| ≤ lσ ) ≥ 1− 1

l2
.

If we choose q = 2b and l = 10, then for a randomly chosen f ,

Pr
(
0.63× 2b − 3× 2b/2 ≤ |Df | ≤ 0.63× 2b + 3× 2b/2

)
≥ 0.99.

Thus we can estimate with high probability that |Df | is less than 0.63 × 2b +
3× 2b/2. Moreover, when b is large, |Df | can be approximated by 0.63× 2b.

Now, the data, time and space complexity of the proposed non-surjective
attack can be analyzed as follows:

Data Complexity. Firstly, we note that when applying integral attack to n-cell
VGF-NLFSR, one must choose at least a structure of all possible (x, c1, . . . , cn−1),
where c′is are constants. While for the non-surjective attack, only a fraction of
them are needed.

Assume the number of chosen plaintexts as (x, c1, . . . , cn−1) is t, let T denote
the set of their corresponding ciphertexts, Trk denote the set of the input to the
(n2 +1)-round F function from decrypting the ciphertexts in T by guessing the
last n′ − 1 round keys rk.

The crucial step in Algorithm 1 is to check whether there exists a constant
c∗ ∈ F2b such that Trk ⊕ c∗ ⊆ Df . Assume wrong key values can pass such test
with probability Perr, then from Lemma 1,

Perr ≤ (2(n
′−1)b − 1)× 2b ×

(
|Df |
t

)
/

(
2b

t

)
, Pt,

thus in order to identify the right keys for the last n′ − 1 rounds, Perr must be
small enough. If b is large, and t≪ |Df |,

Pt ≈ 2n
′b ×

(
|Df |/2b

)t ≈ 2n
′b × 0.63t.

Let Pt = 2−λ, where the parameter λ is related to the success probability, and
can be deduced by experiments, then Perr ≤ Pt = 2−λ, which indicates that the
probability that wrong key values can pass the test in Step 4 is less than 2−λ.
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From 2n
′b × 0.63t = 2−λ, we get t ≈ 3

2n
′b+ 3

2λ. Thus the data complexity of
the above non-surjective attack is O(b).

To sum up, for attacking (n2 +n′)-round n-cell VGF-NLFSR, the data com-
plexity is about 3

2n
′b+ 3

2λ.

Time Complexity. As explained before, Step 4 of Algorithm 1 needs to verify
whether there exists a constant c∗ ∈ F2b , s.t. Trk ⊕ c∗ ⊆ Df for each possible rk.
Assume for each possible c∗, the time complexity for testing whether Trk ⊕ c∗ ⊆
Df is equivalent to u encryptions, then the time complexity is about(

3

2
n′b+

3

2
λ

)
× (2(n

′−1)b)× 0.63× 2b × u ≈ (n′b+ λ)× 2n
′b × u,

thus a good algorithm for testing whether one set is included in another is
required.

Space Complexity. Since one must storeDf to apply the non-surjective attack,
the space complexity is about 0.63× 2b.

7 Experiments with the Proposed Non-surjective Attack

This section describes a 32-bit toy cipher based on 4-cell VGF-NLFSR, where
the round function is defined by F (x, k) = S(x⊕k) with S as the S-box of AES.
It is well known that the differential (linear hull) probability of the S-box of AES
is upper bounded by 2−6, thus the differential (linear hull) probability for five
rounds is upper bounded by (2−6)2 = 2−12. Now we can see that the differential
(linear) characteristic probability for 15 rounds is at most (2−12)3 = 236 ≤ 2−32,
that is to say such toy cipher with more than 15 rounds is practically secure
against DC and LC.

As an example, we use the method in Section 6 to mount a non-surjective
attack on the 18-round toy cipher. In this case, b = 8 and |Df | = 163 ≈ 0.63×28.
Table 2 lists our experimental results. For each λ = 2, 4, 6, 8, 10, tλ denotes the
number of chosen plaintexts and pλ denotes the success probability, where the
“success” means the adversary can uniquely recover the right 18-th round key.
For each chosen parameter λ, we do the non-surjective attack 1000 times, and
in each time the plaintext as well as the encryption key are randomly generated.
The success probabilities are 0.474, 0.758, 0.873, 0.965, 0.992.

One could also apply the integral attack to the 18-round toy cipher, however,
to get a high success probability, its data complexity is about 2× 28 = 29.

Table 2. Experiments with the non-surjective attack on the 18-round toy cipher

parameter chosen plaintexts success probability
λ tλ = 3b+ 1.5λ pλ
2 27 0.474
4 30 0.758
6 33 0.873
8 36 0.965
10 39 0.992
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8 Conclusion

This paper presents several security analysis on GF-NLFSR. Although such
structure allows parallel computations for encryption and can even provide its
provable security against DC and LC, the structure itself reveals a very slow
diffusion rate, which could lead to several distinguishing attacks.

For n-cell GF-NLFSR, our cryptanalytic results show that there exists an n2-
round integral distinguisher, which could be extended to an (n2 + n− 2)-round
higher-order one. Based on this n2-round integral distinguisher, an (n2+n− 2)-
round impossible differential is constructed. These results are significantly better
than the original ones and thus imply that the security of n-cell GF-NLFSR must
be carefully reevaluated.

Besides, a kind of non-surjective attack is proposed, which is different in
essence with the one introduced by Rijmen et al., since traditional non-surjective
attack is only applicable to Feistel ciphers with non-surjective (non-uniform)
round functions while ours can be applied to block ciphers with round functions
being bijective. To demonstrate this, we describe a variant structure of n-cell GF-
NLFSR, whose round function is defined by F (x ⊕ K). The provable security
against DC and LC can also be provided for this variant structure, however, by
using the proposed non-surjective attack, an efficient key recovery attack with
very low data complexity could be mounted. Some experimental results are given
for this non-surjective attack on a toy cipher based on the S-box of AES.

It is interesting that whether this kind of non-surjective attack can be applied
to other block ciphers.
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A Proofs of Lemma 1 and Lemma 2

1. Proof of Lemma 1

First note that the number of different sets chosen from F2b with |X| elements is(
2b

|X|
)
. Consider the subset A ⊆ F2b , the number of different sets chosen from A

with |X| elements is
(|A|
|X|
)
. Now for every fixed c ∈ F2b , the probability pc that

X ⊕ c ⊆ A is upper bound by
(|A|
|X|
)
/
(
2b

|X|
)
. Thus we have

p =
∑
c∈F

2b

pc ≤ 2b ×
(
|A|
|X|

)
/

(
2b

|X|

)
.

⊓⊔

2. Proof of Lemma 2

Lemma 2 can be extended to a more general situation, where Fq can be replaced
by any set with n elements and we will prove this more general conclusion. Note
that the result of (i) can also be found in [24], however, by using their technique,
one could not get the result of (ii). So, we introduce a formal method and prove
these two results in a unified approach.

Given a set S, |S| = n, let f be a random function from S to S and Df =
{f(a)|a ∈ S} ⊆ S.

(i) By the definition of expectation,

ϵ =
∑
f

1

nn
× |Df | =

1

nn
×
∑
f

|Df |. (1)

From the “Principle of Inclusive and Exclusive” [25], we have

∑
f

|Df | =
n∑

t=1

t ·
(
n

t

)
·
t−1∑
i=0

(
t

t− i

)
· (−1)i · (t− i)n

=

n∑
t=1

t ·
(
n

t

)
·

t∑
u=1

(
t

u

)
· (−1)t−u · un (where u = t− i)
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=

n∑
u=1

un ·
n∑

t=u

t ·
(
n

t

)
·
(
t

u

)
· (−1)t−u

=
n∑

u=1

un ·
n−u∑
k=0

(k + u) ·
(

n

k + u

)
·
(
k + u

u

)
· (−1)k (where k = t− u)

=
n∑

u=1

un ·
n−u∑
k=0

(k + u) ·
(
n

u

)
·
(
n− u

k

)
· (−1)k

=
n∑

u=1

un ·
(
n

u

)
·
n−u∑
k=0

(k + u) ·
(
n− u

k

)
· (−1)k

, A+B, (2)

where

A =

n∑
u=1

un ·
(
n

u

)
·
n−u∑
k=0

k ·
(
n− u

k

)
· (−1)k

=

n−1∑
u=1

un ·
(
n

u

)
·
n−u∑
k=1

k ·
(
n− u

k

)
· (−1)k

=
n−1∑
u=1

un ·
(
n

u

)
·
n−u∑
k=1

(n− u) ·
(
n− u− 1

k − 1

)
· (−1)k

= −
n−1∑
u=1

un ·
(
n

u

)
·
n−u−1∑
k′=0

(n− u) ·
(
n− u− 1

k′

)
· (−1)k

′

= −n · (n− 1)n,

and

B =

n∑
u=1

un+1 ·
(
n

u

)
·
n−u∑
k=0

(
n− u

k

)
· (−1)k = nn+1.

From (1) and (2), we get

ϵ =
A+B

nn
=

1

nn
×
(
nn+1 − n · (n− 1)n

)
= n− n · (1− 1/n)n.

Thus

lim
n→∞

ϵ

n
= lim

n→∞

(
1−

(
1− 1

n

)n)
= 1− 1

e
.

(ii) By the definition of variance,

σ2 =
∑
f

1

nn
× ( |Df | − ϵ )2 =

1

nn
×
∑
f

( |Df | − ϵ )2. (3)
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From the result of (i),∑
f

( |Df | − ϵ )2

=
n∑

t=1

(
t− n

(
1−

(
1− 1

n

)n))2

·
(
n

t

)
·
t−1∑
i=0

(
t

t− i

)
· (−1)i · (t− i)n

=
n∑

t=1

(
t2 − 2nt

(
1−

(
1− 1

n

)n)
+

(
1−

(
1− 1

n

)n)2

· n2
)

·
(
n

t

)
·
t−1∑
i=0

(
t

t− i

)
· (−1)i · (t− i)n

, A+B + C, (4)

where

A =
n∑

t=1

t2 ·
(
n

t

)
·
t−1∑
i=0

(
t

t− i

)
· (−1)i · (t− i)n,

B = −2n

(
1−

(
1− 1

n

)n)
·

n∑
t=1

t ·
(
n

t

)
·
t−1∑
i=0

(
t

t− i

)
· (−1)i · (t− i)n,

C =

(
1−

(
1− 1

n

)n)2

· n2 ·
n∑

t=1

·
(
n

t

)
·
t−1∑
i=0

(
t

t− i

)
· (−1)i · (t− i)n.

Using the same technique as in the proof of (i), after careful calculation,

A = nn+2 − 2n(n− 1)n+1 +

(
2(n− 2)n

(
n

2

)
− n(n− 1)n

)
,

B = −2n

(
1−

(
1− 1

n

)n)
· (nn+1 − n(n− 1)n),

C =

(
1−

(
1− 1

n

)n)2

· n2 · nn.

From (3) and (4), we get

σ2 =
A+B + C

nn
.

Thus

lim
n→∞

σ2

n
= lim

n→∞

A+B + C

nn+1
=
e− 2

e2
.

⊓⊔
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