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Abstract. In spite of the remarkable achievements recently obtained
in the field of mechanization of formal reasoning, the overall usability
of interactive provers does not seem to be sensibly improved since the
advent of the “second generation” of systems, in the mid of the eighties.
We try to analyze the reasons of such a slow progress, pointing out the
main problems and suggesting some possible research directions.

1 Introduction

In [23], Wiedijk presented a modern re-implementation of DeBruijn’s Automath
checker from the seventies (see [16]). The program was written to restore a
damaged version of Jutting’s translation of Landau’s Grundlagen [20], and the
interest of this development is that it is one of the first examples of a large
piece of mathematics ever formalized and checked by a machine. In particular,
it looks like a good touchstone to reason about the progress made in the field of
computer assisted reasoning during the last 30/40 years.

From this respect, the only concrete measure offered by Wiedijk is the com-
pilation time, that passed from 35 minutes of the seventies to the 0.6 seconds of
his new system. Of course, this is largely justified by the better performances of
microprocessors, and such a small compilation time does only testify, at present,
of a substantial underuse of the machine potentialities. As observed by Wiedijk
himself, “the user’s time is much more valuable than the computer’s time”, and
the interesting question would be to know what a modern system could do for
us supposing to grant him 35 minutes, as in the seventies.

A different measure that is sometimes used to compare formalizations is the
so called de Bruijn factor [21]. This is defined as the quotient between the di-
mension of the formalization and the dimension of the source mathematical text
(sometimes computed on compressed files), and it is supposed to give evidence
of the verbosity, and hence of the additional complexity of the formal encoding.
In the case of van Benthem Jutting’s work, Wiedijk computed a de Bruijn factor
of 3.9 (resp. 3.7 on compressed files). For other formalizations that are inves-
tigated in [21], sensibly more recent than the Automath effort, the de Bruijn
factor lies around 4. On even more recent works, some authors point out even
higher factors (8 and more) [4,2,15].
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A more explicit indicator for measuring the progress of the field is the average
amount of time required to formalize a given quantity of text (a page, say). The
table in Figure 1 reports some of these figures, computed by different people on
different mathematical sources and using different systems.

source formalization cost
(weeks per page)

Van Benthem [20] 1
Wiedijk [22] 1.5
Hales [12] 1
Asperti [2] 1.5

Fig. 1. Formalization cost

In the case of Van Benthem Jutting’s work, the cost factor is easily estimated:
the Grundlagen are 161 pages long, and he worked at their formalization for -
say - three years during his PhD studies (the PhD program takes four years
in Netherlands). Wiedijk [22] computes a formalization cost of 2.5 man-years
per megabyte of target (formalized) information. Since, according to his own
figures, a page in a typical mathematical textbook is about 3 kilobytes of text,
and considering a de Bruijn factor of 4, we easily get the value in Figure 1:
3 · 4 · 2.5 · 10−3 · 52 ≈ 1.5. In [2], very detailed timesheets were taken during the
development, precisely in order to compute the cost factor with some accuracy.
Hales [12] just says that his figure is a standard benchmark, without offering any
source or reference (but it presumably fits with his own personal experience).

Neither the de Bruijn nor the cost factor seem to have progressed over the
years; on the contrary, they show a slight worsening. Of course, as it is always
the case, we can give opposite interpretations of this fact. The optimistic inter-
pretation is that it is true that the factors are constant, but the mathematics
we are currently able to deal with has become much more complex: so, keeping
low cost and de Bruijn factors is already a clear sign of progress. It is a mat-
ter of fact that the mathematics of the Grundlagen is not very complex, and
that remarkable achievements have been recently obtained in the field of inter-
active theorem proving, permitting the formalization and automatic verification
of complex mathematical results such as the asymptotic distribution of prime
numbers (both in its elementary [4] and analytic [15] versions), the four color
theorem [8,9] or the Jordan curve theorem [13]; similar achievements have been
also obtained in the field of automatic verification of software (see e.g. [1] for a
discussion). However, it is also true that these accomplishments can be justified
in many other different ways, quite independent from the improvements of sys-
tems: a) the already mentioned progress of hardware, both in time and memory
space; b) the enlarged communities of users; c) the development of good and
sufficiently stable libraries of formal mathematics; d) the investigation and un-
derstanding of formalization problems and the development of techniques and
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methodologies for addressing them e) the growing confidence in the potentialities
of interactive provers; f) the possibility to get suitable resources and funding.

The general impression is that, in spite of many small undeniable technical
improvements, the overall usability of interactive provers has not sensibly im-
proved over the last 25 years, since the advent of the current “second generation”
of systems1: Coq, Hol, Isabelle, PVS (see [10,14,11,7] for some interesting histori-
cal surveys). This is certainly also due, in part, to backward compatibility issues:
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Fig. 2. Rise and fall of Interactive Provers

the existence of a large library of available results and a wide community of users
obviously tends to discourage wide modifications. Worse than that, it is usually
difficult to get a sensible feedback from users: most of them passively accept the
system as they could accept a programming language, simply inventing tricks
to overcome its idiosyncrasies and malfunctionings; the few propositive people,
often lack a sufficient knowledge of the tool’s internals, preventing them from
being constructive: either they are not ambitious enough, or altogether suggest
completely unrealistic functionalities.

1 The first generation comprised systems like Automath, LCF and Mizar. Only Mizar
still survives, to testify some interesting design choices, such as the adoption of a
declarative proof style.
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2 The structure of (procedural) formal developments

In all ITP systems based on a procedural proofstyle, proofs are conducted via a
progressive refinement of the goal into simpler subgoals (backward reasoning),
by means of a fixed set of commands, called tactics. The sequence of tactics (a
tree, actually) is usually called a script. In order to gain a deeper understanding
about the structure of formal proofs it is instructive to look at the structure of
these scripts.

In Figure 3 we summarize the structure of some typical Matita scripts, count-
ing the number of invocations for the different tactics.

Contrib Arithmetics Chebyshev Lebesgue POPLmark All

lines 2624 19674 2037 2984 27319

theorems 204 757 102 119 1182

definitions 11 73 63 16 163

inductive types 3 4 1 12 20

records 0 0 7 3 10

tactic no. % no. % no. % no. % no. %

apply 629 30.2 6031 34.5 424 28.2 1529 32.7 8613 33.4

rewrite 316 15.2 3231 18.5 73 4.9 505 10.8 4125 16.0

assumption 274 13.2 2536 14.5 117 7.8 493 10.5 3420 13.3

intros 359 17.2 1827 10.4 277 18.4 478 10.2 2941 11.4

cases 105 5.0 1054 6.0 266 17.7 477 10.2 1902 7.4

simplify 135 6.5 761 4.4 78 5.2 335 7.2 1309 5.1

reflexivity 71 3.4 671 3.8 12 0.8 214 4.6 968 3.8

elim 69 3.3 351 2.0 14 0.9 164 3.5 598 2.3

cut 30 1.4 262 1.5 15 1.0 59 1.3 366 1.4

split 6 0.3 249 1.4 50 3.3 53 1.1 358 1.4

change 15 0.7 224 1.3 32 2.1 30 0.6 301 1.2

left/right 18 0.8 72 0.4 76 5.0 72 1.6 238 1.0

destruct 2 0.1 16 0.1 3 0.2 141 3.0 162 0.6

generalize 5 0.2 66 0.4 21 1.4 32 0.7 124 0.5

other 49 2.4 139 0.8 45 3.0 91 1.9 324 1.3

total 2083 100.0 17490 100.0 1503 100.0 4673 100.0 25749 100.0

tac/theo 10.2 23.1 14.7 39.2 21.8

Fig. 3. Tactics invocations

We compare four developments, of a different nature and written by differ-
ent people: the first development (Arithmetics) is the basic arithmetical library
of Matita up to the operations of quotient and modulo; (Chebyshev) contains
relatively advanced results in number theory up to Chebyshev result about the
asymptotic distribution of prime numbers (subsuming, as a corollary, Bertrand’s
postulate) [2]; the third development (Lebesgue) is a formalisation of a construc-
tive proof of Lebesgue’s Dominated Convergence Theorem [19]; finally, the last
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development is a solution to part-1 of the POPLmark challenge in different styles
(with names, locally nameless and with de Bruijn indexes).

The interest of these developments is that they have been written at a time
when Matita contained almost no support for automation, hence they strictly
reflect the structure of the underlying logical proofs.

In spite of a few differences2, the three developments show a substantial
similarity in the employment of tactics.

The first natural observation is the substantial simplicity of the procedural
proof style, often blurred by the annoying enumeration of special purpose tactics
in many system tutorials. In fact, a dozen tactics are enough to cover 98% of
the common situations. Most of this tactics have self-explicatory (and relatively
standard) names, so we do not discuss them in detail. Among the useful (but, as
we see, relatively rare) tactics missing from our list - and apart, of course, the
automation tactics - the most interesting one is probably inversion, allowing to
derive, for a given instance of an inductive property, all the necessary conditions
that should hold assuming it as provable.

Figure 3 gives a clear picture of the typical procedural script: it is a long se-
quence of applications, rewriting and simplifications (that, comprising assumption
and reflexivity, already count for about 75% of all tactics) sometimes inter-
mixed by case analysis or induction. Considering that almost any proof start
with an invocation of intros (that counts by itself for another 5% of tactics),
the inner applications of this tactic are usually related to the application of
higher order elimination principles (also comprising many non recursive cases).
This provides evidence that most first order results have a flat, clausal form,
that seem to justify the choice of a prolog like automatic proof engine adopted
by some interactive prover (like, e.g. Coq).

2.1 Small and large scale automation

In Figure 4 we attempt a repartition of tactics in 5 main categories: equa-
tional reasoning, basic logical management (invertible logical rules and as-
sumptions), exploitation of background knowledge (essentially, apply), cases
analysis (covering propositional logic and quantifiers), and finally creative
guessing, comprising induction and cuts. We agree that not any application
of induction or cut really requires a particularly ingenious effort, while some
instances of case analysis (or application) may comport intelligent choices, but
our main point, here, is to stress two facts: (1) very few steps of the proof are
really interesting; (2) these are not the steps where we would expect to have an
automatic support from the machine.

2 For instance, rewriting is much less used in (Lebesgue) than in the other devel-
opments, since the intuitionistic framework requires to work with setoids (and, at
that time, Matita provided no support for setoid-rewriting). Similarly, elimination is
more used in (POPLmark) since most properties (type judgements, well formedness
conditions and so on) are naturally defined as inductive predicates, and you often
reason by induction on such predicates.
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functionalities %

rewriting 16
simplification, convertibility, destructuration 11

equational reasoning 27

assumption 13
(invertible) connectives 14

basic logical management 27

background knowledge(apply) 33

case analysis 7

induction 4
logical cuts 2
creative guessing 6

Fig. 4. Main functionalities

Equational reasoning and basic management of (invertible) logical connec-
tives are a kind of underlying “logical glue”: a part of the mathematical reasoning
that underlies the true argumentation, and is usually left implicit in the typical
mathematical discourse. We refer to techniques addressing these kind of oper-
ations as small scale automation. The purpose of small scale automation is to
reduce the verbosity of the proof script (resolution of trivial steps, verification
of side conditions, smart matching of variants of a same notion, automatic infer-
ence of missing information, etc.). It must be fast, and leave no additional trace
in the proof. From the technical point of view, the most challenging aspect of
small scale automation is by far the management of equational reasoning, and
many interesting techniques addressing this issue (comprising e.g. congruence
[17], narrowing [6] or superposition [18]) have been developed over the years.
Although the problem of e-unification is, in general, undecidable, in practice we
have at present sufficient knowhow to deal with it reasonably well (but apart
from a few experimental exceptions like Matita [3], no major interactive prover
provides, at present, a strong native support for narrowing or superposition).

In principle, case analysis and the management of background knowledge is
another part of the script where automation should behave reasonably well, es-
sentially requiring that kind of exhaustive exploration that fits so well with the
computer capabilities. In fact, the search space grows so rapidly, due to the di-
mension of the library and the explosion of cases that, even without considering
the additional complexity due to dependent types (like, e.g. the existential quan-
tifier) and the integration with equational reasoning, we can effectively explore
only a relatively small number of possibilities. We refer to techniques address-
ing these issues as large scale automation. Since the user is surely interested to
inspect the solution found by the system, large scale automation must return a
proof trace that is both human readable and system executable. To be human
readable it should not be too verbose, hence its execution will eventually require
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small scale automation capabilities (independently of the choice of implementing
or not large scale automation on top of small scale automation).

2.2 Local and global knowledge

An orthogonal way to categorize tactics is according to the amount of knowledge
they ask over the content of the library (see Fig. 5).

functionalities %

rewriting 16
apply 33
library exploitation 49

simplification, convertibility, destructuration 11
assumption 13
(invertible) connectives 14
case analysis 7
induction 4
logicat cuts 2
local reasoning 51

Fig. 5. Operations requiring global or local knowledge

Tactics like apply and rewrite require the user to explicitly name the library
result to be employed by the system to perform the requested operation. This
obviously presupposes a deep knowledge of the background material, and it
is one of the main obstacles to the development of a large, reusable library
of formalized mathematics. Most of the other tactics, on the contrary, have a
quite local nature, just requiring a confrontation with the current goal and its
context. The user is usually intrigued by the latter aspects of the proof, but
almost invariably suffer the need to interact with a pre-existent library - written
by alien people according to alien principles - and especially the lack of support
of most systems in assisting the user in its quest for a useful lemma to exploit.
It is a matter of fact that the main branches of the formal repositories of most
available interactive provers have been developed by a single user or a by a small
team of coordinated people and, especially, that their development stopped when
their original contributors, for some reason or another, quitted the job. Reusing a
repository of formal knowledge has essentially the same problems and complexity
of reusing a piece of software developed by different people. As remarked in the
mathematical components manifesto3

The situation has a parallel in software engineering, where development
based on procedure libraries hit a complexity barrier that was only over-
come by switching to a more flexible linkage model, combining dynamic

3 http://www.msr-inria.inria.fr/Projects/math-components/manifesto
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dispatch and reflection, to produce software components that are much
easier to combine.

One of the main reasons for the slow progress in the usability of interactive
provers is that almost all research on automatic theorem proving has been tra-
ditionally focused on local aspects of formal reasoning, altogether neglecting the
problems arising by the need to exploit a large knowledge base of available re-
sults.

3 Exploiting the library

One could wonder how far are we from the goal to provide full automatic support
for all operations like rewriting and application requiring a stronger interaction
with the library.

The chart in Figure 6 compares the structure of the old arithmetical devel-
opment of Matita with the new version comprising automation.

cut induction case analysis apply assumption intros & co. simplification
30 75 110 640 274 396 155
25 64 104 148 0 198 87

1 2

0

500

1000

1500

2000

2500

auto
rewriting
simplification
intros & co.
assumption
apply
case 
analysis
induction
cut

Fig. 6. Arithmetics with (2) and without automation (1)

Applications have been reduced from 629 to 148 and rewriting passed from
316 to 76; they (together with a consistent number of introduction rules) have
been replaced by 333 call to automation. It is worth to mention that, in port-
ing the old library to the new system, automation has not been pushed to its
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very limits, but we constrained it within a temporal bound of five seconds per
invocation, that looks as a fair bound for an interactive usage of the system.
Of course, this is just an upper bound, and automation is usually much faster:
the full arithmetical development is compiled in about 3 minutes, that makes an
average of less than one second per theorem. Moreover, the automation tactic is
able to produce a compact, human readable and executable trace for each proof
it finds, permitting to recompile the script with the same performance of the
original version without automation.

It is not our point to discuss or promote here our particular approach to au-
tomation: the above figures must be understood as a purely indicative description
of the current state of the art. The interesting point is that the objective to au-
tomatize most part of the operations requiring an interaction with the library
looks feasible, and would give a definitive spin to the usability of interactive
provers.

The final point we would like to discuss here is about the possibility of im-
proving automation not acting on the automation algorithm, its architecture or
data structures, but merely on our knowledge about the content of library, its in-
ternal structure and dependencies. All typical automation algorithms selects new
theorems to process according to local information: their size, their “similarity”
with the current goal, and so on. Since the library is large and sufficiently stable,
it looks worth to investigate different aspects, aimed to estimate the likelihood
that applying a given results in a given situation will lead us to the expected
result. Background knowledge, for humans, is not just a large amount of known
results, but also the ability, derived by training and experience, of recognizing
specific patterns and to follow different lines of reasoning in different contexts.

This line of research was already traced by Constable et. al [5] more than 20
years ago, but went almost neglected

The natural growth path for a system like Nuprl tends toward in-
creased “intelligence”. [...] For example, it is helpful if the system is
aware of what is in the library and what users are doing with it. It is
good if the user knows when to involve certain tactics, but once we see a
pattern to this activity, it is easy and natural to inform the system about
it. Hence there is an impetus to give the system more knowledge about
itself.

It looks time to invest new energy in this program, paving the way to the third
generation of Interactive Provers.
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