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Abstract. Decomposing the domain of a function into parts has many
uses in mathematics. A domain may naturally be a union of pieces, a
function may be defined by cases, or different boundary conditions may
hold on different regions. For any particular problem the domain can
be given explicitly, but when dealing with a family of problems given in
terms of symbolic parameters, matters become more difficult. This article
shows how hybrid sets, that is multisets allowing negative multiplicity,
may be used to express symbolic domain decompositions in an efficient,
elegant and uniform way, simplifying both computation and reasoning.
We apply this theory to the arithmetic of piecewise functions and sym-
bolic matrices and show how certain operations may be reduced from
exponential to linear complexity.

1 Introduction

The goal of this paper is to develop general methods to work with domains
having symbolically defined parts. The raison d’être of symbolic mathematical
computation is to compute and reason about general expressions, rather than
working with particular values valid only at specific points. Matters are simplest
when variables range over a domain of interest and all expressions are valid over
the entire domain. Sometimes it is useful to perform simplifications or other
operations that are valid over part, but not all, of the domain. In this situation,
software systems may or may not record the excluded region. But we are not
always so fortunate to have this one-region situation. More generally, the domain
of interest may be made up of several pieces with expressions taking different
forms on different parts. Moreover, the demarcation of the parts may be defined
symbolically. This paper explores how to represent such expressions concisely in
a uniform way that simplifies computation and reasoning.

When we do arithmetic with piecewise functions defined on explicit parti-
tions, we can do a mutual refinement of domain partitions to obtain regions that
may each be handled uniformly. When the partitions are defined symbolically,
however, we obtain a massive explosion of cases — for N binary operations on
functions of k pieces there are kN potential regions. We say “potential” regions
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because, of this large number, not all of the regions are in fact feasible. Fur-
thermore, it is usually not possible to determine which regions are feasible and
which are not. For example, the sum

∑N
i=1 fi(x) of the functions

fi(x) =

{
0 for x < ki,

Ai for x > ki.

has
∑N

i=0 N !/i! possible orderings of the ki, with each ordering having between
2 and N + 1 regions. There is no ordering in which all 2N regions are realized.

We take the view that it is generally preferable to have a single compact
closed-form expression rather than a collection of cases, even if it means intro-
ducing some new operations. For example, we are perfectly satisfied using the
Heaviside step function and giving the sum of the fi as

∑N
i=1 AiH(x− ki).

In this paper we show how hybrid sets, a variation on multisets allowing
negative multiplicities, enable us to write elegant closed form expressions of the
form we desire. This use of hybrid sets also allows us to define a generalised notion
of partition, where symbolically defined parts are combined in more useful ways
than the usual set operations. Our approach unifies and generalises a number of
other techniques, such as the use of oriented regions for domains of integration.

Introducing new operators or generalising existing ones to write single closed
form expressions is more than just a cosmetic re-arrangement. It allows one
to perform arithmetic and simplifications on whole expressions, and to reason
about the expression and about the regions themselves. It is already customary

to do this for certain operators. For example, by defining
∫ b

a
fdx = −

∫ a

b
fdx,

it becomes possible to write identities that hold universally. Then we have that,
independent of the relative order of a, b and c, and subject to f being defined
on the requisite domains,∫ b

a

fdx =

∫ c

a

fdx +

∫ b

c

fdx. (1)

With a little work, we can also generalise the integral formula to integrating
over oriented subsets of Rn. Some authors similarly adjust the definitions of
other operators to obtain universally true statements. Similarly, Karr [8] defines
the summation operator

∑
m6i<n so that

∑
m6i<n = −

∑
n6i<m when n < m.

This allows equations such as the following to hold for any ordering of `, m, n:∑
m6i<n

(
g(i + 1)− g(i)

)
= g(n)− g(m),

∑
`6i<n

f(i) =
∑

`6i<m

f(i) +
∑

m6i<n

f(i).

This paper formalises and extends these ideas in several ways, giving a gen-
eralised framework for domain partitions and piecewise defined functions. We
first introduce some preliminaries and hybrid sets (§2) and then their general-
isations to our notions of generalised partitions and hybrid functions (§3). We
then present how we can decompose domains of hybrid functions to allow for
the combination of their symbolically defined pieces (§4), before presenting some
applications (§5) and discussing some concrete examples (§6).



2 Preliminaries

2.1 Partitions and piecewise functions

The domain of definition of various mathematical objects (functions, vectors,
matrices, sequences, etc) may naturally be decomposed into a (disjoint) union of
pieces where our object is then defined uniformly. When the pieces are given as an
explicit union of provably disjoint sets which form a partition of the domain, the
interpretation of a given expression is reasonably straightforward. More formally,

Notation 1 We use the notation Ci∈IXi, or, more briefly, CIXi to describe a
collection of elements X1, X2, . . . , indexed by a set I. For n ∈ N, we denote by
[n] the set {1, . . . , n}.

Definition 1. A partition of a set U is a collection CIPi of pairwise disjoint
sets such that

⋃
I Pi = U .

A partition, CIPi, induces a total function X : U → I which gives the index of
P∗ where each u ∈ U sits. Piecewise expressions are then defined on top of a
partition.

Definition 2. A piecewise expression over a set U is a collection CI(Pi, ei)
where CIPi is a partition of U and each ei is an expression.

Typically, each ei contains a distinguished variable y which is interpreted to
range over U .

Definition 3. We say that f : U → S is a piecewise-defined function if we have
a collection CI(Pi, fi) where CIPi is a partition of U , ∀i ∈ I. fi : Pi → S, and

∀x : U. f(x) = fX (x)(x).

We call CI(Pi, fi) the definition of f , and each fi a piece of f .

It is important to note that piecewise-defined functions use their argument in
two different ways: once geometrically by choosing a set Pi “over” which to
work, and once analytically to evaluate a function fi. The definitions above are
straightforward generalisations of those found in [5].

Lastly, we have that arithmetic operations on piecewise-defined functions
operate component-wise. Note that we will silently use the convention that op-
erations defined on the codomain of a function are lifted pointwise to apply to
functions, in other words (f + g)(x) = f(x) + g(x).

Proposition 1. Let f, g : U → S be two piecewise-defined functions on the
same partition CIPi of U , with CIfi (respectively CIgi) the collections of pieces
of f (resp. g). Further, let ? : S × S → S. Then CI (fi ? gi) is the collection of
pieces of f ? g over the partition CIPi.



Note how the partition is entirely untouched. This “separation of concerns” is
what enables us to separate the issues of domain decompositions from arithmetic
issues of piecewise-defined functions (and expressions).

To simplify our presentation, we introduce a domain restriction operation and
a join combinator on (partial) functions, to allow us a more syntactic method
of “building up” piecewise functions. These are quite similar to Kahl’s table
composition combinators [7].

Definition 4. The restriction fA of a function f to a domain specified by a set
A is

fA(x) ::=

{
f(x) if x ∈ A

⊥ otherwise

Definition 5. The join, f : g, of two (partial) functions f and g, is defined as

(f : g)(x) ::=


f(x) if f(x) is defined and g(x) is undefined

g(x) if g(x) is defined and f(x) is undefined

⊥ otherwise

This allows us to rewrite a piecewise-defined function f defined by CI(Pi, fi), in
terms of its pieces as

f = fP1
1 : fP2

2 : . . . : fPn
n .

But our goal is to work with piecewise-defined functions where we have a
symbolic partition. We need some new tools for this, which we will develop in
the next two sections.

2.2 Hybrid Sets

We consider an extension of multisets, in which elements can occur multiple
times, to hybrid sets, where the multiplicity of an element in a hybrid set can
range over all of Z, instead of just N0. Thus a hybrid set, over an underlying
set U , is a mapping U → Z, i.e., it is an element of ZU . We use the following
definition, adapted from [9]:

Definition 6. Given a universe U, any function H : U → Z is called a hybrid
set.

We can immediately define some useful vocabulary for working with hybrid
sets.

Definition 7. The value of H(x) is said to be the multiplicity of the element
x. If H(x) 6= 0, we say that x is a member of H and write x ∈ H; otherwise,
we write x 6∈ H. The support of a hybrid set is the (non-hybrid) subset S of
U where s ∈ S ⇐⇒ s ∈ H; we will denote the support of H by suppH. We
(re)use ∅ to (also) denote the empty hybrid set, i.e. the hybrid set for whom all
elements have multiplicity 0.



Notation 2 We use the notation {|xm1
1 , xm2

2 , . . .|} to describe the hybrid set con-
taining elements x1 with multiplicity m1, x2 with multiplicity m2, etc. While our
notation allows writing hybrid sets with multiple copies of the same element with
different multiplicities, these denote the same hybrid set as that denoted by the
normalised form with one copy of each element with a multiplicity which is the
sum of the multiplicities of the copies of that element in the non-normalised
form. Thus

{∣∣a2, b1, a−3, b4∣∣} =
{∣∣a−1, b5∣∣}.

Set unions are usually defined by the boolean algebra structure (and more
specifically, via ∨) of the membership relation. For hybrid set, this is replaced
by arithmetic over Z.

Definition 8. We define the sum, A ⊕ B of two hybrid sets A and B over a
universe U , to be their pointwise sum. That is (A⊕B)(x) = A(x) +B(x) for all
x ∈ U . We similarly define their difference, A	B to be their pointwise difference,
and their product, A⊗B to be their pointwise product. Let 	B denote ∅ 	B.

In other words, we do not use operations A∪B, A∩B and A\B for hybrid sets,
but just⊕,	 and⊗. We can easily establish some identities such as (A⊕B)	A =
B, A	A = ∅ and A⊕ (	B) = A	B as these follow directly from Z.

Putting all of this together, we get:

Proposition 2. ZU is a Z-module.

Proof. The abelian group structure is given by (ZU ,⊕,	, ∅), and Z acts on
hybrid sets by nH = u 7→ n ·H(u).

We need two more technical definitions, which will be useful later.

Definition 9. We say that two hybrid sets A and B are disjoint if A⊗B = ∅.

Definition 10. We call a hybrid set reducible if all its members have multiplic-
ity 1. We define a reduction function, R(·), on reducible hybrid sets that returns
the (normal) set of members of the hybrid set.

We should note that these hybrid sets (sometimes also called generalised sets)
have been studied before. Hailperin [6] makes the case that Boole [3] actually
started from hybrid sets for his algebraization of logic, but restricted himself
to nilpotent solutions of the resulting equations, which then correspond closely
to our modern notion of Boolean algebra. Whitney wrote two nice papers [13,
14] taking up the theme of algebraising logic via characteristic functions. He
does allow arbitrary multiplicities, and derives some nice normal forms for cer-
tain kinds of partitions, in a way foreshadowing some of our own results (see
§3.2 and §4). Blizard [1] focuses on multisets (disallowing negative multiplici-
ties) but has an extensive bibliography of related works, several of which being
on (mechanised) theorem proving; he then formalised sets with negative mem-
bership in [2]. Blizard concentrates on concepts of union and intersection which
closely resemble those of normal set theory, although he does also define the sum
union (but not other related concepts). Burgin [4] lists several more works on
hybrid sets, some reaching back to the early middle ages. Syropoulos [12] gives
a very readable introduction to both multisets and hybrid sets.



3 Generalisations

We now revisit a few basic mathematical constructs and show how they may
be modified to work with hybrid sets. This will provide the machinery that we
need for symbolic domain decomposition. First, we will examine the notion of a
hybrid function on a domain. We then show how sets and hybrid sets may be
decomposed using a notion of generalised partitions — an extension of parti-
tions to the hybrid set case. We then address the practical issue of how to make
two hybrid partitions compatible by constructing a common refinement. Finally,
when working with functions defined over hybrid partitions, we need some way
to compute values. Over any given point in the domain, we need to know which
functions must be evaluated in computing the final value, which is rather com-
plex for hybrid functions over generalised partitions. For this task, we introduce
the notion of pseudo-functions. When expressions on generalised partitions are
evaluated, these pseudo-functions avoid evaluating at places where the functions
are undefined or where the values are not needed. This allows us to deal with the
cases, as in equation (1), where component functions are not defined on some
parts of the domain decomposition but any application of the function in those
places would anyway have multiplicity zero (i.e. not be used).

3.1 Functions of hybrid domain

It turns out that a useful definition of a “function” involving hybrid sets is not
entirely straightforward. Defining its graph is easiest. The underlying intuition
is that we capture the restriction of a function to a domain through the mul-
tiplicities of the elements of the function graph in a hybrid set. The hybrid set
of a single element of the function graph for element x in U is of the form{∣∣(x, f(x))1

∣∣}. Therefore the scalar multiplication of that set by the multiplicity
of x in A will impose the appropriate restriction. We use our function restriction
notation of Def. (4) only for this hybrid version of function restriction henceforth.

Definition 11. Let A be a hybrid set over U , B ⊆ U , S a set and f : B → S a
(total-on-B) function. A hybrid function fA : U × S → Z is defined by

fA =
⊕
x∈B

A(x)
{∣∣(x, f(x))1

∣∣}
Note how the hybrid set Z-module structure automatically takes care of re-
stricting the sum over the support of A. Caution: some hybrid sets do not form
a hybrid function (for example

{∣∣(1, 1)1, (1, 2)1
∣∣} is not a hybrid function).

Our definitions work just as well with partial functions as with total functions.
But if for a hybrid function fF , f is undefined at some point in the support of
F , fF will not be defined at that point either. So, without loss of generality, we
can always restrict F to where f is defined. For the remainder of this paper, we
shall assume this, i.e. whenever we write a hybrid function fF , f is total over
suppF .



Definition 12. We call a hybrid function fH reducible if the hybrid set H is
reducible. We extend R(·) in this case by

R(fH)(x) =

{
f(x) if H(x) = 1

⊥ if H(x) = 0

We can generalise the join combinator to hybrid sets. This definition is quite
central to “making things work”.

Definition 13. The join, fF : gG, of two hybrid functions fF and gG (with
codomain B), gives a hybrid relation, a subset of U ×B × Z given by

fF : gG ::= fF ⊕ gG

This is a rather “dangerous” definition, as it moves us from the land of functions
to that of relations. In other words, it is quite possible that fF :gG restricted to
U ×B is no longer the graph of a function, but the graph of a relation. But this
extra generality will be quite useful for us, although we will have to prove that in
the cases which interest us, the resulting hybrid relations are in fact (reducible)
hybrid functions.

Theorem 1. Let A, B be hybrid sets over U , S an arbitrary set, and f : U → S
a total function. Then

1. R(f∅) is the empty function,
2. fA : fA = f2A

3. fA : fB = fA⊕B, and thus a hybrid function,
4. For g : U → S another total function, then fA : gB = (f : g)A⊕B if and

only if A⊕B = ∅ (where f : g is the join of regular functions).
5. Let H1, H2 be hybrid sets, with suppH1 and suppH2 disjoint, f1 : suppH1 →

S and f2 : suppH2 → S, then fH1
1 : fH2

2 = (f1 : f2)H1⊕H2

The proofs are omitted, and follow straightforwardly from the definitions. Note
the strong dichotomy between (3) and (4), which comes from the fact that the
non-hybrid : is designed to work with functions defined over separate regions.

3.2 Generalised Partitions

Theorem 1 tells us that some collections of hybrid sets are better than others.
Being disjoint is much too strong a property. Nicely, for hybrid sets, partitions
easily generalise in useful ways.

Definition 14. We define a generalised partition of a (hybrid) set, P , to be a
finite collection of hybrid sets, C[n]Pi, such that P1 ⊕ P2 ⊕ . . .⊕ Pn = P

All set partitions of a set are also generalised partitions. Conversely, a generalised
partition of a reducible set is a set partition if and only if each generalised
partition element is reducible.



Remark 1. We have lifted the disjointness condition on partitions. For some-
thing to be called a partition of P , it is necessary that the result be equal to P .
Still, P belongs to a larger universe U , and a generalised partition’s pieces range
over U . As long as, in the end, all elements of U \ P have multiplicity 0, we get
a generalised partition. In this way, we have also lifted the coverage condition.

Proposition 3. For any generalised partition C[n]Pi of a hybrid set P over U ,
arbitrary set S, and any function f : suppP → S,

fP = fP1 : fP2 : . . . : fPn = fP1⊕P2⊕...⊕Pn

is a hybrid function.

For brevity, we sometimes write fP for either of the right-hand side expressions
above. When we want to join different functions over a partition and still get a
function, we have to be careful and ensure we are joining “compatible” functions.

Definition 15. Let P1, P2 be a generalised partition of a hybrid set P over U ,
S an arbitrary set and fP1 : P1 → S, gP2 : P2 → S hybrid functions. We
say that P1, P2 is a compatible partition for f, g if f(x) = g(x) for all x ∈
suppP1 ∩ suppP2.

Theorem 2. Using the same notation as above, fP1 : gP2 is a hybrid function
if and only if P1, P2 is a compatible partition for f, g.

It is important to note that although : is an associative, commutative oper-
ation, the notion of compatibility, while commutative, does not lift to a simple
associative condition.

Remark 2. Some of our computations will purposefully use incompatible parti-
tions. Note that

(fU : gU ) : g	U = fU : (gU : g	U ) = fU : g∅ = fU

but that fU : gU is in general a hybrid relation, yet the final result is a hybrid
function whenever fU is. We will “design” our hybrid partitions with this feature
in mind.

3.3 Refinement

To do arithmetic with hybrid functions, we first need the notion of a refinement
and a common refinement. This is similar to the treatment of [5] for piecewise
functions.

Definition 16. A refinement of a generalised partition CIPi of P is another
generalised partition CJQj (of another hybrid set Q not necessarily equal to P )
such that for every i ∈ I there exists a sub-collection Qjk of Qj such that Pi =
Qj1 ⊕Qj2 ⊕ . . . ⊕Qjm . A common refinement of a set of generalised partitions
is a generalised partition that is simultaneously a refinement to every partition
in the set.



A refinement in this sense may well seem “larger” than the original partition, as
in the next example.

Example 1. Let the interval P = [0, 1], seen as
{∣∣P 1

∣∣}, and I1 = [−1, 0), I2 =

(1, 2], I3 = [−1, 2], then Q =
{∣∣I−11 , I−12 , I13

∣∣} is a refinement of P .

Definition 17. A refinement is called strict if, for each generalised partition
being refined, the support of the associated sub-collection is equal to the support
of the generalised partition it refines.

Example 2.
{∣∣[0, 1]1

∣∣},{∣∣(1, 2]1
∣∣},{∣∣(2, 3]1

∣∣} is a common strict refinement of the

two (trivial) hybrid partitions
{∣∣[0, 2]1

∣∣} and
{∣∣(1, 3]1

∣∣}.

3.4 Pseudo-functions and pseudo-relations

As seen in the example above, a refinement may “spill over” the original domain,
so that if we look at a hybrid function fP where the underlying f is defined
exactly on (the support of) P , fQ evaluated “pointwise” will not make sense.
Nevertheless, we want fP = fQ. To achieve this, we apply the lambda-lifting
trick already used in [5].

Definition 18. Using the same notation as in Def. 11, we define a pseudo-
function f̃A as

f̃A =
⊕
x∈B

A(x)
{∣∣(x, f)1

∣∣}
i.e. as a member of U × (U → S) → Z. A pseudo-relation is defined similarly.
The evaluation of a pseudo-function (resp. relation) is defined by mapping each
point (x, f)k to (x, f(x))k.

The usefulness of pseudo-functions comes from the following property.

Proposition 4. For all refinements Q of the generalised partition P , f̃P = f̃Q.

In other words, even though the pieces of Q might “spill over”, if we first “sim-
plify” f̃Q by performing

⊕
i Qi to get P , we get a result f̃P which can then be

safely evaluated. We will elide the ˜ to lighten the notation whenever this would
not lead to confusion.

Another useful property of pseudo-functions is that in some cases we can
simplify them, regardless of what the underlying function does.

Proposition 5. f̃P : g̃Q : g̃	Q = f̃P

One of the chief advantages of pseudo-functions is that we can do some symbolic
manipulations of expressions in terms of these functions as if they were defined
on a much larger domain, as long as the eventual term we evaluate does not
involve any of these “virtual” terms.

To aid in such computations, when we have pseudo-functions f̃P and g̃P ,
with f, g : suppP → S, and some binary operation ? : S × S → S, we will allow



ourselves to write expressions such as f̃P ? g̃P in the induced term algebra over
pseudo-functions. As usual, we lift evaluation pointwise, (f̃ ? g̃)(x) = f(x)?g(x).
Furthermore we say that f̃ = g̃ over a set suppP whenever ∀x ∈ suppP.f(x) =
g(x). In other words, we use extensional equality for the intensional terms f̃
and g̃. This means that properties like commutativity, associativity and having
inverses lift to the term algebra. As an example, we have that

Proposition 6. If ? : S × S → S is associative and commutative then

g̃Q ? f̃P ? g̃	Q = f̃P

4 Hybrid domain decomposition

We now have all the ideas necessary to decompose hybrid domains. An elegant
consequence of the formalism is that it allows us to use linear algebra to construct
the partitions that we require.

Let C[n]Ai and C[m]Bj , be generalised partitions of U . We want to find a
generalised partition of U that is a common strict refinement of Ai and Bj and
has minimal cardinality. The cardinality restriction is to minimise the number
of terms required for a symbolic representation of the resulting domain decom-
position. Thus we want to choose a minimal generalised partition, CIPi of U
such that, in the Z-module of hybrid sets and for some integers ai,j , bi,j we have⊕

i Pi = U and ∀i : 1..n.
⊕

j ai,jPj = Ai and ∀j : 1..m.
⊕

i bi,jPi = Bj .

Since this forms a system of n + m + 1 simultaneous equations, of which
only n+m− 1 can be independent, because A and B are, separately, partitions
of U , we need that number of independent variables to solve the system. Thus
the cardinality of the minimal partition is n + m − 1 in the general case, and
can only be smaller in specific cases if there are some extra dependencies among
U,A1, . . . , An−1, B1, . . . , Bm−1.

This result generalises to a decomposition of U into a minimal generalised
partition that is a common strict refinement of r generalised partitions of car-
dinality n1, . . . nr respectively: The minimal partition required, assuming full
independence of the individual domain partitions, has cardinality(

r∑
i=1

ni

)
+ 1− r

If all the individual partitions have the same cardinality, n, this reduces to
r(n− 1) + 1.

We can automatically compute suitable minimal strict refinement partitions
U as follows. If we remove the equations for An and Bm from the system of
equations in order to get an independent set of simultaneous equations, we get



n + m− 1 equations that can be written as a linear system in the Z-module:

C ·

 P1

...
Pn+m−1

 =



U
A1

...
An−1
B1

...
Bm−1


where C =



1 1 . . . 1
a1,1 a1,2 . . . a1,n+m−1

...
...

an−1,1 an−1,2 . . . an−1,n+m−1
b1,1 b1,2 . . . b1,n+m−1

...
...

bm−1,1 bm−1,2 . . . bm−1,n+m−1


Note that C is an integer matrix. Further, the partition choice matrix, C,

must be invertible and C−1 must be an integer matrix so that we obtain integral
partitions of each domain piece with respect to our partition P of U . An integer
matrix is invertible and has an integer matrix inverse if and only if it has a
determinant of +1 or −1. Hence our problem of constructing an appropriate
partition reduces to choosing an integer matrix of the form of C such that its
determinant is ±1. Finally, note that this directly generalises to an arbitrary
number of piecewise functions, each of an arbitrary number of pieces.

If we restrict ourselves to triangular matrices, we can choose C to be any
integer triangular matrix (upper because the first row of C is all 1s) for which
the product of the diagonal elements is 1. Again, a simple way to do this is to
choose C to be all 1s along the top row, 1s along the diagonal and 0 everywhere
else. Another possibility is all 1s in the whole upper triangle.

For example, two suitable choice matrices with their inverses are

1 . . . . . . . . . 1
0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 1



−1

=



1 −1 . . . . . . −1
0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 1




1 . . . . . . 1

0
. . .

...
...

. . .
. . .

...
0 . . . 0 1


−1

=



1 −1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . −1

0 . . . . . . 0 1



5 Applications

5.1 Arithmetic on Piecewise Functions

We are now ready to generalise the arithmetic properties (see prop. 1) of hybrid
functions and pseudo-functions.

Proposition 7. Let C[n]Pi be a partition of P , fP = fP1
1 : . . .: fPn

n and gP =

gP1
1 : . . .: gPn

n be two hybrid functions on P → S. Let ? : (S×S)→ S, then for
all x ∈ suppP ,

fP (x) ? gP (x) = (f1(x) ? g1(x))P1 : . . . : (fn(x) ? gn(x))Pn .



Note how we can apply the above proposition to fF ? gG, by first restricting F
and G to be over a common support (as x ? ⊥ = ⊥ ? y = ⊥), then taking a
common strict refinement of (the restricted) F and G.

We would like to lift this strictness condition. We can almost do this with
pseudo-functions – and with the help of a marked :, we can.

Definition 19. We can mark a : with a binary operation ? : S × S → S,
denoted :?. We define evaluation of :? by

(f̃F :? g̃G)(x) = (F (x) + G(x))
{∣∣∣(x, (f̃ ? g̃)(x))1

∣∣∣}
This operation clearly inherits properties of ? like commutativity, associativity
and invertibility. Unlike :, :? will always result in a (pseudo) function.

Proposition 8. Let P∗ = C[n]Pi be a partition of P , Q∗ = C[m]Qj another

partition of P , and R∗ = CKRk a common refinement of P∗ and Q∗. Let f̃P =
fP1
1 : . . .:fPn

n and g̃P = gQ1

1 : . . .:gQm
m be two pseudo functions with codomain

S. Let ? : (S × S)→ S, be associative and commutative, then ? distributes over
the partition R∗ in terms of :?. By the results of section 4, we can always choose
R∗ to be

P1⊕ . . .⊕Pn−1⊕Q1⊕ . . .⊕Qm−1⊕ (U 	 (P1⊕ . . .⊕Pn−1⊕Q1⊕ . . .⊕Qm−1))

Example 3. Let A1 = [0, a), A2 = [0, 1] \A1, B1 = [0, b), B2 = [0, 1] \B1, all seen
as hybrid sets. Let

f(x) =

{
2 0 ≤ x < a

0 a ≤ x < 1
and g(x) =

{
5 0 ≤ x < b

7 b ≤ x < 1

We choose the hybrid (symbolic!) partition A1, B1	A1, B2, which simultaneously
refines both. Then after a few computations we get

f ∗ g = {|2 ∗ 5|}A1 :∗ {|2 ∗ 5|}B1	A1 :∗ {|0 ∗ 7|}B2 (2)

regardless of whether a < b or a ≥ b; in fact either (or both) could be outside of
[0, 1) and the result, interpreted as a hybrid function, are still correct. Moving
from one choice of partition to another is done by undoing the distribution,
performing the change of partition, and using commutativity and associativity
to regroup like terms. Note that we should have written 2∗5 as (x 7→ 2)∗̃(x 7→ 5),
but we chose the above for greater clarity.

It should be very clear that expressions such as equation 2 are a formal repre-
sentation of a piecewise function, and need to be interpreted properly in each
context.



5.2 Identities for invertible operators

When the binary operation we use is invertible, we can perform the operations
at any time, as operands may later be removed from a cumulative result by
applying their inverses. This may lead to considerable efficiency improvements;
even though values and their inverses are cancelled in the calculation (leading
to no net effect) this may be more efficient than retaining an “un-evaluable”
expression as a pseudo-function.

Proposition 9. Let fP be a hybrid function over S where (S, ?) has the struc-
ture of an Abelian group (where we will use e for the unit and − for the inverse),
then for all x ∈ suppP ,

(fP ? f−P )(x) = (fP ? (−f)P )(x) = P (x)
{∣∣(x, e)1∣∣}

where −f denotes x 7→ −f(x).

Both equalities follow readily from the definitions.

5.3 Identities for linear operators

Definition 20. For a linear operator L, and fP a hybrid function,

L(fP ) ::= L(x 7→ P (x) · f(x))

Note L(fP ) may not be defined even when L(f) is. If the multiplicity function
P (x) is uniformly bounded, then it will exist.

Proposition 10. Let fP be a hybrid function, C[n]Pi a partition of P such that
each Pi(x) is uniformly bounded, then

L(fP ) =

n∑
i=1

L(fPi)

The above is the fundamental reason why, under Karr’s definition, the summa-
tion identities of the introduction hold.

Corollary 1. For all total functions f : Z → G with G an Abelian group, and
all `,m, n ∈ Z, ∑

`6i<n

f(i) =
∑

`6i<m

f(i) +
∑

m6i<n

f(i).

6 Examples

We present two examples of the application of hybrid functions to symbolic
computation problems. The first example is concerned with the arithmetic of
symbolic matrices, the second presents the idea of merging symbolic spline func-
tions.



6.1 Matrix Addition

Earlier work [10, 11] introduced The idea of support functions has been intro-
duced previously to represent symbolic matrices — matrices given in terms of
symbolic regions with underspecified elements and symbolic dimensions — and
defined arithmetic operations between them. The paper [10] presented a sup-
port function based on half-plane constraints that enables full arithmetic, but
that suffered from a combinatorial explosion in the number of terms needed to
express sum or product matrices. The paper [11] moved to a support function
based on interval addition that automatically dealt with cancellation for neg-
ative intervals. While this avoided the combinatorial explosion, the approach
was restricted to certain types of regions and could not be easily generalised to
matrix multiplication. Hybrid functions and generalised partitions solve both of
these problems simultaneously. We demonstrate this with the example of matrix
addition of two 2× 2 symbolic block matrices. Let

M1 =

(
A1 B1

C1 D1

)
, M2 =

(
A2 B2

C2 D2

)
where M1 and M2 are n×m matrices, A1 and A2 are of dimensions h1× k1 and
h2 × k2 respectively, n,m, h1, h2, k1, k2 ∈ N0.

Let U = {(i, j) | 1 6 i 6 n ∧ 1 6 j 6 m} be the set of all cell points in the
matrices. We define the region occupied by a matrix block similarly, and refer
both to a matrix block and to the region it occupies by the same name, relying
on context to distinguish them. We can thus write

M1 = AA1
1 : BB1

1 : CC1
1 : DD1

1 , M2 = AA2
2 : BB2

2 : CC2
2 : DD2

2 (3)

To calculate M1 + M2 we: (1) Choose a suitable generalised partition P∗ of
U . (2) Rewrite each block of each matrix into terms restricted to the chosen
partition. (3) Substitute into the expressions for the matrices. (4) Add the two
matrices region-wise.

As established in the section 4, the maximal number of partitions required
in our case is 4 + 4 − 1 = 7. We therefore choose 6 independent regions to
be A1, B1, C1, A2, B2, C2 and obtain the seventh, P1, by subtracting all other
regions from the universe U ,

P1 = U 	 (A1 ⊕B1 ⊕ C1 ⊕A2 ⊕B2 ⊕ C2). (4)

We can then express regions D1 and D2 in terms of P1: D1 = U	(A1⊕B1⊕C1) =
P1 ⊕A2 ⊕B2 ⊕ C2, and D2 = P1 ⊕A1 ⊕B1 ⊕ C1.

Rewriting M1,M2 from Eq. (3), we get:

M1 = AA1
1 : BB1

1 : CC1
1 : DP1⊕A2⊕B2⊕C2

1

= DP1
1 : AA1

1 : BB1
1 : CC1

1 : DA2
1 : DB2

1 : DC2
1

M2 = DP1
2 : DA1

2 : DB1
2 : DC1

2 : AA2
2 : BB2

2 : CC2
2



This lets us express the sum of the two matrices as the following pseudo-function:

M1 + M2= (D1 + D2)
P1 :+ (A1 + D2)

A1 :+ (B1 + D2)
B1 :+ (C1 + D2)

C1

:+ (D1 + A2)
A2 :+ (D1 + B2)

B2 :+ (D1 + C2)
C2 (5)

Observe that the seven terms of the hybrid function fully capture the result of the
matrix addition independent of the order of the symbolic dimensions h1, h2, k1, k2
of the original blocks. We demonstrate this by evaluating the function for a
couple of concrete points in the sum matrix.

First let h1 < h2 and choose a concrete value of a cell (i, j) where h1 < i ≤ h2

and 1 ≤ j < k1, k2. The point should therefore be in a region composed of
elements from B1 and A2. Instantiating the multiplicities in equation (5) ver-
ifies this. Observe that indeed the only regions with multiplicity 1 are B1 =
{(i, j) | h1 6 i 6 n ∧ 1 6 j 6 k1 } and A2 = {(i, j) | 1 6 i 6 h2 ∧ 1 6 j 6 k2 }
whereas the multiplicities for A1, B2, C1, C2 are all 0. Furthermore, we can
compute the multiplicity for P1 using equation (4). Since the multiplicity of
the universe U is always 1 — every element is in this partition — we get
1 − (0 + 1 + 0 + 1 + 0 + 0) = −1. This then yields the computation below,
which confirms that our element is indeed in the anticipated region (where we
write region-wise sets

{∣∣(D1 + D2)−1
∣∣} as (D1 + D2)−1 to alleviate notation)

(D1 + D2)
−1 :+ (B1 + D2)

1 :+ (D1 + A2)
1

= B1
1 :+ A1

2 = B1 + A2

Now assume that the order of the symbolic dimensions for blocks A1, A2 is
reversed and we have h2 < h1. If we now compute the value of a cell with (i, j)
with h2 < i ≤ h1 and 1 ≤ j < k1, k2, we get 0 multiplicity for regions B1, A2,
but instead multiplicity 1 for A1, B2. Again the multiplicity for P1 is −1 and
equation (5) will yield that our cell is in the A1 + B2 region.

As a final example we compute cell (i, j) with h1, h2 < i ≤ n and k1, k2 <
j ≤ m, which is a point from D1 and D2. This time equation (5) simplifies even
more quickly, as the multiplicities for A1, A2, B1, B2, C1, C2 are all 0 and we only
have to consider the multiplicity for P1 which is 1 with the same considerations
as above, yielding D1 + D2 as the only term that does not vanish.

6.2 Symbolic Spline Interpolation

Numerical computation and manipulation of splines is well understood. Here we
show how hybrid domain decomposition can be used to support the previously
unexplored symbolic manipulation of splines.

Let a = x0 < x1 < · · · < xn−1 < xn = b be a partition of the interval [a, b] ⊂
R. We call the xi knots and assume that for each knot we have a corresponding
value yi. Then we can define a spline function S over [a, b] piecewise as

S(x) =


S0(x) x ∈ [x0, x1]

...
...

Sn−1(x) x ∈ [xn−1, xn]

(6)



While spline interpolation is traditionally defined for numerical values of the
xi, yi pairs, we will now define a symbolic spline function. Let a = c0 < c1 < · · · <
cn−1 < cn = b be symbolic or “abstract” knots with associated symbolic values
d0, d1, . . . , dn, where a di is generally given as a function in ci. We define spline
segments Sci,ci+1

(x) for i = 0, . . . , n−1. That is, the segments are parameterised
with respect to two knots and their values. Let P = P1 ⊕ . . . ⊕ Pn with Pi =
[ci−1, ci] be a generalised partition. We then define a symbolic spline function
S(x) = SP1

c0,c1(x) : · · ·: Scn−1,cn(x)Pn . For clarity we often omit the (x) part of
the term.

Define the merge of two spline segments SP
a,b on SQ

a′,b′ to be SP⊗Q
max(a,a′),min(b,b′).

Clearly this merge will be empty if the two segments do not overlap, otherwise it
will be the smallest possible spline for the overlapping interval of the segments.

Now let P1⊕· · ·⊕Pn and Q1⊕· · ·⊕Qm be two generalised partitions of the
interval [a, b] and let S = SP1

c0,c1 :· · ·:SPn
cn−1,cn and T = TQ1

d0,d1
:· · ·:TQm

dm−1,dm
be

two symbolic splines. Observe that the di here are knots and not knot values. We
can then define the merge S on T as a binary operation on two hybrid functions
as given above in proposition 8.

We observe the merge operation using a simple example. Let P = P1⊕P2 and
Q = Q1⊕Q2 be the generalised partitions a < c < b and a < d < b of our universe
[a, b], respectively. Let S = SP1

a,c:SP2

c,b and T = TQ1

a,d:TQ2

d,b be two symbolic splines.
We choose a common refinement as P1, Q1, R = U 	 (P1 ⊕ Q1). We can then

write S = SP1
a,c :SR⊕Q1

c,b = SP1
a,c :SR

c,b :SQ1

c,b and similarly T = TQ1

a,d :TP1

d,b :TR
d,b.

When we merge both symbolic splines we get

S on T = (Sa,c on Td,b)
P1 :on (Sc,b on Ta,d)Q1 :on (Sc,b on Td,b)

R (7)

If we now fix the order of our symbolic knots to be a < c < d < b we can
evaluate the three components of our spline. First let a ≤ x ≤ c, which means
P1 = Q1 = 1 and R = −1 and (7) evaluates to Sa,c on Ta,d which yields a spline
between knots a, c. Similarly the other two segments evaluate Sc,b on Ta,d and
Sc,b on Td,b, which yields splines for the intervals [c, d] and [d, b], respectively.

7 Conclusion

We have presented a framework of generalised partitions and domain decompo-
sition based on hybrid sets. This framework has a number of pleasing properties
and unifies a number of ad hoc notions in common use. More importantly for our
purposes, this representation allows easy manipulation of and reasoning about
partitions whose pieces are defined symbolically. These specialise correctly for
all choices of parameters by negative and positive multiplicities cancelling as
needed. The representation (see for example equation (2)) needs to be carefully
interpreted, as out of context simplification can result in meaningless results.
But if the rules we lay out are followed, our compact representation effectively
allows one to compute with very general piecewise-defined functions.

Although a number of previous authors have studied hybrid sets, our study
of functions over hybrid sets, generalised partitions, the superposition : and



marked superposition :? operators appear to all be new. Our applications to
computation and reasoning are certainly new.

There remain several intriguing directions for future work. These include
normal forms for piecewise functions defined on hybrid partitions, simplifica-
tion of intermediate expressions involving linear operators or inverse elements
and creating partition schemes from algebraic specialisation properties, e.g. in
Cylindrical Algebraic Decomposition. We have implemented a prototype Maple
package for hybrid sets and hybrid functions, but a more general implementation
would be of interest.
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