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Abstract

We introduce a new OpenMath content dictionary named “tensor1”

containing symbols for the expression of tensor formulas. These symbols

support the expression of non-Cartesian coordinates and invariant, mul-

tilinear expressions in the context of coordinate transformations. While

current OpenMath symbols support the expression of linear algebra for-

mulas using matrices and vectors, we find that there is an underlying

assumption of Cartesian, or standard, coordinates that makes the expres-

sion of general tensor formulas difficult, if not impossible. In introducing

these new OpenMath symbols for the expression of tensor formulas, we at-

tempt to maintain, as much as possible, consistency with prior OpenMath

symbol definitions for linear algebra. 1

1 Introduction

In scientific and engineering disciplines there are many uses of tensor notation.
A principal reason for the need for tensors is that the laws of physics are best for-
mulated as tensor equations. Tensor equations are used for two reasons: first,
the physical laws of greatest interest are those that may be stated in a form
that is independent of the choice of coordinates, and secondly; expressing the
laws of physics differently for each choice of coordinates becomes cumbersome
to maintain. While from a theoretical perspective it is desirable to be able to
express the laws of physics in a form that is independent of coordinate frame,
the application of those laws to the prediction of the dynamics of physical ob-
jects requires that we do ultimately specify the values in some coordinate frame.
Much of this discussion might be moot were scientists and engineers to confine
themselves to one frame, e.g., Cartesian coordinates, but such is not the case.
Non-Cartesian coordinates are useful for curved geometries and because closed
form solutions to applied models in classical physics, which rely on the sepa-
ration of variables method of solving partial differential equations, often exist

1The final publication of this paper is available at www.springerlink.com
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in them. For example, the Laplace equation is separable in thirteen coordinate
systems [1]. One may also take as a definition of need that these concepts are
included in the ISO standards defining the necessary mathematical symbols in
the International System (SI) of Quantities and Units [2].

While we specify the new OpenMath symbols for tensor concepts, we at-
tempt to maintain consistency with pre-existing OpenMath symbols [3]. The
symbols within OpenMath content dictionaries support the expression of a
wealth of mathematical concepts. Determining whether or not additional sym-
bols are needed requires consideration based upon both necessity and conve-
nience. Advancing new symbols using arguments based upon mathematical
necessity only implies that a proof is at hand showing that a particular concept
cannot be expressed using existing OpenMath symbols. Since such proofs would
be difficult, if not impossible, in practice, convincing arguments for new symbols
are more likely to be made based on a combination of practical economy, prac-
tical necessity, and convenience: this is certainly the case here. The symbols
we introduce are motivated by the need for easily and directly capturing the
relevant semantics in the expression of tensor formulas.

OpenMath symbols exist for the specification of matrices and vectors. These
are documented in the content dictionaries linalg1, linalg2, linalg3, linalg4,
linalg5, and two dictionaries named linalg6. Within these dictionaries there
are two representations: one for row vectors and one for column vectors, with
the row representation being labeled “official” in preference to the column rep-
resentation. In the row vector representation a matrix is a column of rows, and
in the column vector representation it is a row of columns. We find that the two
representations, i.e., the row representation of vectors and the column represen-
tation of vectors, appear to be alternative, equivalent representations, related
by a transpose operation, rather than dual representations, such as vectors and
covectors where row and column representations of a vector are related via a
general metric tensor. We also find, from the few examples given and from the
general lack of reference to bases, that the row and column vector semantics
appear to assume use of the standard, or Cartesian, basis only, and, in particu-
lar, with a simple Euclidean metric. For example, the scalar product is given as
u ·v =

∑

i uivi . In the row representation, the vector components resulting from
a matrix-vector multiplication appear as the results of scalar products between
matrix rows and a row vector, i.e., a scalar product takes as its arguments two
vectors from the same vector space. Given these observations, it is not clear that
in using these existing representations it is easy, or even possible, to express the
semantics of tensors as they are typically used by engineers and scientists. For
these reasons we introduce symbols that are expressly to be used for specifying
tensor formulas.

2 Tensor Review

To motivate our choice of OpenMath symbols for specifying tensors, we briefly
review some tensor basics. By definition, a tensor is a multilinear mapping that
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maps vectors and covectors to a scalar field. A tensor is itself an element of the
space defined by a tensor product of covector and vector spaces. Among scien-
tists and engineers, tensor formulas are commonly written using their indexed
components.

2.1 Coordinate Frames

To begin the discussion, we note that an arbitrary point in n-dimensional space,
Rn, is typically specified by its n Cartesian, or standard, coordinates, x i . The
point’s position vector, is then written as r =

∑

i x
iei , where the ei are or-

thonormal Cartesian basis vectors and are constant, i.e., not a function of the
coordinates, for a given Cartesian frame. Using the original Cartesian frame,
alternative coordinates may be defined as functions of the Cartesian coordinates
in the original frame, e.g., x ′

i
= x ′

i
(x1, ..., xn), which may be nonlinear in the

x i .
Spatial coordinates are sometimes expressed as indexed quantities, such as

(x1, x2, x3), or having individual names, such as (x , y , z). In presentation, dif-
ferent kinds of indexes may appear much the same, but in content markup we
must be more discriminating. For example, vector components are one kind
of indexed quantity. It would be a mistake, however, to consider the tuple of
spatial coordinates to be a vector in the general case. While it may seem to be
a vector in Cartesian coordinates, i.e., a position vector, this is not the case in,
for example, polar coordinates. For general coordinates the vector addition of
coordinate position tuples does not appear to have a defined meaning, i.e., the
meaning of

coordinates(Point1) + coordinates(Point2) = coordinates(Point3)
is not preserved under general cordinate transformation.

Considering this, the most we should say is that the variables describing
the coordinates of an arbitrary point in a space comprise an n-tuple. This
appears to be similar to the notion of an OpenMath context [4], i.e., an n-tuple
of variables. Consequently, while we need to represent x i , it is inappropriate to
do this using the vector selector symbol, the vector component accessor defined
in the OpenMath linalg1 content dictionary. For this reason we introduce the
tuple and tuple selector symbols. The symbol, tuple, is an n-ary function that
returns an n-tuple of its arguments in the order that they are presented. The
symbol, tuple selector, takes two arguments, an n-tuple, and an index, a natural
number less than or equal to n, and returns the indexed element.

Since the Cartesian frame is most often used, including in the definition of
coordinate transformations and the definition of non-Cartesian frames, we find
it useful to have symbols to express the base concepts of Cartesian coordinates.
We propose the symbol Cartesian which takes a single argument, a natural num-
ber, and returns the Cartesian coordinate, of a right-handed Cartesian frame,
corresponding to the value of the argument. The standard representation of
Cartesian 3-space may then be represented by either

tuple(x, y, z) = tuple(Cartesian(1), Cartesian(2), Cartesian(3))
or as
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tuple selector(i, x) = Cartesian(i).
Coordinate transformations may then be defined as functions on the Cartesian
coordinates.

The full meaning of the Cartesian coordinate variables comes from their
combination with the basis vectors for the Cartesian frame. The commonly
used orthonormal basis vectors for the Cartesian frame are given by the symbol
unit Cartesian, i.e., unit Cartesian takes a single natural number as its argu-
ment and returns the corresponding unit vector, say, ei . Other representations
are easily assigned, such as

tuple(̂i , ĵ , k̂) = tuple(unit Cartesian(1), unit Cartesian(2), unit Cartesian(3)).

Basis vectors, gi , for transformed coordinates, x ′i , are given by

gi =
∑

j
∂x j

∂x′ i
ej .

2.2 Vectors and Covectors

To describe tensors we must also give prior description to vectors and covectors.
A vector, v, may be specified by components v i with respect to an arbitrary,
ordered, vector space basis, (g1, ..., gn), as v =

∑

i v
igi . These basis vectors, gi ,

are generally the tangent vectors with respect to the spatial coordinates, e.g.,
x i . In curvilinear coordinates these general basis vectors are clearly functions
of the coordinates. A dual, covector space may be defined relative to a given
vector space. A dual space is defined as a set of linear functionals on the
vector space and is spanned by a set of basis elements,

(

g1, ..., gn
)

, such that
gi (gj) = δij , where δij is the Kronecker tensor. The symbol, Kronecker tensor,

has components, δij , equal to one when i = j and zero otherwise.
The presentation of the indexes, either raised or lowered, on basis vectors,

basis covectors, vector components, or covector components, generally indicates
how the components transform. With a transformation of coordinates, indexed
tensor quantities transform either covariantly, as do the basis vectors, gi , or
they transform contravariantly, as do vector components, v i , or, for example,
coordinate differentials, dx i . Transforming from coordinates x i to coordinates
x ′

i
, the covariant transformation is defined by the transformation of the basis

vectors:
g′

i =
∑

k
∂xk

∂x′ i
gk .

The contravariant transformation of a vector’s components is given by:

v ′ l =
∑

k
∂x′

l

∂xk
vk .

The covariant transformation of the components of a covector, u, is given by

u′j =
∑

k
∂xk

∂x′ j
uk .

Vectors whose components transform contravariantly, and their covectors,
whose components transform covariantly, are tensors. Many, but not all, vector
quantities are tensors. For example, the coordinates themselves, x i , are referred
to as the components of a position vector (in Cartesian coordinates), x or r,
which is not a tensor. (We have already noted that the position vector in Carte-
sian coordinates, defined as a tuple of position coordinates, does not generally
preserve its meaning after coordinate transformation).
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In general, tensors may be created by tensor (outer) products of vectors
and covectors, contracted products of tensors, and sums of tensors of the same
order. Order one tensors are contravariant or covariant vectors, while order
zero tensors are scalars. The order of a higher order tensor is just the necessary
number of vectors and covectors multiplied together, using the tensor product,
to create it.

For the purpose of describing tensor formulas in content markup, we in-
troduce the OpenMath symbols tensor selector, contra index, and covar index,
which are applied to a natural number, returning the appropriate index. In stan-
dard tensor notation, a contravariant index is represented as a superscripted
index and a covariant index is represented as a subscripted index. The con-
tra index and covar index symbols are so named because characterizing the
indexes of tensor quantities as being contravariant or covariant captures the
semantics.

In engineering and scientific applications standard matrix-vector multiplica-
tion is consistent with tensor notation when interpreted as a matrix multiplying
a column vector from the left, resulting in a column vector. Each of the com-
ponents of the result are arrived at by applying the rows of the matrix to the
column vector being multiplied. It is consistent with this common usage to iden-
tify the components of a column vector using the contravariant, superscripted
index as a row index, and to identify the components of a row vector using the
covariant, subscripted index as a column index. The matrix-vector multipli-
cation is then represented as ui =

∑

j M
i
jv

j . It is common in tensor notation
to suppress the explicit summation in such an expression using the Einstein
Summation Convention.

While it is common to implicitly assume the use of standard, or Cartesian
coordinates, in which case the distinction between superscripts and subscripts
appears superfluous, this is not so with tensor notation: a vector may be speci-
fied by its components relative to some general, non-Cartesian basis. As pointed
out above, the basis vectors of an arbitrary, ordered basis of a vector space
transform covariantly, hence they are indexed using the symbol, covar index.
Similarly, the basis covectors, derived from the same arbitrary, ordered basis of
the vector space, transform contravariantly, hence they are indexed using the
symbol, contra index.

We introduce, then, the basis selector symbol as a binary operator, taking
as its arguments:

1) an ordered basis, a tuple of linearly independent vectors that spans some
vector space;

2) either a covar index or contra index symbol applied to a natural number.
The basis selector operator returns a basis vector of the vector space when a
covar index symbol is passed and returns a basis covector of the dual vector
space when a contra index is passed.
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2.3 Higher Order Tensors

To write expressions using tensor components, we use the symbol, tensor selector.
The tensor selector symbol returns a scalar and takes three arguments:

1) a tensor;
2) a tuple of contra index and covar index symbols, and, finally;
3) a frame, an ordered set of basis vectors.
The sum total of indexes used, both contra index’s and covar index’s, must

be the same as the order of the tensor. The contravariant and covariant indexes,
taken together, are totally ordered, and refer to a matrix of tensor components,
which are assumed to be in ’row-major’ order, regardless of whether the indexes
are contra index’s or covar index’s. By use of the term row-major order, we
do not attribute any special meaning to whether an index is considered a row
index or a column index, rather we merely mean that for the serial traversal of an
arbitrarily dimensioned array used to store an indexed quantity, the rightmost
index varies fastest. The assumption of this convention allows the unambiguous
assignment of indexed matrix component values to indexed tensor components.

The scalar returned by tensor selector is the tensor component. For ex-
ample, the contravariant components of a vector are identified by applying
tensor selector to the vector and a contra index. Components of higher order
tensors are identified by use of multiple contra index and covar index symbols.
The final argument, the frame, is necessary when one needs to specify a tensor
expression that is dependent on the basis or on multiple bases, as in a transfor-
mation expression. As tensor formulas are commonly made without regard to
basis, often no basis is required, and so any single, consistent basis is sufficient
in this case, such as Cartesian. It is also suggested that a special value, called
“unspecified”, might be used.

A general tensor is usually indicated with a capital letter. Its coordinates
may be represented using a sequence of contra index and / or covar index sym-
bols. The tensor itself may be represented by taking the product

T =
∑

ij T
ijgigj .

The Einstein summation convention is normally implicitly applied to the prod-
uct of two tensors whose components are represented with matching contravari-
ant and covariant indexes. In content markup this summation should be explicit
since there is otherwise no content markup to indicate the fact that these indexes
are bound variables.

Finally, we define a couple more symbols for specific tensor and vector quanti-
ties. First, there is the metric tensor which defines the geometric features of the
vector space, such as length. Its components are represented as gij , a symmetric,

non-degenerate, covariant, bilinear form defined by (ds)
2
= gijdx

′idx ′
j
, where ds

is the differential length element and dx ′
i
are the differential changes in spatial

coordinates. This is a generalization of the simple Euclidean metric given by the
scalar product. Covariant components and contravariant components of a vec-
tor, or row and column representations of a vector, are related by vi =

∑

j gijv
j

and squared length, or squared norm, of a vector is |v|
2
=

∑

ij gijv
iv j =

∑

j vjv
j .
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Lastly, we define the Levi-Civita symbol, the so-called permutation tensor.
It takes one argument, the dimension of the space. Its components may be
indexed with the contra index and / or covar index symbols.

2.4 Conclusion

We have introduced a number of OpenMath symbols for the expression of ten-
sor formulas. They are tuple, tuple selector, Cartesian, unit Cartesian, Kro-
necker tensor, basis selector, tensor selector, contra index, covar index, met-
ric tensor, and Levi-Civita. Using the tuple, tuple selector, Cartesian, and
unit Cartesian symbols we can build finite dimensioned Cartesian frames and
define differentiable coordinate transformations to define other frames. Using
Kronecker tensor, basis selector, tensor selector, contra index, and covar index,
we can define tensor spaces on those frames, assign values to tensor compo-
nents, and write tensor formulas. The formulas may be within a single frame or
between frames. Finally, with the metric tensor we can specify non-Euclidean
metrics and using the Levi-Civita symbol we can express vector cross prod-
ucts and the curl operation in vector component form. These symbols are being
submitted as a content dictionary named tensor1 to the online OpenMath repos-
itory.

Many thanks to Weiqing Gu at Naval Research Lab for several conversations
regarding tensors.
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