1005.4762v1 [csMS] 26 May 2010

arXiv

Adapting Mathematical Domain Reasoners

Bastiaan Heeren! and Johan Jeuring!+?

tSchool of Computer Science, Open Universiteit Nederland
P.O.Box 2960, 6401 DL Heerlen, The Netherlands
{bhr,jje}@ou.nl
2 Department of Information and Computing Sciences, Universiteit Utrecht

Abstract. Mathematical learning environments help students in mas-
tering mathematical knowledge. Mature environments typically offer thou-
sands of interactive exercises. Providing feedback to students solving
interactive exercises requires domain reasoners for doing the exercise-
specific calculations. Since a domain reasoner has to solve an exercise
in the same way a student should solve it, the structure of domain rea-
soners should follow the layered structure of the mathematical domains.
Furthermore, learners, teachers, and environment builders have different
requirements for adapting domain reasoners, such as providing more de-
tails, disallowing or enforcing certain solutions, and combining multiple
mathematical domains in a new domain. In previous work we have shown
how domain reasoners for solving interactive exercises can be expressed
in terms of rewrite strategies, rewrite rules, and views. This paper shows
how users can adapt and configure such domain reasoners to their own
needs. This is achieved by enabling users to explicitly communicate the
components that are used for solving an exercise.

1 Introduction

Mathematical learning environments and intelligent tutoring systems such as
MathDox [8], the Digital Mathematics Environment (DWO) of the Freuden-
thal Institute [9], and the ACTIVEMATH system [14], help students in mastering
mathematical knowledge. All these systems manage a collection of learning ob-
jects, and offer a wide variety of interactive exercises, together with a graphical
user interface to enter and display mathematical formulas. Sophisticated systems
also have components for exercise generation, for maintaining a student model,
for varying the tutorial strategy, and so on. Mathematical learning environ-
ments often delegate dealing with exercise-specific problems, such as diagnosing
intermediate answers entered by a student and providing feedback, to exter-
nal components. These components can be computer algebra systems (CAS) or
specialized domain reasoners.

The wide range of exercise types in a mathematical learning environment is
challenging for systems that have to construct a diagnosis from an intermediate

The final publication of this paper is available at www.springerlink.com

http://arxiv.org/abs/1005.4762v1

student answer to an exercise. In general, CAS will have no problem calculating
an answer to a mathematics question posed at primary school, high school, or
undergraduate university level. However, CAS are not designed to give detailed
diagnoses or suggestions to intermediate answers. As a result, giving feedback
using CAS is difficult. Domain reasoners, on the other hand, are designed specif-
ically to give good feedback.

Developing, offering, and maintaining a collection of domain reasoners for
a mathematical learning environment is more than just a software engineer-
ing problem applied to domain reasoners. Mathematical learning environments
usually offer topics incrementally, building upon prior knowledge. For example,
solving linear equations is treated before and used in solving quadratic equa-
tions. Following Beeson’s principles [4] of cognitive fidelity (the software solves
the problem as a student does) and glassbox computation (you can see how
the software solves the problem), domain reasoners should be organized with
the same incremental and layered organization. Structuring domain reasoners
should therefore follow the organization of mathematical knowledge.

Domain reasoners are used by learners, teachers, and developers of mathe-
matical environments. Users should be able to customize a domain reasoner [16].
The different groups of users have various requirements with respect to cus-
tomization. For example, a learner might want to see more detail at a particular
point in an exercise, a teacher might want to enforce that an exercise is solved
using a specific approach, and a developer of a mathematical environment might
want to compose a new kind of exercise from existing parts. Meeting these re-
quirements is challenging in the development of domain reasoners. It is our ex-
perience that users request many customizations, and it is highly unlikely that
a static collection of domain reasoners offering exercises at a particular level will
be sufficient to satisfy everyone. Instead, we propose a dynamic approach that
enables the groups of users to customize the domain reasoners to their needs.

In this paper we investigate how we can offer users the possibility to adapt and
configure domain reasoners. In the first part of the paper we identify the problems
associated with managing a wide range of domain reasoners for mathematics, and
we argue why allowing configuration and adaptation of the concepts describing
domain reasoners is desirable. This is the paper’s first contribution. Section 2
further motivates our research question. We then give a number of case studies
in Section 3 that illustrate the need for adaptation and configuration. Most of
these case studies are taken from our work on developing domain reasoners for
about 150 applets from the DWO of the Freudenthal Institute.

The second part starts with an overview of the fundamental concepts by
means of which we describe mathematical knowledge for solving exercises in
domain reasoners. We show how these concepts interoperate, and how they are
combined (Section 4). Next, we present a solution for adapting and configuring
domain reasoners in Section 5, which is our second contribution. In particular, we
show how our solution helps in solving the case studies. The techniques that are
proposed in this paper have been implemented in our framework for developing

domain reasoners!, and we are currently changing the existing domain reasoners
accordingly. We evaluate the advantages and disadvantages of our approach, and
draw conclusions in the final section.

2 Motivation

Computer algebra systems (CAS) are designed specifically for solving complex
mathematical tasks, and performing symbolic computations. CAS are often used
in intelligent tutoring systems as a back-end for assessing the correctness of an
answer. In general, they are suitable for such a task, although different normal
forms can have subtle effects on an assessment [5]. CAS are less suitable for sup-
porting more advanced tutoring functionality, such as suggesting a meaningful
next step, showing a worked-out example, or discovering a common misconcep-
tion: they have not been designed to do so, and generally violate the principles
of cognitive fidelity and glassbox computation.

Specialized domain reasoners are designed with excellent facilities for feed-
back and diagnosis in mind. Because they are specialized they often operate on
a narrow class of exercises (e.g., only linear equations). Supporting more, related
classes (e.g., all mathematics topics covered in high school) raises the question
how the knowledge should be organized and managed. Mathematical knowledge
is typically hierarchical, and according to the principle of cognitive fidelity, such
hierarchies should also be present in a domain reasoner for mathematics.

2.1 Feedback services

When a mathematical learning environment uses domain reasoners for several
classes of exercises, it is important that the reasoners share a set of feedback
services, and that these services are exercise independent. We have defined such
a set of services around rewrite strategies [13,10], which produce step-wise so-
lutions for exercises. With a strategy we can produce worked-out examples (the
derivation service), suggest a next step (the allfirsts service), and diagnose a
term submitted by a learner (the diagnose service). By collecting the rewrite
rules of a strategy, we can report which rules can be applied (the applicable ser-
vice), or recognize common misconceptions (the findbuggyrules service). Other
services we offer are variations of the ones listed above. All services calculate
feedback automatically from a strategy specification and rewrite rules.
Goguadze [11] describes a set of feedback services used by the ACTIVEMATH
learning environment to serve as an interface for calling external domain reason-
ers. His services are similar to ours, and also assume the presence of rewrite rules.
However, they do not depend on rewrite strategies. Neither his nor our current
services [10] accommodate for customizing and adapting domain reasoners.

! For more information, visit our project webpage at http://ideas.cs.uu.nl/.

2.2 Customization from four perspectives

Using a predefined collection of domain reasoners that cannot be customized
limits the level of adaptivity of a learning environment. Users of an environment
have many wishes about customizing a domain reasoner, and satisfying these
would lead to many variants. We propose a solution in which users can adapt
a domain reasoner without changing the domain reasoner’s implementation. We
identify four perspectives for which we consider customizability and adaptability.
These perspectives correspond to the different groups of users.

— Learners. Learners want to customize an exercise to their own level of
expertise. They expect guidance at points where they experience difficulties.
Learners do not interact with a domain reasoner directly, but they send their
requests by way of a learning environment.

— Teachers. Teachers have specific requests about how an exercise should
be solved, and using which steps. They have a good understanding of the
capabilities of a particular homogeneous group of learners. Teachers want to
tailor exercises at a high level.

— Mathematical learning environments. A learning environment is the
front-end for practicing mathematical problem solving, and usually offers
many different classes of exercises. Advanced environments include tools for
authoring exercises (for teachers), they maintain a model of a learner, and
can have a component for adaptive course generation [19]. All these aspects
are related to domain reasoners, and the facilities they offer for customiza-
tion. Environments are the primary clients of a domain reasoner.

— Domain reasoners. From within a domain reasoner, the main concerns
are reusability and maintainability of code and components. The major is-
sue is how mathematical knowledge should be represented and organized,
reflecting the layered structure of that knowledge.

Each of the case studies that is presented in the next section belongs to one of
the perspectives.

3 Case studies

This section presents five case studies illustrating the need for dynamic domain
reasoners that are easily adaptable. Afterwards, we propose a solution, and re-
visit the cases in Section 5.6.

3.1 Case study: controlling the solutions for an exercise

A quadratic equation can be solved in many ways. For example, the Dutch
mathematics textbook Getal & Ruimte [1], used in more than half of the high
schools in the Netherlands, gives many techniques to solve an equation of the
form az? + bz + ¢ = 0. It considers the case of a binomial (b =0 or ¢ = 0) and
the case where its factors can be found easily. Furthermore, the book shows how
(z + 3)2 = 16 can be solved without reworking the term on the left-hand side.

22— 4z =12 22— 4z =12 22— 4z =12

2?2 —4r—12=0 22 —4drx+4=16 22 —4rx—12=0

(x—6)(z+2)=0 (z—2)% = 42 D=(-4)*—4-1--12

r=6Vxr=-2 r—2=4Vax—2=—-4 =64
r=6Vz=—2 VD =+64=28

_ 448 _ 4-8
T == \/:cf—2

r=6Vxr=-2

Fig. 1. Three possible derivations for a quadratic equation

Of course, the quadratic formula is given as a general approach, although using
it is discouraged because it is more involved. Figure 1 shows alternative deriva-
tions for a quadratic equation, including a derivation in which the technique of
“completing the square” is used. Selecting the appropriate technique for a given
equation is one of the skills that needs training.

Depending on the context, a teacher may want to control the way in which a
particular (set of) exercise(s) is solved. For example, a certain exercise should be
solved without using the quadratic formula, or without the technique of complet-
ing the square (because it may not be part of the course material). Controlling
the solution space not only has an effect on the diagnosis of an intermediate
term entered by a learner, it also influences the generation of hints and worked-
out solutions. A strategy that combines multiple solution techniques will often
not be of help, since hints and worked-out solutions might refer to techniques
unknown to the learner, or techniques that should not be used.

3.2 Case study: changing the level of detail

While doing an exercise, a learner wants to increase the level of detail that is
presented by the learning environment, i.e., the granularity of the steps. For
example, the learner might find the step in which z = %\/ﬁ is simplified to
x = 2v/2 hard to understand, even though familiarity with simplifying roots is
assumed. According to the principle of glass-box computation the learner should
be able to inspect the calculations within this step. An extreme scenario in the
other direction is a learner who is only interested in the final answer, not in the
intermediate answers.

3.3 Case study: changing the number system

A teacher wants to allow complex numbers in solutions for polynomial equations,
instead of real numbers. In the setting with real numbers, a negative discriminant
(or a squared term that has to be negative) leads to no solutions. According to
the principle of cognitive fidelity, the software should solve the problem with
complex numbers or with real numbers, depending on the teacher’s preference.
However, the approach to solve an equation, that is, the rewrite strategy, is not
changed significantly. Therefore, reuse of the existing strategy is desirable. A

similar scenario would be to restrict the numbers in an equation to rationals
only, without introducing square roots.

3.4 Case study: creating new exercises from existing parts

Rewrite strategies can often be extended to deal with a new class of exercises
by performing some steps beforehand or afterwards. In the case of solving an
equation with a polynomial of degree 3 or higher, one could try to reduce the
problem to a quadratic equation. This equation can then be handled by an exist-
ing strategy for solving quadratic equations. Ideally, such a composite strategy
is already defined and available. If not, a mathematical learning environment (or
a teacher using it) should be able to assemble the strategy from existing parts,
and use it in the same way as a predefined strategy.

Another scenario is a collection of rules that has to be applied exhaustively
to solve an exercise. Although exhaustive application of rules results in a very
simple rewrite strategy, many interesting problems can be solved in this way. It
should therefore be possible for a teacher using the learning environment to take
or specify such a collection, and to construct a strategy out of it.

3.5 Case study: customizing an exercise with a student model

Advanced learning environments, such as ACTIVEMATH, maintain a student
model containing information about the skills and capabilities of the learner.
Such a student model can be used for different purposes, including task selection
and reporting the progress of a learner. Because the model contains detailed
knowledge about the level of the learner, it is desirable to use this knowledge
and to customize the domain reasoner accordingly. For example, a learner that
understands Gaussian elimination can perform this method as a single step when
determining the inverse of a matrix. On the contrary, beginners in linear algebra
should see the intermediate steps.

Obviously, diagnoses from the domain reasoners should also be used to up-
date the student model. In both cases, the domain reasoner and the learning
environment need a shared understanding of the knowledge items, such as the
rewrite rules and the rewrite strategies. The exchange of information in both
directions suggests that the two parts should be tightly integrated.

4 Concepts and representation of knowledge

This section discusses the three concepts that are the foundation of our approach:
rewrite rules, rewrite strategies, and views for defining canonical forms. These
concepts not only assist in reasoning about exercises at a conceptual level, they
are also the core abstractions in the implementation of the domain reasoners. We
give a brief introduction to each of the concepts, and point out how they represent
knowledge appearing in mathematical textbooks. Furthermore, we highlight the
properties of the concepts. In the last part of this section we discuss how the
concepts come together in defining an exercise.

4.1 Rewrite rules

Rewrite rules specify how terms can be manipulated in a sound way, and are
often given explicitly in textbooks. Well-known examples are rewriting AB = 0
into A = 0V B = 0, the quadratic formula, and associativity of addition.
These rules constitute the steps in worked-out solutions. Soundness of rules can
be checked with respect to some semantic interpretation of a formula. Such an
interpretation can be context-specific (e.g., 22 = —3 gives no solutions for z in R).

Rewrite rules are atomic actions that can be implemented in code. Clearly,
this gives the implementer of the rule the full power of the underlying program-
ming language. An alternative is to specify rules with a left-hand side and a
right-hand side, and to rely on unification and substitution of terms to do the
transformation [15]. This is common practice in term rewrite systems (TRS) [3].
We allow rewrite rules to yield multiple results.

4.2 Rewrite strategies

Simple problems can be solved by applying a set of rules exhaustively (for in-
stance, when the set of rules is confluent), but this is generally not the case.
A rewrite strategy [13] guides the process of applying rewrite rules to solve a
particular class of problems. Recipes for solving a certain type of problem can
be found in textbooks, but they are often not precise enough for the purpose
of building a domain reasoner. Given a collection of worked-out solutions by an
expert, one can try to infer the strategy that was used (although typically only
one possible derivation is covered).

Rewrite strategies are built from rewrite rules, with combinators for se-
quences and choices (<¥> and <|>, respectively). The fixed point combinator
fiz allows for repeating parts. Labels can be placed at arbitrary places in the
strategy, marking substrategies of interest. From a strategy description, multiple
derivations may be generated or recognized.

Since strategies only structure the order in which rewrite rules are applied,
soundness of a derivation follows directly from the soundness of the rules in-
volved. Note that a strategy not only prescribes which rule to apply, but also
where (that is, to which subterm). Also, strategies are designed with a specific
goal in mind. A strategy for quadratic equations, for instance, is expected to
rewrite an equation until the variable is isolated. The solved form that a strat-
egy is supposed to reach is the strategy’s post-condition. Likewise, a strategy
may have certain assumptions about the starting term (e.g., the equation must
be quadratic, or only a single variable is involved), which is its pre-condition.

4.3 Views and canonical forms

Canonical forms and notational conventions are an integral part of courses on
mathematics. Examples of conventions in writing down a polynomial are the
order of its terms (sorted by the degree of the term), and writing the coefficient in
front of the variable. Such conventions also play a role when discussing equations

of the form ax?+bz = 0: it is likely that —3x+22 = 0 is considered an instance of
the form, although the expression 122 + (—3)x is rather atypical. These implicit
assumptions make that standard rewriting techniques do not apply directly.

Canonical forms and notational conventions can be captured in a view [12],
which consists of a partial function for matching, and a (complete) function
for building. Matching may result in a value of a different type, such as the
pair (—3,5) for the expression —(3 — 5). In this example, the interpretation of
the pair would be addition of both parts. Having a value of a different type
after matching can be useful when specifying a rewrite rule: the pair (—3,5), for
instance, witnesses that an addition was recognized at top-level. Building after
matching gives the canonical form, and this composed operation must therefore
be idempotent. A view is assumed to preserve a term’s semantics.

Primitive views can be composed into compound views, in two different ways.
Firstly, views are closely related to the arrow interface [17], and its bidirectional
variant. The combinators of this interface can be used for combining views, such
as using views in succession. Secondly, views can be parameterized with another
view. Consider a view for expressions of the form axz + b, returning a pair of
expressions for a and b. Another view can then be used for these two parts (e.g.,
a view for rational numbers). Essentially, this pattern of usage corresponds to
having higher-order views. Views can be used in different ways:

— as a rewrite rule, reducing a term to its canonical form (if possible);
— as a predicate, checking whether a term has a canonical form;
— as an equivalence relation, comparing the canonical forms of two terms.

4.4 Exercises

The three fundamental concepts for constructing domain reasoners discussed
in this section are all we need to support a general set of feedback services
(Section 2.1). Instances of the concepts are grouped together in an exercise
containing all the domain-specific (and exercise-specific) functionality.

The most prominent component of an exercise is its rewrite strategy. In ad-
dition to the rewrite rules that are present in the strategy, more rules can be
added to the exercise for the purpose of being recognized, including buggy rules
for anticipating common mistakes. Predicates are needed for checking whether a
term is a suitable starting term that can be solved by the strategy, and whether
a term is in solved form. These two predicates can be defined as views. For
diagnosing intermediate answers, we need an equivalence relation to compare
a submission with a preceding term. This relation can be specified as a view.
Besides checking student submissions, this view can be used as an internal con-
sistency check, validating the soundness of the rewrite rules. One more view is
needed that checks whether two terms are similar enough to be considered the
same. This view is used to bring intermediate terms produced by a strategy to
their canonical forms.

What remains to be supplied for an exercise is its metadata, such as an
identifier that can serve as a reference, and a short description. For certain

domains it is convenient to have a dedicated parser and pretty-printer for the
terms involved. For external tools, however, interchanging abstract syntax (as
opposed to concrete syntax), such as OpenMath objects [18] for mathematical
domains, is the preferred way of communication, avoiding the need for a parser
and pretty-printer. Although not of primary importance, it can be convenient
to have a randomized term generator for the exercise.

5 Adaptation and configuration

This section discusses how users can adapt and customize the exercises that are
offered by a domain reasoner. A user has to be able to inspect the internals of
the components of an exercise, to adapt and replace these components, and to
create new exercises. We briefly discuss the consequences of applying the glassbox
principle to our components. We then propose representations for rewrite rules,
rewrite strategies, and views. These representations are an essential part of the
communication with a domain reasoner. Strategy configurations are introduced
for conveniently adapting existing strategies. We conclude by returning to our
case studies, and show how they can be addressed.

5.1 The glassbox principle

The glassbox principle expresses that you should be able to see all steps leading
to a final answer. This is possible with our current services, but you cannot query
the specifics of a rule that was applied, or examine the structure of the rewrite
strategy. From the perspective of a learning environment, rewrite strategies and
rules are still black boxes delivering some result. Ideally, the components involved
are transparent as well, and adhere to the glassbox principle.

Exposing the internals of a component has the advantage that more details
become available for the learning environment, and for other external tools.
These details can be communicated to learners, or to teachers writing feedback
messages. The information can also be used for documentation, visualization of
rewrite strategies, analyses, and much more. Once a domain reasoner supports
a representation, it can be extended to interpret descriptions that are passed to
it. As a result, exercises can be adapted in new, unforeseen ways.

However, there is a trade-off in making components fully transparent. The
need for a representation that can be communicated restricts the way compo-
nents can be specified. The developer of a domain reasoner can no longer take ad-
vantage of the facilities offered by the underlying programming language, which
may negatively affect performance, for example. For our own domain reasoners,
we are gradually working towards transparency.

5.2 Representing rewrite rules

Consider the rewrite rule AB = AC —+ A =0V B = C. In this rule, A, B, and
C' are meta-variables representing arbitrary expressions. A rule that is written

in this way can be seen as a Formal Mathematical Property (FMP), a concept
introduced by the OpenMath standard [18] to specify properties of symbols
that are defined in content dictionaries. The OpenMath standard also supports
explicit quantification of meta-variables by means of the forall binder in the
quant1 dictionary. We can thus use FMPs to represent the rewrite rules of our
domain reasoners?. Likewise, buggy rules can be communicated as FMPs, except
that the meta-variables are existentially quantified. Indeed, many of our rewrite
rules can also be found in a content dictionary as an FMP.

Unfortunately, not all rules can be represented with a left and right-hand
side straightforwardly. Keep in mind that the representation of a rule should
closely correspond to how it is perceived by a learner. We give some examples
that challenge this approach.

— Some steps correspond to primitive operations, such as replacing 345 by 8,
or reducing % to % Special support is needed for these operations.

— Rewrite rules should not have meta-variables on the right-hand side that do
not appear on the left [3]. Conceptually, however, such rules do exist as an
intermediate step, such as the rule for scaling a fraction (% — g—g), as a
preparatory step for adding it to another fraction. This rule also shows that
rules can have side conditions (C' # 0), which can be expressed in an FMP.

— Generalizations of rules involving a variable number of terms require special
support. An example of such aruleis A(B1+...+ B,,) = AB1+...+ AB,,.

— In an earlier paper [12] we have argued that rules are specified in the context

of a view, yet there is no support for views in the rewrite rules.

These cases can only be circumvented partially by having explicit support for
views in rewrite rules (i.e., associate a new symbol with a view, and specialize the
unification procedure for that symbol), or by using strategies as a representation
for rules (recall that rules can return multiple results).

With this representation for rewrite rules, learning environments can com-
municate new rules to the domain reasoner, thereby extending it. Essentially,
this turns the domain reasoner into a rewrite rule interpreter. When allowing
dynamic extension of a domain, it may no longer be possible to guarantee (or
check) the soundness of rules. Also, care should be taken that the new rules do
not result in excessive computations.

5.3 Representing rewrite strategies

Rewrite strategies are specified using a small set of combinators, such as <>
for sequence, and <|> for choice. Additional combinators are defined in terms
of this small set (e.g., repeat), resulting in a combinator library with common
patterns. For example, consider the strategy specification for solving a linear
equation, in which both sides of the equation are first rewritten into their basic
form ax + b (the preparation step).

2 Instead of using FMPs, we could have introduced our own representation, in which
case we would still need quantification, meta-variables, and a pair of terms.

lineq = label "linear equation" (prepare <*> basic)
prepare = label "prepare equation"

(repeat (merge <|> distribute <|> removeDivision))
basic = label "basic equation"

(try varToLeft <> try conToRight <x> try scaleToOne)

This strategy specification is declarative and compositional, which allows for an
almost literal translation into an XML equivalent. The XML fragment for the
lineq strategy is given below:

<label name="linear equation">

<sequence>
<label name="prepare equation'">
<repeat><choice>

<rule name="merge"/>
<rule name="distribute"/>
<rule name="remove division"/>

</choice></repeat>
</label>
<label name="basic equation"> ... </label>
</sequence>
</label>

An XML tag is introduced for each combinator, and labels and rules have at-
tributes for storing additional information. The strategy combinators for se-
quence and choice are associative, and therefore we let their corresponding tags
have arbitrary many children, instead of imposing a nested structure. The declar-
ative nature of rewrite strategies makes that such a convention does not interfere
with the meaning of the strategy, i.e., it is easy to reason about strategies.

An important design decision in the representation of rewrite strategies is
which of the derived combinators to support in XML, and which not. For in-
stance, repeat s is defined as many s <x> not s, where many and not are also
derived combinators. Instead of introducing the tag <repeat>, we could use
repeat’s definition, giving a <sequence> tag at top-level. Fewer tags make it eas-
ier for other tools to process a strategy description. On the other hand, tools can
take advantage of the extra tags (e.g., a tool for visualizing strategies). Hence,
we decide to support most of the combinators in our library.

Rules are referenced by name in a strategy. Similarly, known (sub)strategies
can be included as well. This is particularly helpful for assembling new strategies
from existing parts (both rules and strategies). Under the assumption that the
parts have already been defined, we can give a concise strategy description for
the running example:

<label name="linear equation">
<sequence>
<strategy name="prepare equation"/>
<strategy name="basic equation"/>
</sequence>
</label>

The XML representation paves the way for learning environments to offer
their own rewrite strategies, turning the domain reasoner into an interpreter
for strategy descriptions. Interpreting strategies raises issues concerning the cor-
rectness of the strategy (the post-condition it should establish), and in partic-
ular termination when rewriting with the strategy. Experience has shown that
specifying rich strategies is a difficult and error-prone activity, for which offline
analysis and testing capabilities are very helpful.

5.4 Configuring rewrite strategies

New rewrite strategies can be defined from scratch, but often a small change
to an existing strategy suffices. Strategy configurations offer an alternative (and
simpler) way to adapt strategies. With such a configuration, a sequence of trans-
formations can be applied to a strategy.

A useful transformation is to remove a specific part of a strategy, such that
it is not used in a derivation. This can be carried out by replacing the part
(substrategy or rule) by fail, which is the unit element of the choice combinator.
When you remove a rule, you risk that an exercise can no longer be solved. The
inverse transformation is to reinsert a part that was marked as removed.

Another transformation is based on the fact that strategies are special in-
stances of rewrite rules, since they can be performed in a single step. Thus,
strategies can be collapsed into a rule, contributing to just one step in a deriva-
tion. The inverse operation is to expand a rewrite rule and turn it into a strategy.

The hide transformation makes a rule implicit, or the rules in a rewrite
strategy. An implicit rule behaves normally, except that it does not show up as a
step in a derivation. Implicit rules can be used to perform certain simplification
steps automatically, and are comparable to so-called administrative rules [13].
The inverse of hide is the reveal transformation.

The properties removed, collapsed, and hidden correspond to the transforma-
tions described above, and they can be assigned to subexpressions in a strategy
description. The properties are translated to attributes in an XML representa-
tion. The three inverse transformations appear as attributes set to false, which
is their default value. The following XML snippet illustrates this approach:

<label name="basic equation" collapsed="true"> ... </label>

Note that this still requires the whole strategy to be communicated, including
the part that is collapsed. To circumvent this, we introduce an XML tag for
each transformation with a target specifying where the transformation should
be applied. The following XML fragment takes the original strategy for solving
a linear equation, and applies the collapse transformation to the substrategy
labeled "basic equation':

<collapse target="basic equation">
<strategy name="linear equation"/>
</collapse>

Transformations can be combined, and if nested, the innermost is applied first.
Because strategy transformations are pure functions, they can be freely mixed
with the “regular” strategy combinators.

Instead of removing a part, we have seen cases where the opposite was re-
quested by a teacher: a certain rule (or substrategy) must be used. This can be
done by selectively removing parts, and making sure that the mandatory part
is used in all cases. For convenience, we offer a mustuse transformation doing
exactly that, which can be used as the other transformations. A weaker variant is
to express a preference for using a rule: this boils down to replacing some choice
strategy combinators by the left-biased choice combinator (written >, see [13]).
The prefer transformation guarantees that the same set of exercises can be solved
by the strategy, which is not the case for mustuse. The final transformation we
discuss is to replace a part of the strategy by something else. This transforma-
tion takes a target to be replaced, the replacement (first child), and the strategy
in which the replacement has to take place (second child).

5.5 Representing views

Finding a representation for a view is arguably more difficult than finding one
for a rewrite rule or strategy. Since a view is just a pair of functions, it is
unclear how its internal structure could be represented in general, other than
its implementation in the underlying programming language. We discuss two
special cases: a view defined as a confluent set of rewrite rules, and a view
specified as a rewrite strategy. Compound views are represented by introducing
an explicit representation for the arrow combinators (as was done for the strategy
combinators), and a representation for the application of higher-order views.
Some views can be defined as a confluent set of rewrite rules, in particular
views for simplifying the complete term, and not just the top-level nodes of the
term. The view’s function for matching applies the set of rules: its function for
building is simply the identity function. Such a view can be represented by listing
the rules. Note that confluence ensures that the view returns a canonical form.
Views can also be specified by a rewrite strategy for the view’s match function
and its build function. This is more sophisticated than providing a confluent
set of rewrite rules, because the strategy can control in a precise way how the
rules should be applied. The strategy language has a fixed point combinator for
expressing general recursion. This makes it plausible that many views can be
written as a strategy. The operations of a view must be idempotent, and this
property must be checked for views that are represented by a rewrite strategy.

5.6 Case studies revisited

We briefly revisit the five case studies. The teacher in case study 3.1 wants
to control how an exercise is solved, for example by disallowing certain rules
or techniques. A strategy configuration provides this functionality by means of
the remove, mustuse, and prefer transformations. The second case (a learner
customizing the level of details) is handled likewise: parts in the strategy that

have been collapsed can be expanded, or the other way around. To see yet more
detail, implicit rules can be made explicit, or rules can be replaced by a rewrite
strategy that is doing the same. For example, the quadratic formula introduces
a square root, which is simplified immediately because it is not the focus of the
exercise. Normalizing expressions involving roots is, however, a topic on its own,
for which a rewrite strategy is available. We can plug-in this strategy to increase
the level of detail in solving an equation with the quadratic formula.

Changing the underlying number system in an exercise (case study 3.3) is
not trivial. Consider using complex numbers for solving a quadratic equation. To
start with, some support for the basic operations on complex numbers is needed
(e.g., addition and multiplication). This can best be captured in a view. Ideally,
a view for complex numbers is already present in the domain reasoner. If not, the
view can be specified as a rewrite strategy. This view can be used for bringing an
expression with complex numbers to its canonical form. Furthermore, additional
rewrite rules are added to the exercise, such as i> — —1. These new rules can be
inserted in the strategy for quadratic equations, whereas other rules are excluded
(e.g., the rule that a square root of a negative number leads to no solution). The
subtle part of this case study is that the views used in the strategy’s rewrite rules
may also have to change, in particular if they involve calculations with numbers.
Composing higher-order views (e.g., a view for polynomials parameterized over
the type of its coefficients) alleviates this issue.

Case study 3.4 is solved by interpreting rewrite strategies that are assembled
by the learning environment. Not all rewrite rules are representable, which cur-
rently limits what can be done without changing the domain reasoner. The last
case study involves customizing the level of detail in an exercise, which is highly
desirable for adaptive learning systems. Based on the student model, a strategy
configuration must be generated by the learning environment.

6 Conclusions, related and future work

We have shown why adapting domain reasoners is very desirable in the context of
mathematical learning environments. By explicitly representing the fundamental
concepts used in domain reasoners, we can let users adapt and configure a class
of exercises in a domain reasoner. We use OpenMath to represent mathematical
expressions and rewrite rules, but we have designed our own XML language for
specifying rewrite strategies, and transformations on these strategies. Our strat-
egy language is very similar to the tactic languages used in theorem proving [6,
2], and has the same expressive power.

Several authors discuss adaptation of various aspects in learning environ-
ments [16, 19], but we are not aware of previous work on configuring and adapting
domain reasoners. Hierarchical proofs [7,2], which represent proofs at different
levels of abstraction, are related to turning a strategy into a rule and vice versa.
As far as we found, hierarchical proofs are not used to recognize proving steps
made by a student.

We have indicated some challenges in representing rewrite rules and views
(sections 5.2 and 5.5), and these cases require further investigation. Even though
we are striving for domain reasoners that are fully transparent (i.e., that have
an explicit representation), we think that hybrid solutions, in which only certain
parts can be adapted, are a conceivable compromise. We plan to investigate how
the facilities for adapting domain reasoners can best be offered to a teacher or a
domain expert, and what skills are reasonable to expect from such a user.

Acknowledgements. This work was made possible by the Math-Bridge project of
the Community programme eContentplus, and by the SURF Foundation (http:
//www.surf.nl), the higher education and research partnership organization for
Information and Communications Technology (ICT), for the NKBW2 project.
The paper does not represent the opinion of the Community, and the Community
is not responsible for any use that might be made of information contained in
this paper. We acknowledge discussions with Peter Boon, George Goguadze, and
Wim van Velthoven. We thank Alex Gerdes and the anonymous reviewers for
commenting on an earlier version of this paper.

References

1. C. Admiraal et al. Getal & Ruimte. EPN, Houten, The Netherlands, 2009.

2. D. Aspinall, E. Denney, and C. Liith. Tactics for hierarchical proof. Mathematics
in Computer Science, 3(3):309-330, 2010.

3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1997.

4. M.J. Beeson. Design principles of MathPert: Software to support education in al-
gebra and calculus. In N. Kajler, editor, Computer-Human Interaction in Symbolic
Computation, pages 89—115. Springer, 1998.

5. R. Bradford, J.H. Davenport, and C.J. Sangwin. A comparison of equality in
computer algebra and correctness in mathematical pedagogy. In MKM’09, pages
75-89. Springer, 2009.

6. A. Bundy. The use of explicit plans to guide inductive proofs. In CADE, pages
111-120, 1988.

7. L. Cheikhrouhou and V. Sorge. PDS — a three-dimensional data structure for proof
plans. In ACIDCA, 2000.

8. A. Cohen, H. Cuypers, E. Reinaldo Barreiro, and H. Sterk. Interactive mathemat-
ical documents on the web. In Algebra, Geometry and Software Systems, pages
289-306. Springer, 2003.

9. M. Doorman, P. Drijvers, P. Boon, S. van Gisbergen, and K. Gravemeijer. Design
and implementation of a computer supported learning environment for mathemat-
ics. In Earli 2009 SIG20 invited Symposium Issues in designing and implementing
computer supported inquiry learning environments, 2009.

10. A. Gerdes, B. Heeren, J. Jeuring, and S. Stuurman. Feedback services for exercise
assistants. In D. Remenyi, editor, ECEL, pages 402-410. Acad. Publ. Ltd., 2008.

11. G. Goguadze. Representation for interactive exercises. In MKM’09, volume 5625
of LNCS, pages 294-309, 2009.

12. B. Heeren and J. Jeuring. Canonical forms in interactive exercise assistants. In
MKM’09, volume 5625 of LNCS, pages 325-340. Springer, 2009.

13

14.

15.

16.

17.

18.

19.

B. Heeren, J. Jeuring, and A. Gerdes. Specifying rewrite strategies for interactive
exercises. Mathematics in Computer Science, 3(3):349-370, 2010.

E. Melis and J. Siekmann. Activemath: An intelligent tutoring system for mathe-
matics. In ICAISC, volume 3070 of LNCS, pages 91-101. Springer, 2004.

T. van Noort, A. Rodriguez Yakushev, S. Holdermans, J. Jeuring, B. Heeren, and
J.P. Magalhaes. A lightweight approach to datatype-generic rewriting. Journal of
Functional Programming, 2010. To appear.

C. Pahl. Managing evolution and change in web-based teaching and learning en-
vironments. Computers & Education, 40(2):99-114, 2003.

R. Paterson. Arrows and computation. In J. Gibbons and O. de Moor, editors,
The Fun of Programming, pages 201-222. Palgrave, 2003.

The OpenMath Society. The OpenMath Standard. http://www.openmath.org/
standard/index.html, 2006.

C. Ullrich, T. Lu, and E. Melis. A new framework for dynamic adaptations and
actions. In FC-TEL, volume 5794 of LNCS, pages 6772, 2009.

