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Abstract. In logic there is a clear concept of what constitutes a proof
and what not. A proof is essentially defined as a finite sequence of for-
mulae which are either axioms or derived by proof rules from formulae
earlier in the sequence. Sociologically, however, it is more difficult to say
what should constitute a proof and what not. In this paper we will look
at different forms of proofs and try to clarify the concept of proof in the
wider meaning of the term. This has implications on how proofs should
be represented formally.

1 Introduction

There is a relatively clear definition of what a proof is. The concept has been
clarified in the last 150 years with the development of logic and in the last 50
to 60 years with the development of systems which formalize the results of these
investigations in formal computer systems. Mathematicians, however, seem not
to have much changed their view of proofs.1 Sure, they have some knowledge
of the results in foundations but if they work in fields such as statistics, group
theory, or geometry then the formalization of proof is only of marginal interest,
although the concept of proof itself is at the core of the whole of mathematics.

Is this just a matter of ignorance? Or rather of professionalism? And what are
the consequences for our field which tries to offer support for mathematicians?

In order to approach these questions an account of the development of the
concept of proof in different fields is given. We first take a look at the develop-
ment in logic (section 2)2. Next we see the consequences this had on working
mathematicians and their attitude towards formal proofs (section 3). The devel-
opment in logic has strongly influenced the development of deduction systems.
In section 4 we take a brief look at deduction systems. Then some consequences
for the field of mathematical knowledge management are discussed. Essentially
we argue that the representation of proofs should be flexible enough to serve
different purposes in order to be able to communicate proofs at different levels:
checkable proofs, abstract high-level proofs, proof ideas/plans, and false proofs.

⋆ The final publication of this paper is available at www.springerlink.com
1 Obviously for those working on the foundations of mathematics this is different. The

generalization ‘mathematicians’ does not mean all mathematicians, but most typical
mathematicians.

2 The claim is not that there is a single view in the different fields. Even a single
person may have different views at different times or in different contexts.
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2 The Logician’s View

In the second half of the 19th century and in the early 20th century, a rigorous
definition of the concept of proof was given. Inspired by the rigorous work of
Euclid, Hilbert axiomatized geometry and developed a programme to be car-
ried through for all of mathematics. Whitehead and Russell wrote the Principia
Mathematica [23] which started to implement the grand vision to reduce all of
mathematics to logic. Logicians like Boole and Frege developed propositional
and predicate logic, and Gentzen the calculus of Natural Deduction.

As Frege put it, the vision was ([7] quoted from [10, p.6f]):

In apprehending a scientific truth we pass, as a rule, through various de-
grees of certitude. Perhaps first conjectured on the basis of an insufficient
number of particular cases, a general proposition comes to be more and
more securely established by being connected with other truths through
chains of inferences, whether consequences are derived from it that are
confirmed in some other way or whether, conversely, it is seen to be a
consequence of propositions already established. Hence we can inquire,
on the one hand, how we have gradually arrived at a given proposition
and, on the other, how we can finally provide it with the most secure
foundation. The first question may have to be answered differently for
different persons; the second is more definite, and the answer to it is con-
nected with the inner nature of the propositions considered. The most
reliable way of carrying out a proof, obviously, is to follow pure logic . . .
Everything necessary for a correct inference is expressed in full . . . noth-
ing is left to guesswork.

Hilbert’s definition of proof as a sequence of formulae which are either axioms
or generated by rules from elements coming earlier in the sequence is now quite
standard in logic books. Natural Deduction calculi as introduced by Gentzen
(see, e.g., [19]) are an extension of this definition. For instance, Andrews [2,
p.11] defines strictly formally the notions of a proof (from hypotheses and then
a proof of a well-formed formula (wff)). Then he defines “A theorem is a wff
which has a proof.”

On a more philosophical level there has been a dispute what should constitute
a rigorous proof, since even with this clarification the question was not fully set-
tled. Most notably there was a dispute between Hilbert and Brouwer on the right
approach to mathematics, in which the question of constructive proofs versus
‘classical’ proofs played a major role. Hilbert wanted, in particular, defend the
‘paradise’ of (infinite) sets provided by Cantor, whereas Brouwer was wary about
the concept of infinity and insisted on constructiveness. At the time, Brouwer’s
view was considered by many mathematicians as too restrictive (and probably
is still by many today). With the advent of computers the idea of constructive
proofs, however, gained great attraction since proving and programming became
the same activity. For details of the dispute see [10]. There are other disputes,
e.g., about the axiom of choice and about the rigour of diagrams in reasoning.
For the argument here, it suffices to state that even in the rigorous area of logical



foundations there can be dispute about what should constitute a proof and what
not.3

3 The Mathematician’s View

Mathematicians seem to have ignored the development in formal logic to a large
degree. The start of the rapid development of modern logic can be put roughly
to the mid 19th century. However, the start of the rapid development of modern
mathematics is about 200 years older.4

As Kline [12, p.256] notes, the “Bourbakists expressed their position on logic
in an article in the Journal of Symbolic Logic (1949): ‘In other words, logic,
so far as we mathematicians are concerned, is no more and no less than the
grammar of the language which we use, a language which had to exist before
the grammar could be constructed.’ Future developments in mathematics may
call for modifications of the logic. This had happened with the introduction of
infinite sets and, . . . it would happen again.”

In a similar line, Bourbaki ([4] quoted from [12, p.320]) doubts that one of
the goals of logicians, to make mathematics free from contradictions, is feasible:

Historically speaking, it is of course quite untrue that mathematics is free
from contradictions; non-contradiction appears as a goal to be achieved,
not as a God-given quality that has been granted to us once for all. Since
the earliest times, all critical revisions of the principles of mathematics as
a whole, or of any branch in it, have almost invariably followed periods of
uncertainty, where contradictions did appear and had to be resolved. . . .
There are now twenty-five centuries during which the mathematicians
have had the practice of correcting their errors and thereby seeing their
science enriched, not impoverished; this gives them the right to view the
future with serenity.

Theorems with their proofs are at the core of mathematics and play a signif-
icant role in the working of mathematicians. Hardy describes in § 12 of [9] two
examples of theorems (with proofs) which he calls ‘first-rate’: First the theorem
that there are infinitely many prime numbers (the proof is indirect, assume that
you have finitely many, multiply them all and add 1. The new number is not
divisible by any prime number, which gives a contradiction.) and second the
theorem that

√
2 is irrational (again an indirect proof: assume

√
2 = a/b with a

and b two integers which have no common divisor. Then 2 · b2 = a2. It follows
that a2 and hence a must be even, but then b must be even as well, which gives
a contradiction).

In § 18 Hardy states then:

3 It should be noted, however, that there is a clear language and it is very clear to the
participants of a dispute what they are talking about.

4 And of course there are always precursors, Aristotle as the father of logic, Archimedes
who was close to inventing calculus almost 2000 years before Newton and Leibniz.



In both theorems (and in the theorems, of course, I include the proofs)
there is a very high degree of unexpectedness, combined with inevitabil-

ity and economy. The arguments take so odd and surprising a form; the
weapons used seem so childishly simple when compared with the far-
reaching results; but there is no escape from the conclusions. There are
no complications of detail – one line of attack is enough in each case;
and this is true too of the proofs of many much more difficult theorems,
the full appreciation of which demands quite a high degree of technical
proficiency. We do not want many “variations” in the proof of a math-
ematical theorem: “enumeration of cases,” indeed is one of the duller
forms of mathematical argument. A mathematical proof should resem-
ble a simple and clear-cut constellation, not a scattered cluster in the
Milky Way.

Proofs often follow established patterns. Often they are invented, doubted
by other, later generally accepted, and finally re-used, taught, and generally rec-
ognized. Examples are the ǫ-δ criterion (to establish continuity), diagonalization
(to establish the impossibility of certain properties, e.g. halting problem, in-
completeness, uncountability), mathematical induction (to reason about infinite
structures), infinitesimals (to reason about differentiation).

From a logicians point of view mathematical proofs are more like proof plans.
This is reflected in the education of mathematics. Proof principles such as the
ǫ-δ criterion are taught in lectures, without a strictly formal treatment. Many of
these principles are even taught in concrete proofs which have exemplary charac-
ter and can be generalized later on to many other cases. Formal logic, however,
is not necessarily part of the education of a mathematician. In consequence,
the concept of a proof is much less strict, and ‘mathematics is a motley of
techniques of proof’ as Wittgenstein put it [24, p. 176f].5

This means that the concept of proof is not fixed once and for all but requires
the possibility for extension. Practically, mathematicians treat proofs and proof
methods as first class objects, that is, just as they introduce new concepts they
may introduce new proof principles, describe them and then use them. For this
reason mathematicians focus on their special fields of expertise and consider the
study of logic as one field among others. And if this field is not their specialty
and particular area of expertise then they do what professionals do with fields
they consider only as marginally relevant: they give it only marginal attention.

4 The Deductionist’s View

In formal communities such as the theorem proving community, the logicians’
view of the concept of proof has (for good reasons) been predominant, but not
been the only view. Davis distinguishes two communities, the logic oriented and
the cognitive oriented communities.

5 Still there is a general assumption in mathematics that in principle it is possible to
extend these mathematical proofs (proof plans) to full logic level proofs if necessary.



Automated Theorem Proving

As Davis [6, p.5] states:

With the ready availability of serious computer power, deductive reason-
ing, especially as embodied in mathematics, presented an ideal target for
those interested in experiments with computer programs that purported
to implement the “higher” human faculties. This was because mathe-
matical reasoning combines objectivity with creativity in a way difficult
to find in other domains. For this endeavor, two paths presented them-
selves. One was to understand what people do when they create proofs
and write programs emulating that process. The other was to make use
of the systematic work of the logicians reducing logical reasoning to stan-
dard canonical forms on which algorithms could be based.

Since the groundbreaking work in logic in the early 20th century was very
close to implementation it led to the dream to build machines that can solve
hard problems fully automatically. The invention of the resolution principle by
Robinson [21] which made search spaces finitely branching was a great break-
through and led to the possibility to prove many theorems fully automatically.
In parallel there was a smaller community which was interested in the cogni-
tive aspects of theorem proving (by Newell and others, followed up in the proof
planning work by Bundy and others). At least motivationally the work is linked
to psychological evidence [20] that deductive reasoning plays a very important
role in human intelligence and that some proof rules like Modus ponens are uni-
versally accepted while others are accepted only by a minority. Related in this
context is also the work on diagrammatic reasoning (see, e.g. [11]) which shows
that reasoning falsely considered for some time as inferior, can be made very
precise.

In general, however, the dream of full automation has not come true at large.
There are fascinating exceptions such as the proof of the Robbins problem ([15]),
but still mathematicians do not have theorem proving machines on their desks
which they use to a similar degree as they use typesetting programs or computer
algebra systems. And possibly not everybody would want such a machine, since
as Hardy put it in [9, § 10] “there is nothing in the world which pleases even
famous men . . . quite so much as to discover, or rediscover, a genuine mathemat-
ical theorem.” and we can add “and a genuine mathematical proof.” (but proofs
are parts of the theorem for Hardy anyway.) Why leaving the fun to a machine?

There has been a different community at least since the 1960s, namely the
community interested in being able to check proofs by a machine. On first sight
this looks like a much less ambitious goal, but it turned out to be actually much
more difficult than anticipated. We will look at this next.

Proof Checking

The perhaps two most prominent approaches to proof checking – from which
other systems have been derived – are Automath [5] and Mizar [22]. The goal is



not to find proofs automatically but to check proofs. De Bruijn summarizes his
dream in 1994 [16, p.210] as follows:

As a kind of dream I played (in 1968) with the idea of a future where
every mathematician would have a machine on his desk, all for himself,
on which he would write mathematics and which would verify his work.
But, by lack of experience in such matters, I expected that such machines
would be available in 5 years from then. But now, 23 years later, we are
not that far yet.

In many ways this dream is more exciting, since firstly it looks more feasible
and secondly it is something mathematicians and professionals working in related
fields can appreciate more. Although proof checkers have been extended by useful
extensions which allow for higher-level proofs, most notably by tactics which
allow to reduce many steps in a proof to a single user interaction, even 16 years
after de Bruijn’s retrospective we are still not there and mathematicians do not
widely use the corresponding systems. However, they can be used and some do
use them, most notably there is the Flyspeck Project [8] in which Hales (and
others) are formalizing his proof of the Kepler conjecture.

5 How to Make Systems more Accepted?

Systems which deal with proofs can be built for different purposes and differ-
ent purposes result in different requirements. Only some of them are currently
adequately supported by mathematical knowledge management systems. Let us
look at the most common purposes/contexts in which proofs are communicated:

Education: In an educational context proofs will be presented and/or jointly
developed in order to teach the concept. A teacher may want to teach how
to find a proof but more typically will teach how to write up a proof so that
it is of an acceptable standard. These are two different modes as Pólya [18,
p. vi], pointed out:

We secure our mathematical knowledge by demonstrative reasoning,
but we support our conjectures by plausible reasoning . . . Demon-
strative reasoning is safe, beyond controversy, and final. Plausible
reasoning is hazardous, controversial, and provisional. . . . In strict
reasoning the principal thing is to distinguish a proof from a guess,
a valid demonstration from an invalid attempt. In plausible reason-
ing the principal thing is to distinguish a guess from a guess, a more
reasonable guess from a less reasonable guess. . . . [plausible reason-
ing] is the kind of reasoning on which his [a mathematician’s] creative
work will depend.

Proof development: Here the scenario is that of a mathematician or a group
of mathematicians developing a proof. They do not know yet the details of
the proof (or even whether there is a proof), they may have some ideas which



may be vague and informal. A blackboard and a piece of chalk seem to be
the tools of choice and systems at best offer the functionality of a blackboard
and chalk. In Pólya’s words, the game is mainly about plausible reasoning
at this stage. The task of providing support is particularly challenging since
proof attempts, ideas, partial proof plans may have to be communicated.

Automation: If automation is the objective and proofs are found, automated
theorem provers typically can document a formal proof object which can be
independently checked. This object can be communicated.

Correctness: If correctness of arguments is sought then proofs must be check-
able. At a calculus level the different formal systems implemented allow this.
Human mathematicians, however, can check proofs at a less formal level.
Support at this level is still patchy, although important steps have been
made in an area which is labelled as the development of a mathematical ver-
nacular (going back to de Bruijn and the Automath project, and continued
by Nederpelt and Kamareddine [17]).

For any of the different activities there is the question: What kind of infor-
mation is necessary and how should it be represented?

A proof is an argument that should convince the reader (interpreter) of the
truth of a statement (certain axioms and assumptions given). That is, a proof is
a relationship between the argument and the reader, and the reader has to come
with some level of knowledge.

If we know a lot, then a proof can be more concise. If we know the theorem
already then we do not need to be convinced. If we know little, then we need a
detailed argument which convinces us beyond reasonable doubt (some may say
beyond any doubt) of the correctness of the theorem. In this respect a proof
is a proof only with respect to a receiver/reader. “Nothing can be explained
to a stone, the reader must understand something beforehand.” as McCarthy
formulated it (1964, p.7), quoted from [1, p.8] and analogously we can state that
“Nothing can be explained to God, since he understands everything beforehand.”
or as Ayer [3, p.85f] put it:

The power of logic and mathematics to surprise us depends, like their
usefulness, on the limitations of our reason. A being whose intellect was
infinitely powerful would take no interest in logic and mathematics. For
he would be able to see at a glance everything that his definitions im-
plied, and, accordingly could never learn anything from logical inference
which he was not fully conscious of already. But our intellects are not of
this order. It is only a minute proportion of the consequences of our defi-
nitions that we are able to detect at a glance. Even so simple a tautology
as “ 91×79 = 7189” is beyond the scope of our immediate apprehension.
To assure ourselves that “7189” is synonymous with “ 91× 79” we have
to resort to calculation, which is simply a process of tautological trans-
formation – that is, a process by which we change the form of expression
without altering their significance. The multiplication tables are rules
for carrying out this process in arithmetic, just as the laws of logic are



rules for the tautological transformation of sentences expressed in logical
symbolism or in ordinary language.

Typically, we are in between the stone and God: We know certain theorems
and proofs and are happy to accept certain arguments when they are mentioned
in a new proof and others not. We can fill in certain gaps, but not others. We
have intelligence which goes beyond checking substitutions and matching, which
can convince us that a theorem is really a theorem. A proof should give us a good
reason why we should not doubt the correctness of the theorem at an appropriate
level. Going back to a logic level proof is typically like being dragged on a level
on which we do not see the wood for the trees.

Indeed proofs come in various formats, they can be presented at different
levels of abstraction and can be quite different in style and details. In order to
represent and support them appropriately we need to know what they are needed
for and have to reflect the purpose and the level of understanding and knowledge
of the reader. The reader may know the proof already or know a similar proof
(and would be quite quick at understanding the new one). The reader may have
no intuition – possibly the statement is even counter intuitive – and would have
to check steps slowly and carefully. Or the reader may not be able to understand
the proof in a reasonable amount of time at all since they lack the corresponding
knowledge and would require a significant course in a whole field of mathematics
before they can appreciate the arguments.6

In a familiar area, mathematicians know which arguments to accept and
where to be careful. They are well aware of fallacies to avoid, that is, we have
positive and negative information at our disposal and avoid the fallacies as they
are described by Maxwell in [14]. Maxwell’s examples deal, for instance, with
non-apparent divisions by zero, with problems with integration by parts, and
with incorrectly drawn auxiliary diagrams in geometric proofs. Maxwell distin-
guishes between fallacies, where things go wrong on a deeper level (and proof
checking on a high-level may wrongly succeed) and howlers, where the incor-
rectness of the argument is apparent (and a wrong argument may still give the
correct result).

That the mathematical notion of a proof is subject to change, not strictly for-
mal, and not beyond doubt has most convincingly been described by Lakatos [13]
in an analysis of the history of the Euler polyhedron theorem, which had an ex-
citing history of proofs and subsequent counterexamples, which led to improved
proofs and more sophisticated counterexamples. This has not led to a general
distrust in proofs. Although the theorem is not central to mathematics, still –
as Hardy put it [9, § 12] – a mathematician offers the game, and a contradiction
may cast doubt on the correctness of mathematics as a whole. However, the
sequence of proof, counterexample, proof can be seen very much in the spirit of

6 Obviously the borders are not sharp. We may know a similar proof, and actually
we would not remember every single step. Having a good intuition, having some
intuition, and having no intuition, or a counter intuition is again fluid. The proof of
the Robbins problem was so hard for humans since they did not have an intuition
of the Robbins algebras.



the quote in section 3 of Bourbaki that “mathematicians have had the practice
of correcting their errors and thereby seeing their science enriched, not impov-
erished.”

Theorem proving and checking proofs is a social activity and in a highly
specialized society there are different reasons why we believe a theorem and its
proof. Only few will actually have the knowledge, the capacity, and the time
to understand complicated proofs like that of the Fermat-Wiles theorem or the
Kepler conjecture. Still most of us will accept that there are proofs and that
the theorems hold. The two theorems mentioned by Hardy, however, have much
simpler proofs and it belongs to the folklore to know their proofs.

We see that there is a broad spectrum of proofs. Typically natural language
in combination with diagrams is used to store and communicate proofs. Some
types of proof (formal logical proofs, some types of proof plans) can be repre-
sented in a format which is better suited to mechanical manipulation (e.g. to
proof checking) than natural language. Other types are still difficult to formalize.
Work on the mathematical vernacular is certainly useful in order to formalize
the variety of proofs. An advanced approach to understand informal proofs at
a linguistic level has been carried through by Zinn [25]. He analyzes the lin-
guistic structure of proofs and builds internal structures, which reflect the inner
logic of the proofs. This opens a way to understanding and checking informal
mathematical discourse.

6 Summary

Proofs come at different levels and with different intentions. They are written for
readers/checkers who/which must have certain competences. A human mathe-
matician who knows a theorem very well knows and can communicate proofs of
it at different levels: the gist of it, which allows other experts to reconstruct a full
proof, a proof plan for a less proficient reader/checker, and a low level proof for
a checker with little information in the field. Likewise an expert can understand
proofs on different levels.

A system that has deep knowledge about proofs would be able to link the
different levels. Achieving such a human level of expertise looks AI-hard un-
fortunately. On the other hand this has its attraction as Davis states, since
it “combines objectivity with creativity.” (Generalized) proof plans can offer a
framework which is general enough to capture the different levels. Linking differ-
ent levels and understanding different levels simultaneously will remain a hard
problem for some time, and proof will remain a colourful concept.
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