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Abstract. MKM has been defined as the quest for technologies to manatie ma
ematical knowledge. MKM “in the small” is well-studied, shetreal problem

is to scale up to large, highly interconnected corpora: “MigMhe large”. We
contend that advances in two areas are needed to reach #his/gmneed rep-
resentation languages that support incremental progee$ill primitive MKM
operations, and we need software architectures and implaans that imple-
ment these operations scalably on large knowledge bases.

We present instances of both in this paper: theframework for modular
theory-graphs that integrates meta-logical foundatiamsch forms the base of
the next OMDDc version; and TNTBase, a versioned storage system for XML-
based document formats. TNTBase becomes &t Matabase by instantiating
it with special MKM operations for MIT.

1 Introduction

[12] defines the objective of MKM to bt develop new and better ways of managing
mathematical knowledge using sophisticated softwarestud later states the “Grand
Challenge of MKM” asa universal digital mathematics library (UDMLyvhich is in-
deed a grand challenge, as it envisions that the UD&dluld continuously grow and
in time would contain essentially all mathematical knowledvhich is estimated to
be well in excess of0” published pages.All current efforts towards comprehensive
machine-organizable libraries of mathematics are at st orders of magnitude
smaller than the UDML envisioned by Farmer in 2004: Forntaldiies like those of
Mizar ([33), Isabelle (R6]) or PVS ([25)) have cal0** statements (definitions and the-
orems). Even the semi-formal, commercial Wolfram Math\Warhich hails itselfthe
world’s most extensive mathematics resowndy has10! entries. There is anecdotal
evidence that already at this size, management procedwegtraggling.

To meet the MKM Grand Challenge will have to develop fundatanmore scal-
able ways of dealing with mathematical knowledge, esplgcsihce [L2] goes on to
postulate that the UDMlwould also be continuously reorganized and consolidated as
new connections and discoveries were matlearly this can only be achieved algo-
rithmically; experience with the libraries cited aboveealdy show that manual MKM

* The final publication of this paper is available at www.spgarink.com.
! For instance, Zentralblatt Math contains 2.4 million asts of articles form mathematical
journals in the last 100 years.
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does not scale sufficiently. Most of the work in the MKM comrityihas concentrated
on what we could call “MKM in the small”, i.e. dealing with asgts of MKM that do
not explicitly address issues of very large knowledge ctilbas; these we call “MKM
in the large”.

In this paper we contribute to the MKM Grand Challenge of ddiormal “MKM
in the large” by analyzing scalability challenges inherenMKM and propose steps
towards solutions based on oumt format, which is the basis for the next version of
OMDoc. We justify our conclusions and recommendations for sdithabechniques
with concrete case studies we have undertaken in the last.y@ectior? tackles scal-
ability issues pertaining to the representation languagesl in the formalization of
mathematical knowledge. SectiBmliscusses how the modularity features afiMcan
be realized scalably by realizing basic MKM functionalitigel validation, querying,
and presentation incrementally and carefully evaluatiegin-the-fly computation (and
caching) of induced representations. These considegtidrich are mainly concerned
with efficient computation “in memory” are complementedat discussion of mass
storage, caching, and indexing in Sectigrwhich addresses scalability issues in large
collections of mathematical knowledge. Sectbuooncludes the paper and addresses
avenues of further research.

2 A Scalable Representation Language

Our representation languageMut was introduced in49. It arises from three cen-
tral design goals. Firstly, it should provide an expresbinesimplemodule systemas
modularity is a necessary requirement for scalability. Agal in language design, the
goals of simplicity and expressivity form a difficult tradé-that must be solved by
identifying the right primitive module constructs. Secbndcalability across semantic
domains requirefoundation-independencein the sense that MT does not commit
to any particular foundation (such as Zermelo-Fraenketrssiry or Church’s higher-
order logic). Providing a good trade-off between this lexfajenerality and the ability
to give a rigorous semantics is a unique feature ofitM Finally, scalability across
implementation domains requiregandards-compliance and while using XML and
OPENMATH is essentially orthogonal to the language design, the ubiRtd as iden-
tifiers is not as it imposes subtle constraints that can bgherd to meet a posteriori.

MMT represents logical knowledge on three levels: Onrtigglule leve] MMT
builds on modular algebraic specification languages fackidgnowledge such as OBJ
[14], ASL [32], development graphd4], and CASL [7]. In particular, MMT uses theo-
ries and theory morphism as the primitive modular concéptsitrary to them, NMIT
only imposes very lightweight assumptions on the undeglj@mguage. This leads to a
very simple generic module system that subsumes almostadicés of the syntax and
semantics of specific module systems such as P8} [sabelle p6], or Coq [3].

On thesymbol level MMT is a simple declarative language that uses named sym-
bol declarations where symbols may or may not have a type efiniens. By experi-
mental evidence, this subsumes virtually all declaratwveglages. In particular, ir
uses the Curry-Howard correspondert& 7] to represent axioms and theorem as con-



stants, and proofs as terms. Sets of symbol declaratiotgsthieories and correspond
to OPENMATH content dictionaries.

On theobject level MMT uses the formal grammar of (BNMATH [6] to rep-
resent mathematical objects without committing to a speéifimal foundation. The
semantics of objects is given proof theoretically usingyjménts for typing and equal-
ity between objects. MT is parametric in these judgments, and the precise choice is
relegated to doundation.

2.1 Module System

Sophisticated mathematical reasoning usually involvesrsgérelated but different math-
ematical contexts, and it is desirable to exploit thesdiggiahips by moving theorems
between contexts. It is well-known that modular design @uce space to an extent
that is exponential in the depth of the reuse relation betviiee modules, and this ap-
plies in particular to the large theory hierarchies emptbhpenathematics and computer
science.

The first applications of this technique in mathematics atenél in the works by
Bourbaki (§,5]), which tried to prove every theorem in the context with #meallest
possible set of axioms. MT follows the “little theories approach” proposed ], in
which separate contexts are represented by sepduedeies and structural relation-
ships between contexts are representati@sry morphisms, which serve as conduits
for passing information (e.g., definitions and theoremdjyvben theories (se€l()).
This yieldstheory graphs where the nodes are theories and the paths are theory mor-
phisms.

Example 1 (Algebra)For example, consider the theory graph in Figor a portion
of algebra, which was formalized in Mr in [9]. It defines the theory of magmas (A
magma has a binary operation without axioms.) and extesdsdessively to monoids,
groups, and commutative groups. Then the theory of ringsriméd by importing from
bothCGroup (for the additive operation) antbnoid (for the multiplicative operation).

A crucial property here is that the imports are named, 8ghpid imports from
Magma via an import namedag. While redundant in some cases, it is essentialiing
where we have to distinguish two theory morphisms fitenoid to Ring: The com-
positionadd/grp/mon for the additive monoid andult for the multiplicative monoid.

The import names are used to form qualified names for the iteg@ymbols. For
example, ifx is the name of the binary operationlagna, thenadd/grp/mon/mag/*
denotes addition angult/mag/+ multiplication inRing. Of course, MAT supports
the use of abbreviations instead of qualified names, butatdeucial prerequisite for
scalability to make qualified names the default: Without edimports, every time we
add a new name ilagnma (e.g, for an abbreviation or a theorem), we would have to add
corresponding renamings Ring to avoid name clashes.

Another reason to use named imports is that we can use thamstémtiate imports
with theory morphisms. In our example, distributivity ietstd separately as a theory
that imports two magmas. Let us assume, the left distriltytaxiom is stated as

Va,y, z.x magl/* (y mag2/x z) = (r magl/* y) mag2/x (r magl/x 2)



Then the importdist from Distrib to Ring will carry the instantiationsagi +—
mult/mag andmag2 — add/grp/mon/mag.

In other module systems such as SML, such instantiationsadied (asymmetric)
sharing declarations. In terms of theory morphism, theinastics is a commutative
diagram, i.e., an equality between two morphisms suahias /magl = mult/mag :
Magma — Ring. This provides MiT users and systems with a module level invariant
for the efficient structuring of large theory graphs.

Besides imports, which induce theory morphisms into theéaioing theory, there
is a second kind of edge in the theory graph: Views are explieory morphisms that
represent translations between two theories. For exari@eyode on the right side of
the graph represents a theory for the integers, say degldwgéconstants, +, —, 1, and
-. The fact that the integers are a commutative group is repted by the view1: If
we assume thatonoid declares a constaator the unit element an@roup a constant
inv for the inverse element, thern carries the instantiationgrp/mon/mag/* — +,
grp/mon/e — 1, andgrp/inv — —. Furthermore, every axiom declared or imported
in CGroup is mapped to a proof of the corresponding property of theers

The viewv2 extendss1 with corresponding instantiations for multiplication Mt
permits modular views as well: When defining, we can import all instantiations of
v1 usingadd — v1. As above, the semantics of such an instantiation is a coativet
diagram, namely2 o add = v1 as intended.

The major advantage of modu- Magma i Monoid 222 Group & CGroup

lar design is that every declaration
— abbreviations, theorems, nota-mag1 | | mag2 mult
tions etc. — effecténduced dec-

larations in the importing theo- Distrib — > Ring =2 Integers
ries. A disadvantage is that decla- dist
rations may not always be located Fig. 1. Algebraic Hierarchy

easily, e.g., the additionin aring is

declared in a theory that is four imports awaymvi finds a compromise here: Through
qualified names, all induced declarations are addressabldogatable. The process
of removing the modularity by adding all these induced datians to all theories is
calledflattening.

Case Study 1The formalization in §] uses the Twelf module systen8(]), which
is a special case of MT. Twelf automatically computes the flattened theory grapte T
modular theory graph including all axioms and proofs can Ioigem in 180 lines of
Twelf code. The flattened graph is computed in less than ha#ficand and requires
more than 1800 lines.

The same case study defines two theories for lattices, oresl lmsorderings and
one based on algebra, and gives mutually inverse views tephe equivalence of the
two theories. Both definitions are modular: Algebraic 8 arise by importing twice
from the theory of semi-lattices; order-based latticesealdy importing the infimum
operation twice, once for the ordering and once for its dGahsequently, the views
can be given modularly as well, which is particularly imp@mtt because views must
map axioms to expensive-to-find proofs. These additionabdations take 310 lines of
Twelf in modular and 3500 lines in flattened form.



These numbers already show the value of modularity in reptason already in
very small formalizations. If this is lacking, later stepil face severe scalability prob-
lems from blow-up in representation. Here, the named ingpeftMMT were the crucial
innovation to strengthen modularity.

2.2 Foundation-Independence

Mathematical knowledge is described using very differenindations, and the most
common foundations can be grouped into set theory and tygmeythwithin each group
there are numerous variants, e.g., Zermelo-Fraenkel dielZ®ernays set theory, or
set theories with or without the axiom of choice. Theref@esingle representation
language can only be adequate if it is foundation-indepeinde

OPENMATH and OMDoc achieve this by concentrating on structural issues and
leaving lexical ones to an external definition mechanisra tikntent dictionaries or
theories. In particular, this allows us to operate withcubasing a particular founda-
tional logical system, as we can just supply content dietites for the symbols in the
particular logic. Thus, logics and in the same way foundegtizecome theories, and we
speak of thdogics-as-theorieapproach.

But conceptually, it is helpful to distinguish levels hefe. state a property in the
theoryCGroup like commutativity of the operation := grp/mon/mag/+ asVa, b.a o
b = b o a, we use symbols and= from first-order logic together with from CGroup.
Even though it is structurally possible to build algebraiedries by simply importing
first-order logic, this would fail to describe the meta-tielaship between the theories.
But this relation is crucial, e.g., when interpreti@group in the integers, the symbols
of the meta-language are not interpreted because a fixagiatation is given in the
context.

To understand this example better, we use M&l' notation for meta-languages.
M/T refers to working in the object languagé which is defined within the meta-
languagel/. For example, most of mathematics is carried oL /ZF, i.e., first-
order logic is the meta-language, in which set theory is @efif' O L itself might be
defined in a logical framework such &¢", and withinZ F', we can define the language
of natural numbers, which yieldsF/FOL/ZF/Nat. For algebra, we obtain, e.g.,
FOL/Magma. MMT makes this meta-relation explicit: Every thedfymay point to
another theon/ as its meta-theory. We can write this®s\VT/(M/T).

In Fig. 2, the algebra example is ex
tended by adding meta-theories. The th

U
1

LF H Isabelle

ory FOL for first-order logic is the meta-
theory for all algebraic theories, and the met7/ weta
theoryLF for the logical framework LF is
the meta-theory of 0L and of the theory FOL ——> HOL

HOL for higher-order logic.
. meta
Now the crucial advantage of the met
logics-as-theories approach is that on all y,, iq ™ 1t Ring
three levels the same module system can

be used: For example, the viewsandm’ Fig. 2. Meta-Theories
indicate possible translations on the levels




of logical frameworks and logics, respectively. Similatbgics and foundations can be
built modularly. Thus, we can use imports to represent iitdnece at the level of logical

foundations and views to represent formal translations/éen them. Just like in the
little theories approach, we can prove meta-logical resultthe simplest foundation
that is expressive enough and then use views to move restMeén foundations.

Example 2 (Little Logics and Little Foundations$j. [15], we formalize the syntax,
proof theory, and model theory and prove the soundness tofider logic in MMT.
Using the module system, we can treat all connectives anctifjees separately. Thus,
we can reuse these fragments to define other logics, ant8jiwje do that, e.g., for
sorted first-order logic and modal logic.

For the definition of the model theory, we need to formalizetseory in MMT,
which is a significant investment, and even then doing primogst theory — as needed
for the soundness proof — is tedious. Therefore lig],[we develop the set theoretical
foundation itself modularly. We define a typed higher-orlbgic HOL first, which is
expressive enough for many applications such as the abavelsess proof. Then a
view fromHOL to ZF proves thatF is a refinement ofiOL and completes the proof of
the soundness of FOL relative to models definedFn

Case Study 2Ex. 2 already showed that it is feasible to represent foundations
and relations between foundations invivl. Being able to this is a qualitative aspect
of cross-domain scalability. In another case study, weesgmtedL F'/ I sabelle and
LF/Isabelle/ HOL ([26,23]) as well as a translation from them infd?/ FOL/Z FC
(see [L8]).

To our knowledge, N1T is the only declarative formalism in which comparable
foundation or logic translations have been conducted. its KJ21]) a number of logic
translations are implemented in Haskell. Twelf and Delphiovide logic and func-
tional programming languages, respectively, on top of LF,g8]), which have been
used to formalize the HOL-Nuprl translatior2d]).

2.3 Symbol Identifiers “in the Large”

In mathematical languages, we need to be able to refer tpiientify) content objects
in order to state the semantic relations. It was a somewptising realization in the
design of MMT that to understand the symbol identifiers is almost as diffizs to
understand the whole module system. Theories are congdmresymbol declarations,
and relations between theories define the available synibalsy given theory. Since
every available symbol should have a canonical identiffer,syntax of identifiers is
inherently connected to the possible relations betweerride

In principle, there are two ways to identify content objdwmt:location (relative to
a particular document or file) arity context (relative to a mathematical theory). The
first one essentially makes use of the organizational streaf files and file systems,
and the second makes use of mathematical structuring pléscsupplied by the repre-
sentation format.

As a general rule, it is preferable to use identification bytegt as the distribution
of knowledge over file systems is usually a secondary coredida. Then the mapping



between theory identifiers and physical theory locatiomstEadeferred to an extralin-
guistic catalog. Resource identification by context shatiltlbe compatible with the
URI-based approach that mediates most resource transgarttee internet. This is
common practice in scalable programming languages suadvasvhere package iden-
tifiers are URIs and classes are located using-thesspath.

For logical and mathematical knowledge, theeEdMATH 2 standard @]) and the
current OMDoc version 1.2 define URIs for symbols. A symbol is identified bg t
symbol name and content dictionary, which in turn is ideadifby the CD name and
the CD base, i.e., the URI where the CD is located. From thesstituents, symbol
URIs are formed using URI fragments (the part after the #aiédi). However, @EN-
MATH imposes a one-CD-one-file restriction, which is too rettécn general. While
OMDocl.2 permits multiple theories per file, it requires file-umégdentifiers for all
symbols. In both cases, the use of URI fragments, which aved only on the client,
forces clients to retrieve the complete file even if only ay@rsymbol is needed.

Furthermore, many module systems have features that inggedenplicate the for-
mation of canonical symbol URIs. Such features include ometimports, unnamed
axioms, overloading, opening of modules, or shadowing aflsyl names. Typically,
this leads to a non-trivial correspondence between usdnigiand application-internal
identifiers. But this impedes or complicates cross-apfticascalability where all ap-
plications (ranging from, e.g., a Javascript GUI to a dasali@mckend) must understand
the same identifiers.

MmMmT avoids the above pitfalls and introduces a simple yet espresveb-scalable
syntax for symbol identifiers. An MT-URI is of the formdoc?mod?sym where

— docis a URIwithoutquery or fragment,e.¢ottp://cds.omdoc.org/math/algebra/algegral . omdo
which identifies (but not necessarily locates) amMdocument,
— mod is a/-separated sequence of local names that gives the path sbealribeory
in the above document, e.g@4ing,
— sym is a /-separated sequenéep;/ ... /imp,/con of local names such that
imp; is an import and:on a symbol name, e.goplt/mon/x,
— alocal name is of the formchar™ wherepchar is defined as in RFC 398&],
which — possibly via %-encoding — permits almost all Unicati@aracters.

In our running example, the canonical URI of multiplicatiora ring ishttp: //cds.omdoc.org/math/algel
Note that the use of twa characters in a URI is unusual outside ofV, but le-
gal w.rt. RFC 3986. Of course, Mir also defines relative URIs that are resolved
against the URI of the containing declaration. The most ingd case is whedoc
is empty. Then the resolution proceeds as in RFC 3986, ®&mpd’ ?sym’ resolves to
doc?mod'?sym’ relative todoc?mod?sym (Note that this differs from RFC 2396.).
MMT defines some additional cases that are needed in mathehpaiticiice and go
beyond the expressivity of relative URIs: Relativedt@:?mod?sym, the resolution of
??sym’ and?/mod'?sym’ yields doc?mod?sym’ anddoc?mod/mod’?sym’, respec-
tively.

Case Study 3URIs are the main data structure needed for cross-apjplicatiala-
bility, and our experience shows that they must be impleetby almost every periph-
eral system, even those that do not implementiMtself. Already at this point, we had
to implement them in SML 31]), Javascript (L3]), XQuery ([39]), Haskell (for Hets,
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[21]), and Bean Shell (for a jEdit plugin) — in addition to the &chased reference
API (Sect.3).

This was only possible becauseMWl-URIs constitute a well-balanced trade-off
between mathematical rigor, feasibility, and URI-comipidity: In particular, due to the
use of the two separatofsand? (rather than only one), they can be parsed locally, i.e.,
without access to or understanding of the surroundingrMiocument. And they can
be dereferenced using standard URI libraries and URI-URhdliations. At the same
time, they provide canonical names for all symbols that arscope, including those
that are only available through imports.

3 A Scalable Implementation

As the implementation language for theviWl reference API, we pick Scala, a program-
ming language designed to bealable ([24]). Being functional, Scala permits elegant
code, and based on and fully compatible with Java, it offesssapplication and web-
level scalability.

The MMT API implements the syntax and semantics oM It compiles to a
1 MB Java archive file that can be readily integrated into igptibns. Library and
documentation can be obtained froB@]. Two technical aspects are especially notable
from the point of view of scalability. Firstly, all MT functionality is exposed to non-
Java applications via a scriptable shell and via an HTTPleser8econdly, the API
maintains an abstraction layer that separates the backieatphysically store MIT
documents (URLSs) from the documentidentifiers (URIs). Thtus configurable which
MmMT documents are located, e.g., in a remote database or oncididile system. In
the following section we describe some of the advanced festu

3.1 Validation

Validation describes the process of checkingnMtheory graphs against the Wt
grammar and type system.\Wr validation is done in three increasingly stratages

The first stage is XML validation against a context-free RN@ grammar. As this
only catches errors in the surface syntaxydocuments are validateddructurally
in a second stage. Structural validity guarantees thaealbdations have unique URIs
and that all references to symbols, theories, etc. can lmdvess This is still too lax
for mathematics as it lacks type-checking. But it is exatltky right middle ground
between the weak validation against a context-free gramandrthe expensive and
complex validation against a specific type system: On thehamal, it is efficient and
foundation-independent, and on the other hand, it provadesvariant that is sufficient
for many MKM services such as storage, navigation, or search

Type-checking is foundation-specific, therefore each flation must provide an
MmMmT plugin that implements the typing and equality judgmentsréprecisely, the
plugin must provide function that (semi-)decide for twoeagitermsA and B over a
theoryT, the judgments+ A = B and-1 A : B. Given such a plugin, a third valida-
tion stage can refine structural validity by additionallyidating well-typedness of all



declarations. For scalability, it is important that (i) seeplugins are stateless as the the-
ory graph is maintained by MT, and that the (ii) modular structure is transparent to the
plugin. Thus plugin developers only need to provide the etgerithms for the specific
type system, and all MKM issues can be relegated to dedigaifglé mentations.

Context-free validation is well-understood. MoreovemnMis designed such that
foundation-specific validation is obtained from structwalidation by using the same
inference system with some typing and equality constraidded. This leaves structural
validation as the central issue for scalability.

Case Study AVe have implemented structural validation by decomposinigl s T
theory graph into a list of atomic declarations. For example declaratiol” = {s; :

71, S2 : T2} Of a theoryT with two typed symbols yields the atomic declarations
T ={},T7s1 : 7,andT?sz : 7o. This “unnesting” of declarations is a special property
of the MMT type system that is not usually found in other systems. lbssible because
every declaration has a canonical URI and can thereforddea @ut of its context.

This is important for scalability as it permitscremental processing. In particu-
lar, large MuT documents can be processed as streams of atomic declard&tiother-
more, the semantics of MiT guarantees that the processing order of these streams never
matters if the (easily-inferrable) dependencies betweetadations are respected. This
would even permit parallel processing, another prereguisr scalability.

3.2 Querying

Once a theory graph has been readsMprovides two ways how to access it:Mv-
URI dereferencing and querying with respect to a simplelogio

Firstly, a theory graph always has two forms: the modulamfarere all nodes are
partial theories whose declarations are computed usingritsyand the flattened form
where all imports are replaced with translated copies oftip®rted declarations. Many
implementations of module systems, e.g., Isabelle’s &salutomatically compute the
flat form and do not maintain the modular form. This can be aahto scalability as it
can induce combinatorial explosion.

MMT maintains only the modular form. However, as every dedlamgbresent in
the flat form has a canonical URI, the access to the flat fornoésiple via MuT-URI
dereferencing: Dereferencing computes (and caches) theeén declarations present
in the flat form. Thus, applications can ignore the modularcstire and interact with a
modular theory graph as if it were flattened, but the expaakyexpensive flattening
is performed transparently and incrementally.

Secondly, the APl computes the ABox of a theory graph witlpeesto the MaT
ontology. It has MAT-URIs as individuals and 10 types likeheory or symbol as
unary predicates. 11 binary predicates represent refabietween individuals such as
HasDomain relating an import to a theory ¢tasOccurrenceOfInType relating
two symbols. These relations are structurally complete: Sthucture of a theory graph
can be recovered from the ABox. The computation time is gdgé as it is a byproduct
of validation anyway.

The API includes a simple query language for this ontologgan compute all
individuals in the theory graph that are in a certain refativ a given individual. The
possible queries include composition, union, transitlesure, and inverse of relations.



The ABox can also be regarded as the resultafipiling an MMT theory graph.
Many operations on theory graphs only require the ABox: fameple the computa-
tion of the forward or backward dependency cone of a dedtarathich are needed to
generate self-contained documents and in change manageespgectively. This is im-
portant for cross-application scalability because apfibims can parse the ABox very
easily. Moreover, we obtain a notion séparate compilation ABox-generation only
requires structural validity, and the latter can be impleted if only the ABoxes of the
referenced files are known.

Case Study 5Since all MMT knowledge items have a globally uniquevvl-URI,
being able to dereference them is sufficient to obtain cotapldormation about a
theory graph. We have implemented a web servlet fantMhat can act as a local
proxy for MMT-URIs and as a URI catalog that mapsivtURIs into (local or remote)
URLs. The former means that allir-URIs are resolved locally if possible. The latter
means that the MT-URI of a module can be independent from its physical locatio
The same servlet can be run remotely, e.g., on the same neaghia mathematical
database and configured to retrieve files directly from tbefeom other servers.

Thus systems can access all their input documents by URllg@ahservice, which
makes all storage issues transparent. (Using presentagenbelow, these can even
be presented in the system’s native syntax.) This solves@atgroblem in current
implementations of formal systems: the restriction to iemory knowledge. Besides
the advantages of distributed storage and caching, a siemplaple application is that
imported theories are automatically included when remotuthents are retrieved in
order to avoid successive lookups.

3.3 Presentation

MmMT comes with a declarative language for notations similad &) fhat can be used
to transform MJT theory graphs into arbitrary output formats. Notationsdeelared
by giving parameters such as fixity and input/output presedeand snippets for sep-
arators and brackets. Notations are not only used for magttiemhobjects but also for
all MMT expressions, e.g. theory declarations and theory graphs.

Two aspects are particularly important for scalabilitysHy, sets of notations (called
styled behave like theories, which are sets of symbols. In pdeticstyles and notations
have MVT-URIs (and are part of the MT ontology), and the MiT module system can
be used for inheritance between styles.

Secondly, every MiT expression has a URK, for declarations this is trivial, for
most mathematical objects it is the URI of the head symbotr&apondingly, every
notation must give an MT-URI N, and the notation is applicable to an expression if
N is a prefix ofE. More specific notations can inherit from more general oegs, the
brackets and separators are usually given only once in tist gemeral notation. This
simplifies the authoring and maintenance of styles for [#ingery graphs significantly.

Case Study 6In order to present MT content as, e.g., HTML with embedded
presentation MTHML, we need a style with only the 20 generic notations given in
http://alpha.tntbase.mathweb.org/repos/cds/omdoc/mathml.omdoc.
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For example, the notation declara= :
. . . <notation for="http://cds.omdoc.org/"
tion on the right applies to all con- role="constant">
stants whosedbase starts withht tp : / / cds SORERSE nafeg o>

<attribute mame="xref">
and render®Ms elements aso elements. <text value="#"/><id/>
The latter has axref attribute that links ~ </attrivutes a2 /< ot
to the parallel markup (which is included by <,ci1ement> °
notations at higher levels). The content of thg/notation>
mo elements is a “hole” that is by default filled with the secoldnponent, for con-
stants that is the nameé &nd1 arecdbase andcd.).

This scales well because we can give notations for specéirids, e.g., by saying
that?Magma?« is associative infix and optionally giving a different operasymbol
thanx. We can also add other output formats easily: Our implentiemtgsee 18])
extends the above notation withjabad : hre £ attribute containing the MT-URI —

this URI is picked up by our JOBAD Javascrip1§) for hyperlinking.

4 A Scalable Database

The TNTBase systenBf] is a versioned XML-database with a client-server architec
ture. It integrates Berkeley DB XML into a Subversion ser@8 XML stores HEAD
revisions of XML files; non-XML content like PDF, images éiX source files, dif-
ferences between revisions, directory entry lists andratiygository information are
retained in a usual SVN back-end storage (Berkeley DB in asex Keeping XML
documents in DB XML allows accessing files not only via any Swliént but also
through the DB XML API that supports efficient querying of XMiontent via XQuery
and (versioned) modification of that content via XQuery Upda

In addition, TNTBase provides a plugin architecture foruaoent format-specific
customizations35]. Using OMDoc as concrete syntax for Mt and the MaT API as
a TNTBase plugin, we have made TNTBas&Maware so that data-intensivent
algorithms can be executed within the database.

The TNTBase system and its documentation are availahletab: / /tntbase.org.
Below we describe some of the features particularly relef@rscalability.

4.1 Generating Content

Large scale collaborative authoring of mathematical dasnishrequireglistributed
andversionedstorage. On the language endMWl supports this by making all iden-
tifiers URIs so that MiT documents can be distributed among authors and networks
and reference each other. On the database end, TNTBasersuihi® by acting as a
versioned MAT database.

In principle, versioning and distribution could also belizsd with a plain SVN
server. But for mathematics, it is important that the sterbdgckend is aware of at
least some aspects of the mathematical semantics. In leaige @uthoring processes,
an important requirement is to guarantee consistencyitishiould be possible to reject
commits of invalid documents. Therefore, TNTBase supmtaiment format-specific
validation.


http://cds.omdoc.org/
http://tntbase.org

For scalability, it is crucial that validation of interliekd collections of MaT docu-
ments igncremental, i.e., only those documents added or changed during a coanenit
validated. This is a significant effect because the comthiftecuments almost always
import modules from other documents that are already in #ét@xhse, and these should
not be revalidated — especially not if they contain unnemgssodules that introduce
further dependencies.

Therefore, we integrate MT separate compilation into TNTBase. During a com-
mit TNTBase validates all committed files structurally byliog the MMT API. After
successful validation, the ABox is generated and immelgiatered in TNTBase. Ref-
erences to previously committed files are not resolvedeatstheir generated ABox is
used for validation. Thus, validation is limited to the coitied documents.

Case Study 7In the LATIN project [L8], we create an atlas of logics and logic
translations formalized in MT. At the current early stage of the project 5 people are
actively editing so far about 100 files. These contain ab0attkeories and 50 views,
which form a single highly inter-linked MT theory graph. We use TNTBase as the
validity-guaranteeing backend storage.

The LATIN theory graph is highly modular. For example, the documerihgithe
set-theoretical model theory of first-order logic frofr6] depends on about 100 other
theories. (We counted them conveniently using an XQuegybstow.) Standalone vali-
dation of this document takes about 15 seconds if neededf#e®trieved from a local
file system. Using separate compilation in TNTBase, it iscahinstantaneous.

In fact, we can configure TNTBase so that structural valadets preceded by Re-
laxNG validation. This permits the MT application to drop inefficient checks for syn-
tax errors. Similarly, structural validation could be prded by foundation-specific val-
idation, but often we do not have a well-understood notiogagfarate compilation for
specific foundations. But even in that case, we can do béttar haive revalidation.
MMT is designed so that it is foundation-independent which resda given document
depends on. Thus, we can collect these modules in one dotwsiey an efficient
XQuery (see below) and then revalidate only this documerdreldver, we can use
the presentation algorithm from Se8t3to transform the generated document into the
input syntax of a dedicated implementation.

4.2 Retrieving Content

While the previous section already showed some of the diieoigan MvT-aware
TNTBase, its true strength lies in retrieving content. AerguXML-native database,
TNTBase supports XQuery but extends the DB XML syntax by gomadf file system
path to address path-based collections of documents. dfartre, it supports index-
ing to improve performance of queries and the querying ofiptes revisions. Finally,
custom XQuery modules can be integrated into TNTBase.

MmT-aware retrieval is achieved through two measures. FiréiBox caching
means that for every committed file, themMl ABox is generated and stored in TNT-
Base. The ABox contains only two kinds of declarations —anses of unary and
binary predicates — and is stored as a simple XML documerg. dilment types in
these documents aiedexed which yields efficient global queries.



Example 3.An MMT document for the algebra example from Setfl is served at
http://alpha.tntbase.mathweb.org/repos/cds/maitibatgalgebral.omdodts ABox is cached
at http://alpha.tntbase.mathweb.org:8080/tntbasefestsiil/integration/validation/mmt/content/
math/algebra/algebral.omdoc

Secondly, custonXQuery functions utilize the cached and indexed ABoxes to
provide efficient access to frequently needed aggregatedndents. These include in
particular the forward and backward dependency cones of @duteoThe backward
dependency cone of a modulé is the minimal set of modules needed to make
well-formed. Dually, the forward cone contains all modutest needV/. If it were not
for the indexed ABoxes, the latter would be highly expensiveompute: linear in the
size of the database.

Case Study 8The MMT presentation algorithm described in S&&Btakes a set
of notations as input. However, additional notations maygiken in imported theories,
typically format-independent notations such as the onemgaklagma?« infix. There-
fore, when an MiT expression is rendered, all imported theories must bersaddor
the sole reason of obtaining all notations.

Without MMT awareness in TNTBase, this would require multiple suceesgieries
which is particularly harmful when presentation is exeddteally while the imported
theories are stored remotely. But even when all theorieseaable on a local disk,
these successive calls already take 1.5 seconds for the algebra document. (Once
the notations are retrieved, the presentation itself iimtaneous.)

In MMT-aware TNTBase, we can retrieve all notations in the bacthdapendency
closure of the presented expression with a single XQuenoxARdexing made this
instantaneous up to network lag.

TNTBase does not only permit the efficient retrieval of sueherated documents,
but it also permits to commit edited versions of them. We ttedbevirtual documents
in [35]. These are essentially “XML database views” analogouddws in relational
databases. They are editable, and TNTBase transparemtlygsahe differences into
the original files in the underlying versioning system.

Case Study 9While manual refactoring of large theory graphs is as diffias
refactoring large software, there is virtually no tool saggor it. For MMT, we obtain
a simple renaming tool using a virtual document for the aeg-§i.e., non-transitive)
forward dependency cone of a thedfy(see B5| for an example). That contains all
references t@” so thatT’ can be renamed and all references modified in one go.

5 Conclusion and Future Work

This paper aims to pave the way for MKM “in the large” by projpgsa theoretical and
technological basis for a “Universal Digital Mathematidbrary” (UDML) which has
been touted as the grand challenge for MKM. In a nutshell, eveeluide that the prob-
lem of scalability has be to addressed on all levels: we nesdttarity and accessibility
of induced declarations in the representation formatemeantality and memoization
in the implementation of the fundamental algorithms, andaasystorage solution that



supports fragment access and indexing. We have developgatypical implementa-
tions and tested them on a variety of case studies.

The next step will be to integrate the parts and assemble a lUiDMallation with
these. We plan to use the next generation of the Qi iEormat, which will integrate
the MMT infrastructure described in this paper as an interability layer; seeZ(] for
a discussion of the issues involved. In the last years, we taveloped OMDc trans-
lation facilities for various fully formal theorem provirgystems and their libraries.
In the LATIN project [L8], we are already developing a graph of concrete “logics-as-
theories” to make the underlying logics interoperable.
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