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Abstract. MKM has been defined as the quest for technologies to manage math-
ematical knowledge. MKM “in the small” is well-studied, so the real problem
is to scale up to large, highly interconnected corpora: “MKMin the large”. We
contend that advances in two areas are needed to reach this goal. We need rep-
resentation languages that support incremental processing of all primitive MKM
operations, and we need software architectures and implementations that imple-
ment these operations scalably on large knowledge bases.
We present instances of both in this paper: the MMT framework for modular
theory-graphs that integrates meta-logical foundations,which forms the base of
the next OMDOC version; and TNTBase, a versioned storage system for XML-
based document formats. TNTBase becomes an MMT database by instantiating
it with special MKM operations for MMT.

1 Introduction

[12] defines the objective of MKM to beto develop new and better ways of managing
mathematical knowledge using sophisticated software toolsand later states the “Grand
Challenge of MKM” asa universal digital mathematics library (UDML), which is in-
deed a grand challenge, as it envisions that the UDMLwould continuously grow and
in time would contain essentially all mathematical knowledge, which is estimated to
be well in excess of107 published pages.1 All current efforts towards comprehensive
machine-organizable libraries of mathematics are at leastthree orders of magnitude
smaller than the UDML envisioned by Farmer in 2004: Formal libraries like those of
Mizar ([33], Isabelle ([26]) or PVS ([25]) have ca.104.x statements (definitions and the-
orems). Even the semi-formal, commercial Wolfram MathWorld which hails itselfthe
world’s most extensive mathematics resourceonly has104.1 entries. There is anecdotal
evidence that already at this size, management procedures are struggling.

To meet the MKM Grand Challenge will have to develop fundamentally more scal-
able ways of dealing with mathematical knowledge, especially since [12] goes on to
postulate that the UDMLwould also be continuously reorganized and consolidated as
new connections and discoveries were made. Clearly this can only be achieved algo-
rithmically; experience with the libraries cited above already show that manual MKM

⋆ The final publication of this paper is available at www.springerlink.com.
1 For instance, Zentralblatt Math contains 2.4 million abstracts of articles form mathematical

journals in the last 100 years.
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does not scale sufficiently. Most of the work in the MKM community has concentrated
on what we could call “MKM in the small”, i.e. dealing with aspects of MKM that do
not explicitly address issues of very large knowledge collections; these we call “MKM
in the large”.

In this paper we contribute to the MKM Grand Challenge of doing formal “MKM
in the large” by analyzing scalability challenges inherentin MKM and propose steps
towards solutions based on our MMT format, which is the basis for the next version of
OMDOC. We justify our conclusions and recommendations for scalability techniques
with concrete case studies we have undertaken in the last years. Section2 tackles scal-
ability issues pertaining to the representation languagesused in the formalization of
mathematical knowledge. Section3 discusses how the modularity features of MMT can
be realized scalably by realizing basic MKM functionality like validation, querying,
and presentation incrementally and carefully evaluating the on-the-fly computation (and
caching) of induced representations. These considerations, which are mainly concerned
with efficient computation “in memory” are complemented with a discussion of mass
storage, caching, and indexing in Section4, which addresses scalability issues in large
collections of mathematical knowledge. Section5 concludes the paper and addresses
avenues of further research.

2 A Scalable Representation Language

Our representation language MMT was introduced in [29]. It arises from three cen-
tral design goals. Firstly, it should provide an expressivebut simplemodule systemas
modularity is a necessary requirement for scalability. As usual in language design, the
goals of simplicity and expressivity form a difficult trade-off that must be solved by
identifying the right primitive module constructs. Secondly, scalability across semantic
domains requiresfoundation-independencein the sense that MMT does not commit
to any particular foundation (such as Zermelo-Fraenkel settheory or Church’s higher-
order logic). Providing a good trade-off between this levelof generality and the ability
to give a rigorous semantics is a unique feature of MMT. Finally, scalability across
implementation domains requiresstandards-compliance, and while using XML and
OPENMATH is essentially orthogonal to the language design, the use ofURIs as iden-
tifiers is not as it imposes subtle constraints that can be very hard to meet a posteriori.

MMT represents logical knowledge on three levels: On themodule level, MMT

builds on modular algebraic specification languages for logical knowledge such as OBJ
[14], ASL [32], development graphs [1], and CASL [7]. In particular, MMT uses theo-
ries and theory morphism as the primitive modular concepts.Contrary to them, MMT

only imposes very lightweight assumptions on the underlying language. This leads to a
very simple generic module system that subsumes almost all aspects of the syntax and
semantics of specific module systems such as PVS [25], Isabelle [26], or Coq [3].

On thesymbol level, MMT is a simple declarative language that uses named sym-
bol declarations where symbols may or may not have a type or a definiens. By experi-
mental evidence, this subsumes virtually all declarative languages. In particular, MMT

uses the Curry-Howard correspondence [8,17] to represent axioms and theorem as con-



stants, and proofs as terms. Sets of symbol declarations yield theories and correspond
to OPENMATH content dictionaries.

On theobject level, MMT uses the formal grammar of OPENMATH [6] to rep-
resent mathematical objects without committing to a specific formal foundation. The
semantics of objects is given proof theoretically using judgments for typing and equal-
ity between objects. MMT is parametric in these judgments, and the precise choice is
relegated to afoundation.

2.1 Module System

Sophisticated mathematical reasoning usually involves several related but different math-
ematical contexts, and it is desirable to exploit these relationships by moving theorems
between contexts. It is well-known that modular design can reduce space to an extent
that is exponential in the depth of the reuse relation between the modules, and this ap-
plies in particular to the large theory hierarchies employed in mathematics and computer
science.

The first applications of this technique in mathematics are found in the works by
Bourbaki ([4,5]), which tried to prove every theorem in the context with thesmallest
possible set of axioms. MMT follows the “little theories approach” proposed in [11], in
which separate contexts are represented by separatetheories, and structural relation-
ships between contexts are represented astheory morphisms, which serve as conduits
for passing information (e.g., definitions and theorems) between theories (see [10]).
This yieldstheory graphs where the nodes are theories and the paths are theory mor-
phisms.

Example 1 (Algebra).For example, consider the theory graph in Fig.1 for a portion
of algebra, which was formalized in MMT in [9]. It defines the theory of magmas (A
magma has a binary operation without axioms.) and extends itsuccessively to monoids,
groups, and commutative groups. Then the theory of rings is formed by importing from
bothCGroup (for the additive operation) andMonoid (for the multiplicative operation).

A crucial property here is that the imports are named, e.g.,Monoid imports from
Magma via an import namedmag. While redundant in some cases, it is essential inRing

where we have to distinguish two theory morphisms fromMonoid to Ring: The com-
positionadd/grp/mon for the additive monoid andmult for the multiplicative monoid.

The import names are used to form qualified names for the imported symbols. For
example, if∗ is the name of the binary operation inMagma, thenadd/grp/mon/mag/∗
denotes addition andmult/mag/∗ multiplication in Ring. Of course, MMT supports
the use of abbreviations instead of qualified names, but it isa crucial prerequisite for
scalability to make qualified names the default: Without named imports, every time we
add a new name inMagma (e.g, for an abbreviation or a theorem), we would have to add
corresponding renamings inRing to avoid name clashes.

Another reason to use named imports is that we can use them to instantiate imports
with theory morphisms. In our example, distributivity is stated separately as a theory
that imports two magmas. Let us assume, the left distributivity axiom is stated as

∀x, y, z.x mag1/∗ (y mag2/∗ z) = (x mag1/∗ y) mag2/∗ (x mag1/∗ z)



Then the importdist from Distrib to Ring will carry the instantiationsmag1 7→
mult/mag andmag2 7→ add/grp/mon/mag.

In other module systems such as SML, such instantiations arecalled (asymmetric)
sharing declarations. In terms of theory morphism, their semantics is a commutative
diagram, i.e., an equality between two morphisms such asdist/mag1 = mult/mag :
Magma → Ring. This provides MMT users and systems with a module level invariant
for the efficient structuring of large theory graphs.

Besides imports, which induce theory morphisms into the containing theory, there
is a second kind of edge in the theory graph: Views are explicit theory morphisms that
represent translations between two theories. For example,the node on the right side of
the graph represents a theory for the integers, say declaring the constants0,+,−, 1, and
·. The fact that the integers are a commutative group is represented by the viewv1: If
we assume thatMonoid declares a constante for the unit element andGroup a constant
inv for the inverse element, thenv1 carries the instantiationsgrp/mon/mag/∗ 7→ +,
grp/mon/e 7→ 1, andgrp/inv 7→ −. Furthermore, every axiom declared or imported
in CGroup is mapped to a proof of the corresponding property of the integers.

The viewv2 extendsv1 with corresponding instantiations for multiplication. MMT

permits modular views as well: When definingv2, we can import all instantiations of
v1 usingadd 7→ v1. As above, the semantics of such an instantiation is a commutative
diagram, namelyv2 ◦ add = v1 as intended.

Magma Monoid Group CGroup

RingDistrib Integers

mag mon grp

addmultmag1 mag2

dist

v1

v2

Fig. 1.Algebraic Hierarchy

The major advantage of modu-
lar design is that every declaration
— abbreviations, theorems, nota-
tions etc. — effectsinduced dec-
larations in the importing theo-
ries. A disadvantage is that decla-
rations may not always be located
easily, e.g., the addition in a ring is
declared in a theory that is four imports away. MMT finds a compromise here: Through
qualified names, all induced declarations are addressable and locatable. The process
of removing the modularity by adding all these induced declarations to all theories is
calledflattening.

Case Study 1:The formalization in [9] uses the Twelf module system ([31]), which
is a special case of MMT. Twelf automatically computes the flattened theory graph. The
modular theory graph including all axioms and proofs can be written in 180 lines of
Twelf code. The flattened graph is computed in less than half asecond and requires
more than 1800 lines.

The same case study defines two theories for lattices, one based on orderings and
one based on algebra, and gives mutually inverse views to prove the equivalence of the
two theories. Both definitions are modular: Algebraic lattices arise by importing twice
from the theory of semi-lattices; order-based lattices arise by importing the infimum
operation twice, once for the ordering and once for its dual.Consequently, the views
can be given modularly as well, which is particularly important because views must
map axioms to expensive-to-find proofs. These additional declarations take 310 lines of
Twelf in modular and 3500 lines in flattened form.



These numbers already show the value of modularity in representation already in
very small formalizations. If this is lacking, later steps will face severe scalability prob-
lems from blow-up in representation. Here, the named imports of MMT were the crucial
innovation to strengthen modularity.

2.2 Foundation-Independence

Mathematical knowledge is described using very different foundations, and the most
common foundations can be grouped into set theory and type theory. Within each group
there are numerous variants, e.g., Zermelo-Fraenkel or Gödel-Bernays set theory, or
set theories with or without the axiom of choice. Therefore,a single representation
language can only be adequate if it is foundation-independent.

OPENMATH and OMDOC achieve this by concentrating on structural issues and
leaving lexical ones to an external definition mechanism like content dictionaries or
theories. In particular, this allows us to operate without choosing a particular founda-
tional logical system, as we can just supply content dictionaries for the symbols in the
particular logic. Thus, logics and in the same way foundations become theories, and we
speak of thelogics-as-theoriesapproach.

But conceptually, it is helpful to distinguish levels here.To state a property in the
theoryCGroup like commutativity of the operation◦ := grp/mon/mag/∗ as∀a, b.a ◦
b = b ◦ a, we use symbols∀ and= from first-order logic together with◦ from CGroup.
Even though it is structurally possible to build algebraic theories by simply importing
first-order logic, this would fail to describe the meta-relationship between the theories.
But this relation is crucial, e.g., when interpretingCGroup in the integers, the symbols
of the meta-language are not interpreted because a fixed interpretation is given in the
context.

To understand this example better, we use theM/T notation for meta-languages.
M/T refers to working in the object languageT , which is defined within the meta-
languageM . For example, most of mathematics is carried out inFOL/ZF , i.e., first-
order logic is the meta-language, in which set theory is defined.FOL itself might be
defined in a logical framework such asLF , and withinZF , we can define the language
of natural numbers, which yieldsLF/FOL/ZF/Nat. For algebra, we obtain, e.g.,
FOL/Magma. MMT makes this meta-relation explicit: Every theoryT may point to
another theoryM as its meta-theory. We can write this asMMT/(M/T ).

LF Isabelle

FOL HOL

Monoid Ring

meta meta

meta meta

m

m′

mult

Fig. 2.Meta-Theories

In Fig. 2, the algebra example is ex-
tended by adding meta-theories. The the-
ory FOL for first-order logic is the meta-
theory for all algebraic theories, and the
theoryLF for the logical framework LF is
the meta-theory ofFOL and of the theory
HOL for higher-order logic.

Now the crucial advantage of the
logics-as-theories approach is that on all
three levels the same module system can
be used: For example, the viewsm andm′

indicate possible translations on the levels



of logical frameworks and logics, respectively. Similarly, logics and foundations can be
built modularly. Thus, we can use imports to represent inheritance at the level of logical
foundations and views to represent formal translations between them. Just like in the
little theories approach, we can prove meta-logical results in the simplest foundation
that is expressive enough and then use views to move results between foundations.

Example 2 (Little Logics and Little Foundations).In [15], we formalize the syntax,
proof theory, and model theory and prove the soundness of first-order logic in MMT.
Using the module system, we can treat all connectives and quantifiers separately. Thus,
we can reuse these fragments to define other logics, and in [18] we do that, e.g., for
sorted first-order logic and modal logic.

For the definition of the model theory, we need to formalize set theory in MMT,
which is a significant investment, and even then doing proofsin set theory — as needed
for the soundness proof — is tedious. Therefore, in [16], we develop the set theoretical
foundation itself modularly. We define a typed higher-orderlogic HOL first, which is
expressive enough for many applications such as the above soundness proof. Then a
view fromHOL to ZF proves thatZF is a refinement ofHOL and completes the proof of
the soundness of FOL relative to models defined inZF.

Case Study 2:Ex. 2 already showed that it is feasible to represent foundations
and relations between foundations in MMT. Being able to this is a qualitative aspect
of cross-domain scalability. In another case study, we representedLF/Isabelle and
LF/Isabelle/HOL ([26,23]) as well as a translation from them intoLF/FOL/ZFC
(see [18]).

To our knowledge, MMT is the only declarative formalism in which comparable
foundation or logic translations have been conducted. In Hets ([21]) a number of logic
translations are implemented in Haskell. Twelf and Delphinprovide logic and func-
tional programming languages, respectively, on top of LF ([27,28]), which have been
used to formalize the HOL-Nuprl translation ([22]).

2.3 Symbol Identifiers “in the Large”

In mathematical languages, we need to be able to refer to (i.e., identify) content objects
in order to state the semantic relations. It was a somewhat surprising realization in the
design of MMT that to understand the symbol identifiers is almost as difficult as to
understand the whole module system. Theories are containers for symbol declarations,
and relations between theories define the available symbolsin any given theory. Since
every available symbol should have a canonical identifier, the syntax of identifiers is
inherently connected to the possible relations between theories.

In principle, there are two ways to identify content object:by location (relative to
a particular document or file) andby context (relative to a mathematical theory). The
first one essentially makes use of the organizational structure of files and file systems,
and the second makes use of mathematical structuring principles supplied by the repre-
sentation format.

As a general rule, it is preferable to use identification by context as the distribution
of knowledge over file systems is usually a secondary consideration. Then the mapping



between theory identifiers and physical theory locations can be deferred to an extralin-
guistic catalog. Resource identification by context shouldstill be compatible with the
URI-based approach that mediates most resource transport over the internet. This is
common practice in scalable programming languages such as Java where package iden-
tifiers are URIs and classes are located using theclasspath.

For logical and mathematical knowledge, the OPENMATH 2 standard ([6]) and the
current OMDOC version 1.2 define URIs for symbols. A symbol is identified by the
symbol name and content dictionary, which in turn is identified by the CD name and
the CD base, i.e., the URI where the CD is located. From these constituents, symbol
URIs are formed using URI fragments (the part after the # delimiter). However, OPEN-
MATH imposes a one-CD-one-file restriction, which is too restrictive in general. While
OMDOC1.2 permits multiple theories per file, it requires file-unique identifiers for all
symbols. In both cases, the use of URI fragments, which are resolved only on the client,
forces clients to retrieve the complete file even if only a single symbol is needed.

Furthermore, many module systems have features that impedeor complicate the for-
mation of canonical symbol URIs. Such features include unnamed imports, unnamed
axioms, overloading, opening of modules, or shadowing of symbol names. Typically,
this leads to a non-trivial correspondence between user-visible and application-internal
identifiers. But this impedes or complicates cross-application scalability where all ap-
plications (ranging from, e.g., a Javascript GUI to a database backend) must understand
the same identifiers.

MMT avoids the above pitfalls and introduces a simple yet expressive web-scalable
syntax for symbol identifiers. An MMT-URI is of the formdoc?mod?sym where

– doc is a URI without query or fragment, e.g.,http://cds.omdoc.org/math/algebra/algegra1.omdoc
which identifies (but not necessarily locates) an MMT document,

– mod is a/-separated sequence of local names that gives the path to a nested theory
in the above document, e.g.,Ring,

– sym is a /-separated sequenceimp1/ . . . /impn/con of local names such that
impi is an import andcon a symbol name, e.g.,mult/mon/∗,

– a local name is of the formpchar+ wherepchar is defined as in RFC 3986 [2],
which — possibly via %-encoding — permits almost all Unicodecharacters.

In our running example, the canonical URI of multiplicationin a ring ishttp://cds.omdoc.org/math/algebra/algegra1.omdoc?Ring?mult/mon/*.
Note that the use of two? characters in a URI is unusual outside of MMT, but le-
gal w.r.t. RFC 3986. Of course, MMT also defines relative URIs that are resolved
against the URI of the containing declaration. The most important case is whendoc
is empty. Then the resolution proceeds as in RFC 3986, e.g.,?mod′?sym′ resolves to
doc?mod′?sym′ relative todoc?mod?sym (Note that this differs from RFC 2396.).
MMT defines some additional cases that are needed in mathematical practice and go
beyond the expressivity of relative URIs: Relative todoc?mod?sym, the resolution of
??sym′ and?/mod′?sym′ yieldsdoc?mod?sym′ anddoc?mod/mod′?sym′, respec-
tively.

Case Study 3:URIs are the main data structure needed for cross-application scala-
bility, and our experience shows that they must be implemented by almost every periph-
eral system, even those that do not implement MMT itself. Already at this point, we had
to implement them in SML ([31]), Javascript ([13]), XQuery ([35]), Haskell (for Hets,

http://cds.omdoc.org/math/algebra/algegra1.omdoc
http://cds.omdoc.org/math/algebra/algegra1.omdoc?Ring?mult/mon/*
?


[21]), and Bean Shell (for a jEdit plugin) — in addition to the Scala-based reference
API (Sect.3).

This was only possible because MMT-URIs constitute a well-balanced trade-off
between mathematical rigor, feasibility, and URI-compatibility: In particular, due to the
use of the two separators/ and? (rather than only one), they can be parsed locally, i.e.,
without access to or understanding of the surrounding MMT document. And they can
be dereferenced using standard URI libraries and URI-URL translations. At the same
time, they provide canonical names for all symbols that are in scope, including those
that are only available through imports.

3 A Scalable Implementation

As the implementation language for the MMT reference API, we pick Scala, a program-
ming language designed to bescalable ([24]). Being functional, Scala permits elegant
code, and based on and fully compatible with Java, it offers cross-application and web-
level scalability.

The MMT API implements the syntax and semantics of MMT. It compiles to a
1 MB Java archive file that can be readily integrated into applications. Library and
documentation can be obtained from [30]. Two technical aspects are especially notable
from the point of view of scalability. Firstly, all MMT functionality is exposed to non-
Java applications via a scriptable shell and via an HTTP servlet. Secondly, the API
maintains an abstraction layer that separates the backendsthat physically store MMT

documents (URLs) from the document identifiers (URIs). Thus, it is configurable which
MMT documents are located, e.g., in a remote database or on the local file system. In
the following section we describe some of the advanced features.

3.1 Validation

Validation describes the process of checking MMT theory graphs against the MMT

grammar and type system. MMT validation is done in three increasingly strictstages.
The first stage is XML validation against a context-free RelaxNG grammar. As this

only catches errors in the surface syntax, MMT documents are validatedstructurally
in a second stage. Structural validity guarantees that all declarations have unique URIs
and that all references to symbols, theories, etc. can be resolved. This is still too lax
for mathematics as it lacks type-checking. But it is exactlythe right middle ground
between the weak validation against a context-free grammarand the expensive and
complex validation against a specific type system: On the onehand, it is efficient and
foundation-independent, and on the other hand, it providesan invariant that is sufficient
for many MKM services such as storage, navigation, or search.

Type-checking is foundation-specific, therefore each foundation must provide an
MMT plugin that implements the typing and equality judgments. More precisely, the
plugin must provide function that (semi-)decide for two given termsA andB over a
theoryT , the judgments⊢T A = B and⊢T A : B. Given such a plugin, a third valida-
tion stage can refine structural validity by additionally validating well-typedness of all



declarations. For scalability, it is important that (i) these plugins are stateless as the the-
ory graph is maintained by MMT, and that the (ii) modular structure is transparent to the
plugin. Thus plugin developers only need to provide the corealgorithms for the specific
type system, and all MKM issues can be relegated to dedicatedimplementations.

Context-free validation is well-understood. Moreover, MMT is designed such that
foundation-specific validation is obtained from structural validation by using the same
inference system with some typing and equality constraintsadded. This leaves structural
validation as the central issue for scalability.

Case Study 4:We have implemented structural validation by decomposing an MMT

theory graph into a list of atomic declarations. For example, the declarationT = {s1 :
τ1, s2 : τ2} of a theoryT with two typed symbols yields the atomic declarations
T = {}, T ?s1 : τ , andT ?s2 : τ2. This “unnesting” of declarations is a special property
of the MMT type system that is not usually found in other systems. It is possible because
every declaration has a canonical URI and can therefore be taken out of its context.

This is important for scalability as it permitsincremental processing. In particu-
lar, large MMT documents can be processed as streams of atomic declarations. Further-
more, the semantics of MMT guarantees that the processing order of these streams never
matters if the (easily-inferrable) dependencies between declarations are respected. This
would even permit parallel processing, another prerequisite for scalability.

3.2 Querying

Once a theory graph has been read, MMT provides two ways how to access it: MMT-
URI dereferencing and querying with respect to a simple ontology.

Firstly, a theory graph always has two forms: the modular form where all nodes are
partial theories whose declarations are computed using imports, and the flattened form
where all imports are replaced with translated copies of theimported declarations. Many
implementations of module systems, e.g., Isabelle’s locales, automatically compute the
flat form and do not maintain the modular form. This can be a threat to scalability as it
can induce combinatorial explosion.

MMT maintains only the modular form. However, as every declaration present in
the flat form has a canonical URI, the access to the flat form is possible via MMT-URI
dereferencing: Dereferencing computes (and caches) the induced declarations present
in the flat form. Thus, applications can ignore the modular structure and interact with a
modular theory graph as if it were flattened, but the exponentially expensive flattening
is performed transparently and incrementally.

Secondly, the API computes the ABox of a theory graph with respect to the MMT

ontology. It has MMT-URIs as individuals and 10 types liketheory or symbol as
unary predicates. 11 binary predicates represent relations between individuals such as
HasDomain relating an import to a theory orHasOccurrenceOfInType relating
two symbols. These relations are structurally complete: The structure of a theory graph
can be recovered from the ABox. The computation time is negligible as it is a byproduct
of validation anyway.

The API includes a simple query language for this ontology. It can compute all
individuals in the theory graph that are in a certain relation to a given individual. The
possible queries include composition, union, transitive closure, and inverse of relations.



The ABox can also be regarded as the result ofcompiling an MMT theory graph.
Many operations on theory graphs only require the ABox: for example the computa-
tion of the forward or backward dependency cone of a declaration which are needed to
generate self-contained documents and in change management, respectively. This is im-
portant for cross-application scalability because applications can parse the ABox very
easily. Moreover, we obtain a notion ofseparate compilation: ABox-generation only
requires structural validity, and the latter can be implemented if only the ABoxes of the
referenced files are known.

Case Study 5:Since all MMT knowledge items have a globally unique MMT-URI,
being able to dereference them is sufficient to obtain complete information about a
theory graph. We have implemented a web servlet for MMT that can act as a local
proxy for MMT-URIs and as a URI catalog that maps MMT-URIs into (local or remote)
URLs. The former means that all MMT-URIs are resolved locally if possible. The latter
means that the MMT-URI of a module can be independent from its physical location.
The same servlet can be run remotely, e.g., on the same machine as a mathematical
database and configured to retrieve files directly from thereor from other servers.

Thus systems can access all their input documents by URI via alocal service, which
makes all storage issues transparent. (Using presentation, see below, these can even
be presented in the system’s native syntax.) This solves a central problem in current
implementations of formal systems: the restriction to in-memory knowledge. Besides
the advantages of distributed storage and caching, a simpleexample application is that
imported theories are automatically included when remote documents are retrieved in
order to avoid successive lookups.

3.3 Presentation

MMT comes with a declarative language for notations similar to [19] that can be used
to transform MMT theory graphs into arbitrary output formats. Notations aredeclared
by giving parameters such as fixity and input/output precedence, and snippets for sep-
arators and brackets. Notations are not only used for mathematical objects but also for
all MMT expressions, e.g. theory declarations and theory graphs.

Two aspects are particularly important for scalability. Firstly, sets of notations (called
styles) behave like theories, which are sets of symbols. In particular, styles and notations
have MMT-URIs (and are part of the MMT ontology), and the MMT module system can
be used for inheritance between styles.

Secondly, every MMT expression has a URIE, for declarations this is trivial, for
most mathematical objects it is the URI of the head symbol. Correspondingly, every
notation must give an MMT-URI N , and the notation is applicable to an expression if
N is a prefix ofE. More specific notations can inherit from more general ones,e.g., the
brackets and separators are usually given only once in the most general notation. This
simplifies the authoring and maintenance of styles for largetheory graphs significantly.

Case Study 6:In order to present MMT content as, e.g., HTML with embedded
presentation MATHML, we need a style with only the 20 generic notations given in
http://alpha.tntbase.mathweb.org/repos/cds/omdoc/mathml.omdoc.

http://alpha.tntbase.mathweb.org/repos/cds/omdoc/mathml.omdoc


<notation for="http://cds.omdoc.org/"

role="constant">

<element name="mo">

<attribute name="xref">

<text value="#"/><id/>

</attribute>

<hole><component index="2"/></hole>

</element>

</notation>

For example, the notation declara-
tion on the right applies to all con-
stants whosecdbase starts withhttp://cds.omdoc.org/
and rendersOMS elements asmo elements.
The latter has anxref attribute that links
to the parallel markup (which is included by
notations at higher levels). The content of the
mo elements is a “hole” that is by default filled with the second component, for con-
stants that is the name (0 and1 arecdbase andcd.).

This scales well because we can give notations for specific theories, e.g., by saying
that?Magma?∗ is associative infix and optionally giving a different operator symbol
than∗. We can also add other output formats easily: Our implementation (see [18])
extends the above notation with ajobad:href attribute containing the MMT-URI —
this URI is picked up by our JOBAD Javascript ([13]) for hyperlinking.

4 A Scalable Database

The TNTBase system [34] is a versioned XML-database with a client-server architec-
ture. It integrates Berkeley DB XML into a Subversion server. DB XML stores HEAD
revisions of XML files; non-XML content like PDF, images or LATEX source files, dif-
ferences between revisions, directory entry lists and other repository information are
retained in a usual SVN back-end storage (Berkeley DB in our case). Keeping XML
documents in DB XML allows accessing files not only via any SVNclient but also
through the DB XML API that supports efficient querying of XMLcontent via XQuery
and (versioned) modification of that content via XQuery Update.

In addition, TNTBase provides a plugin architecture for document format-specific
customizations [35]. Using OMDOC as concrete syntax for MMT and the MMT API as
a TNTBase plugin, we have made TNTBase MMT-aware so that data-intensive MMT

algorithms can be executed within the database.
The TNTBase system and its documentation are available athttp://tntbase.org.

Below we describe some of the features particularly relevant for scalability.

4.1 Generating Content

Large scale collaborative authoring of mathematical documents requiresdistributed
andversionedstorage. On the language end, MMT supports this by making all iden-
tifiers URIs so that MMT documents can be distributed among authors and networks
and reference each other. On the database end, TNTBase supports this by acting as a
versioned MMT database.

In principle, versioning and distribution could also be realized with a plain SVN
server. But for mathematics, it is important that the storage backend is aware of at
least some aspects of the mathematical semantics. In large scale authoring processes,
an important requirement is to guarantee consistency, i.e., it should be possible to reject
commits of invalid documents. Therefore, TNTBase supportsdocument format-specific
validation.

http://cds.omdoc.org/
http://tntbase.org


For scalability, it is crucial that validation of interlinked collections of MMT docu-
ments isincremental, i.e., only those documents added or changed during a commitare
validated. This is a significant effect because the committed documents almost always
import modules from other documents that are already in the database, and these should
not be revalidated — especially not if they contain unnecessary modules that introduce
further dependencies.

Therefore, we integrate MMT separate compilation into TNTBase. During a com-
mit TNTBase validates all committed files structurally by calling the MMT API. After
successful validation, the ABox is generated and immediately stored in TNTBase. Ref-
erences to previously committed files are not resolved; instead their generated ABox is
used for validation. Thus, validation is limited to the committed documents.

Case Study 7:In the LATIN project [18], we create an atlas of logics and logic
translations formalized in MMT. At the current early stage of the project 5 people are
actively editing so far about 100 files. These contain about 200 theories and 50 views,
which form a single highly inter-linked MMT theory graph. We use TNTBase as the
validity-guaranteeing backend storage.

The LATIN theory graph is highly modular. For example, the document giving the
set-theoretical model theory of first-order logic from [16] depends on about 100 other
theories. (We counted them conveniently using an XQuery, see below.) Standalone vali-
dation of this document takes about 15 seconds if needed filesare retrieved from a local
file system. Using separate compilation in TNTBase, it is almost instantaneous.

In fact, we can configure TNTBase so that structural validation is preceded by Re-
laxNG validation. This permits the MMT application to drop inefficient checks for syn-
tax errors. Similarly, structural validation could be preceded by foundation-specific val-
idation, but often we do not have a well-understood notion ofseparate compilation for
specific foundations. But even in that case, we can do better than naive revalidation.
MMT is designed so that it is foundation-independent which modules a given document
depends on. Thus, we can collect these modules in one document using an efficient
XQuery (see below) and then revalidate only this document. Moreover, we can use
the presentation algorithm from Sect.3.3to transform the generated document into the
input syntax of a dedicated implementation.

4.2 Retrieving Content

While the previous section already showed some of the strength of an MMT-aware
TNTBase, its true strength lies in retrieving content. As every XML-native database,
TNTBase supports XQuery but extends the DB XML syntax by a notion of file system
path to address path-based collections of documents. Furthermore, it supports index-
ing to improve performance of queries and the querying of previous revisions. Finally,
custom XQuery modules can be integrated into TNTBase.

MMT-aware retrieval is achieved through two measures. Firstly, ABox caching
means that for every committed file, the MMT ABox is generated and stored in TNT-
Base. The ABox contains only two kinds of declarations — instances of unary and
binary predicates — and is stored as a simple XML document. The element types in
these documents areindexed, which yields efficient global queries.



Example 3.An MMT document for the algebra example from Sect.2.1 is served at
http://alpha.tntbase.mathweb.org/repos/cds/math/algebra/algebra1.omdoc. Its ABox is cached
at http://alpha.tntbase.mathweb.org:8080/tntbase/cds/restful/integration/validation/mmt/content/
math/algebra/algebra1.omdoc.

Secondly, customXQuery functions utilize the cached and indexed ABoxes to
provide efficient access to frequently needed aggregated documents. These include in
particular the forward and backward dependency cones of a module. The backward
dependency cone of a moduleM is the minimal set of modules needed to makeM
well-formed. Dually, the forward cone contains all modulesthat needM . If it were not
for the indexed ABoxes, the latter would be highly expensiveto compute: linear in the
size of the database.

Case Study 8:The MMT presentation algorithm described in Sect.3.3 takes a set
of notations as input. However, additional notations may begiven in imported theories,
typically format-independent notations such as the one making ?Magma?∗ infix. There-
fore, when an MMT expression is rendered, all imported theories must be traversed for
the sole reason of obtaining all notations.

Without MMT awareness in TNTBase, this would require multiple successive queries
which is particularly harmful when presentation is executed locally while the imported
theories are stored remotely. But even when all theories areavailable on a local disk,
these successive calls already take 1.5 seconds for the above algebra document. (Once
the notations are retrieved, the presentation itself is instantaneous.)

In MMT-aware TNTBase, we can retrieve all notations in the backward dependency
closure of the presented expression with a single XQuery. ABox-indexing made this
instantaneous up to network lag.

TNTBase does not only permit the efficient retrieval of such generated documents,
but it also permits to commit edited versions of them. We callthesevirtual documents
in [35]. These are essentially “XML database views” analogous to views in relational
databases. They are editable, and TNTBase transparently patches the differences into
the original files in the underlying versioning system.

Case Study 9:While manual refactoring of large theory graphs is as difficult as
refactoring large software, there is virtually no tool support for it. For MMT, we obtain
a simple renaming tool using a virtual document for the one-step (i.e., non-transitive)
forward dependency cone of a theoryT (see [35] for an example). That contains all
references toT so thatT can be renamed and all references modified in one go.

5 Conclusion and Future Work

This paper aims to pave the way for MKM “in the large” by proposing a theoretical and
technological basis for a “Universal Digital Mathematics Library” (UDML) which has
been touted as the grand challenge for MKM. In a nutshell, we conclude that the prob-
lem of scalability has be to addressed on all levels: we need modularity and accessibility
of induced declarations in the representation format, incrementality and memoization
in the implementation of the fundamental algorithms, and a mass storage solution that



supports fragment access and indexing. We have developed prototypical implementa-
tions and tested them on a variety of case studies.

The next step will be to integrate the parts and assemble a UDML installation with
these. We plan to use the next generation of the OMDOC format, which will integrate
the MMT infrastructure described in this paper as an interoperability layer; see [20] for
a discussion of the issues involved. In the last years, we have developed OMDOC trans-
lation facilities for various fully formal theorem provingsystems and their libraries.
In the LATIN project [18], we are already developing a graph of concrete “logics-as-
theories” to make the underlying logics interoperable.
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