
ar
X

iv
:1

00
5.

09
17

v1
 [

cs
.A

I]
 6

 M
ay

 2
01

0

On Building a Knowledge Base for Stability

Theory ⋆

Agnieszka Rowinska-Schwarzweller1 and Christoph Schwarzweller2

1 Chair of Display Technology, University of Stuttgart
Allmandring 3b, 70569 Stuttgart, Germany

schwarzweller@neostrada.pl
2 Department of Computer Science, University of Gdańsk

ul. Wita Stwosza 57, 80-952 Gdańsk, Poland
schwarzw@inf.ug.edu.pl

Abstract. A lot of mathematical knowledge has been formalized and
stored in repositories by now: different mathematical theorems and the-
ories have been taken into consideration and included in mathematical
repositories. Applications more distant from pure mathematics, however
— though based on these theories — often need more detailed knowl-
edge about the underlying theories. In this paper we present an example
Mizar formalization from the area of electrical engineering focusing on
stability theory which is based on complex analysis. We discuss what
kind of special knowledge is necessary here and which amount of this
knowledge is included in existing repositories.

1 Introduction

The aim of mathematical knowledge management is to provide both tools and
infrastructure supporting the organization, development, and teaching of math-
ematics with the help of effective up-to-date computer technologies. To achieve
this ambitious goal it should be taken into account that the predominant part of
potential users will not be professional mathematicians themselves, but rather
scientists or teachers that apply mathematics in their special domain. To at-
tract this group of people it is essential that our repositories provide a sufficient
knowledge base for those domains. We are interested in how far existing math-
ematical repositories are from meeting this precondition yet, or in other words:
How big is the gap between the knowledge already included in repositories and
the knowledge necessary for particular applications?

This problem, however, concerns not only the simple question how much
knowledge of a domain is available in a repository. We believe, that in order to
measure this gap, it is equally important to consider the basic conditions for
a successful formalization of applications on top of existing knowledge, that is
on top of a mathematical repository: The more easy such a formalization is,
the more attractive is a mathematical repository. To describe attractiveness of
a repository for an application one can identify three major points:

⋆ The final publication of this paper is available at www.springerlink.com.

http://arxiv.org/abs/1005.0917v1

2 A. Rowinska-Schwarzweller and C. Schwarzweller

1. Amount of knowledge
This is the obvious question, how much knowledge of a particular domain
already has been formalized and included in the repository. Basically, the
more knowledge of a domain is included the more attractive a repository is
for applications.

2. Representation of knowledge
This concerns the question of how the knowledge has been defined and for-
malized: Often mathematicians use more abstract constructions than neces-
sary — and attractive — for applications. An example is the construction
of rational functions from polynomials.

3. Applicability of knowledge
This point deals with both how the knowledge of a domain is organized in
a repository and the question of how easy it is to adapt available knowledge
to one’s own purposes.

In this paper we focus on electrical engineering, in particular on network sta-
bility [Unb93]. Network theory deals with the mathematical description, analysis
and synthesis of electrical (e.g. continuous, time-discrete or digital) networks. For
a reliable application such systems have to be (input/output-) stable, that is for
an arbitrary bounded input the output have to be bounded again. In practice
it is impossible to verify responses for all input signals. In this situation there
is, however, a number of theorems permitting easier methods to decide whether
a network is stable[Unb93]. We shall introduce the mathematical fundamentals
and prequisites of one example theorem and present a Mizar formalization of this
theorem. After that we discus our formalization in the spirit of the three points
from above: How far is the Mizar sytem from providing a suitable mathematical
repository for applications in stability theory?

2 Networks and their Stability

As mentioned in the introduction the (input/output-) stability of networks is
one of the main issues when dealing with the analysis and design of electrical
circuits and systems. In the following we briefly review definitions and properties
of electrical systems necessary to understand the rest of the paper. In electrical
engineering stability applies to the input/output behaviour of networks (see
figure 1). For (time-) continuous systems one finds the following definition. For
discrete systems an analogous definition is used.

Definition 1. ([Unb93])
A continuous system is (BIBO-)3 stable, if and only if each bounded input signal
x(t) results in a bounded output signal y(t).

3 BIBO stands for Bounded Input Bounded Output.

On Building a Knowledge Base for Stability Theory 3

Physically realizable, linear time-invariant systems (LTI systems) can be de-
scribed by a set of differential equations [Unb93]. The behaviour of a LTI system
then is completely characterized by its impulse response h(t).4 If the impulse re-
sponse of auch a system is known, the relation between the input x(t) and the
output y(t) is given by the convolution integral

y(t) =

∞∫

−∞

x(τ)h(t − τ)dτ. (1)

Furthermore, a LTI system is stable, if and only if its impulse response h(t) is
absolute integrable, that is there exists a constant K such that

∞∫

−∞

|h(τ)| dτ ≤ K < ∞. (2)

In network and filter analysis and design, however, one commonly employs the
frequency domain rather than the time domain. To this end the system is de-
scribed based on its transfer function H(s). In case the Laplace transformation
is used we have5

H(s) =

∞∫

−∞

h(t)e−stdt. (3)

where s = σ + jω is a complex variable with ℜ{s} = σ and ℑ{s} = ω.

✲✲❡ ❡x(t) y(t)

H(s)

h(t)

System

Figure 1: LTI system with one input x(t) and one output y(t)

The evaluation of H(s) for s = jω — in case of convergence6 — enables
the qualitative understanding of how the system handles and selects various
frequencies ω, so for example whether the system describes a high-pass filter,
low-pass filter, etc. Now the necessary condition to demonstrate the stability of
LTI systems in the frequency domain reduces to show, that the jω-axis lies in
the Laplace transformation’s region of convergence (ROC).

4 h(t) is the output of the system, when the input is the Dirac delta function δ(t).
5 Note that this is a generalization of the continuous-time Fourier transformation.
6 In this case H(jω) equals the Fourier transform.

4 A. Rowinska-Schwarzweller and C. Schwarzweller

For physically realizable LTI systems, such as the class of networks with con-
stant and concentrated parameters, H(s) is given in form of a rational function
with real coefficients, that is

H(s) =
ans

n + . . .+ a0
bmsm + . . .+ b0

, ai, bi ∈ R. (4)

In this case the region of convergence can be described by the roots of the
denominator polynomial: If si = σi+ jωi for i = 1, . . .m are the roots of bmsm+
. . .+ b0, the region of convergence is given by

ℜ{s} > max{σi, i = 1, . . .m}.

To check stability it is therefore sufficient, to show that the real part ℜ{s} of
all poles of H(s) is smaller then 0. The denominator of H(s) is thus a so-called
Hurwitz polynomial.

Note that the stability problem for discrete-time signals and systems can
be analized with the same approach. For a given discrete-time transfer function
H(z) in the Z- domain, it has to be checked whether the unit circle is contained
in the region of convergence. Hence for all poles zi ofH(z) we must have |zi| < 1.
Using bilinear transformations [OS98]

z :=
1 + s

1− s
. (5)

it is thus sufficient to check whether the denominator of

H(z)|z:= 1+s

1−s

(6)

is a Hurwitz polynomial.
The practical proof of stability of high-precision filters, however, turns out

to be very hard. In practical applications the poles of concern are usually close
to the axis s = jω or the unit circle |z| = ejω respectively. Thus numerical
determination of the poles is highly error-pruning due to its rounding effects. In
digital signal processing in addition degrees of transfer functions tend to be very
high, for example 128 and higher in communication networks.

An interesting and in practice often used method to check the stability of a
given network is based on the following theorem.

Theorem 1. ([Unb93])
Let f(x) be a real polynomial with degree n ≥ 1. Furthermore let all coefficients
of f(x) be greater than 0. Let fe(x) and fo(x) denote the even part resp. the
odd part of f(x). Assume further that

Z(x) =
fe(x)

fo(x)

or the reciprocal of Z(x) is a reactance one-port function of degree n. Then f(x)
is a Hurwitz polynomial.

On Building a Knowledge Base for Stability Theory 5

The concept of reactance one-port function stems from electrical network the-
ory: In arbitrary passive (that is RLC-) networks we find the following relations
between the complex voltage Uν(s) and the complex current Iν(s):

✲

Iν(s)
❡ ❡

✲

Uν(s)

network element

Ur(s) = Rr · Ir(s) for a resistor Rr

Ul(s) = s · Ll · Il(s) for an inductance Ll

Uk(s) =
1

s·Ck

· Ik(s) for a capacity Ck

An impedance (complex resistor) or admittance (complex conductance) com-
posed of network elements R, L and C only is called a (RLC-) one-port function,
an impedance or admittance composed of network elements L and C only is
called a reactance one-port function. Conversely, for every one-port function
Z(s) there exists at least one one-port, whose impedance or admittance is equal
to Z(s):

Hence, theorem 1 reduces stability checking to the considerable easier task
to synthesize a one-port solely using inductors (L) and capacitors (C), that is to
synthesize a reactance one-port. To this end there exist easy procedures like for
example Routh’s method to construct a chain one-port [Unb93].

It turns out that one-port functions Z(s) are exactly the real positive ra-
tional functions. For a real function we have that for real s also Z(s) is real7,
and a positive function means that ℜ{s} > 0 implies ℜ{Z(s)} > 0. A reactance
one-port function is a one-port function, that is in addition odd. The property
of being positive is closely connected to Hurwitz polynomials:

Theorem 2. ([Unb93])
Let f(x) be a real polynomial with degree n ≥ 1. Furthermore let all coefficients
of f(x) be greater than 0. Let fe(x) and fo(x) denote the even part resp. the
odd part of f(x). Assume thatfe(x) and fo(x) have no common roots and that
Z(x) = fe(x)/fo(x) is positive. Then

(i) ℜ{Z(x)} ≥ 0 for all x with ℜ{x} = 0
(ii) fe(x) + fo(x) is a Hurwitz polynomial.

7 This condition implies that the coefficients of Z(s) are real. In network theory, how-
ever, this definition is used.

6 A. Rowinska-Schwarzweller and C. Schwarzweller

In section 4.2 we will see that this theorem is also the key to prove that
stability checking can be reduced to synthesizing LC-one-ports, in other words
to prove theorem 1 from above.

3 The Mizar System

The logical basis of Mizar [RT01,Miz10] is classical first order logic extended,
however, with so-called schemes. Schemes introduce free second order variables,
in this way enabling among others the definition of induction schemes. In addi-
tion Mizar objects are typed, the types forming a hierarchy with the fundamental
type set. The user can introduce new (sub)types describing mathematical ob-
jects such as groups, fields, vector spaces or polynomials over rings or fields. To
this end the Mizar language provides a powerful typing mechanism based on
adjective subtypes [Ban03].

The current development of Mizar relies on Tarski-Grothendieck set theory
— a variant of Zermelo Fraenkel set theory using Tarski’s axiom on arbitrarily
large, strongly inaccessible cardinals [Tar39] which can be used to prove the
axiom of choice —, though in principle the Mizar language can be used with
other axiom systems also. Mizar proofs are written in natural deduction style as
presented in the calculus of [Jaś34]. The rules of the calculus are connected with
corresponding (English) natural language phrases so that the Mizar language
is close to the one used in mathematical textbooks. The Mizar proof checker
verifies the individual proof steps using the notion of obvious inferences [Dav81]
to shorten the rather long proofs of pure natural deduction.

Mizar objects are typed, the types forming a hierarchy with the fundamen-
tal type set [Ban03]. New types are constructed using type constructors called
modes. Modes can be decorated with adjectives — given by so-called attribute
definitions — in this way extending the type hierarchy: For example, given the
mode Ring and an attribute commutative a new mode commutative Ring can
be constructed, which obeys all the properties given by the mode Ring plus
the ones stated by the attribute commutative. Furthermore, a variable of type
commutative Ring then is also of type Ring, which implies that all notions
defined for Ring are available for commutative Ring. In addition all theorems
proved for type Ring are applicable for objects of type commutative Ring; in-
deed the Mizar checker itself infers subtype relations in order to check whether
notions and theorems are applicable for a given type.

4 Mizar Formalization of the Theorem

4.1 Some Preliminaries About Rational Functions

Although the theory of polynomials in Mizar is rather well developed, rational
functions have not been defined yet. Rational functions can — analogously to
polynomials — be defined over arbitrary fields: Rational functions are simply

On Building a Knowledge Base for Stability Theory 7

pairs of polynomials whose second component is not the zero polynomial.8 These
can be easily introduced as a Mizar type Rational_function of L, where L is
the underlying coefficient domain.

definition

let L be non trivial multLoopStr_0;

mode rational_function of L means

ex p1 being Polynomial of L st

ex p2 being non zero Polynomial of L st it = [p1,p2];

end;

In Mizar the result types of the pair constructor [,] and the projections
‘1 and ‘2, that in the original definition are simply set, then can be modified
into Rational_function and (non zero) Polynomial respectively. In addition
one can introduce the usual functions num and denom as synonyms for the cor-
responding projections.

definition

let L be non trivial multLoopStr_0;

let p1 be Polynomial of L;

let p2 be non zero Polynomial of L;

redefine func [p1,p2] -> rational_function of L;

end;

definition

let L be non trivial multLoopStr_0;

let z be rational_function of L;

redefine func z‘1 -> Polynomial of L;

redefine func z‘2 -> non zero Polynomial of L;

end;

notation

let L be non trivial multLoopStr_0;

let z be rational_function of L;

synonym num(z) for z‘1;

synonym denom(z) for z‘2;

end;

Now that num and denom — applied to rational functions — have result type
Polynomial, operations for rational functions can straightforwardly be defined
by employing the corresponding functions for polynomials. So, for example, the
evaluation of rational functions can be defined using evaluation of polynomials
and the division operator / defined for arbitrary fields L.

8 Of course rational functions can be introduced ”more algebraically” as the quotient
field of a polynomial ring. Here we decided to use pairs to concentrate on application
issues; see the discussion in section 5.

8 A. Rowinska-Schwarzweller and C. Schwarzweller

definition

let L be Field;

let z be rational_function of L;

let x be Element of L;

func eval(z,x) -> Element of L equals

eval(num(z),x) / eval(denom(z),x);

end;

Note that according to the definition of eval for polynomials the type of the
first argument — that is of num(z) and denom(z) — has to be Polynomial.
This is ensured by the redefinitions from above, which in this sense allow for
reusing the operations defined for polynomials in the case of rational functions.
Other necessary operations for rational functions such as the degree or arithmetic
operations can be defined the same way.

4.2 The Theorem

Using the general Mizar theory of polynomials and rational functions for our
purposes, that is for complex numbers, is straightforward. We just instantiate
the parameter L describing the coefficient domain with the field of complex
numbers F_Complex from [Mil01a]. So an object of type

rational_Function of F_Complex

combines the theory of rational functions with the one of complex numbers.

Further properties necessary to state the main theorem are introduced by
defining appropriate attributes for polynomials and rational functions resp. Note
that these definitions apply to polynomials and rational functions over the com-
plex numbers only given by the instantiated Mizar types mentioned above.

definition

let p be Polynomial of F_Complex;

attr p is real means

for i being Element of NAT holds p.i is real number;

end;

definition

let p be rational_Function of F_Complex;

attr Z is positive means

for x being Element of F_Complex

holds Re(x) > 0 implies Re(eval(Z,x)) > 0;

end;

Using these attributes — and the attribute odd describing odd functions —
we can then introduce one-ports and reactance one-ports in Mizar by the fol-
lowing mode definitions.

On Building a Knowledge Base for Stability Theory 9

definition

mode one_port_function is real positive rational_function of F_Complex;

mode reactance_one_port_function is

odd real positive rational_function of F_Complex;

end;

We also needed to define the odd and the even part of a polynomial f. This
is accomplished by two Mizar functors even_part(f) and odd_part(f), which
however can be defined straightforwardly. Finally we formalize the condition
from the theorem, that all the coefficients of the given polynomial f should be
greater than 0 as usual as a Mizar attribute:

definition

let f be real Polynomial of F_Complex;

attr f is with_positive_coefficients means

for i being Element of NAT st i <= deg p holds p.i > 0;

end;

Note that for a real polynomial f with positive coefficients and deg(f) ≥ 1
both the even and the odd part of f are not 0, hence both can appear as the
denominator of a rational function. Thus prepared we can state theorem 1 from
section 2 in Mizar. Note again that due to the redefinitions of section 4.1 the
functor [,] returns a rational function.

theorem

for p be non constant with_positive_coefficients

(real Polynomial of F_Complex)

st [even_part(p),odd_part(p)] is reactance_one_port_function &

degree([even_part(p),odd_part(p)]) = degree p

holds p is Hurwitz;

The proof of the theorem, as already indicated, basically relies on theorem 2
from section 2, which connects rational functions with the property of being a
Hurwitz polynomial. Based on our development from above one can formulate
this theorem as follows.

theorem

for p be non constant with_positive_coefficients

(real Polynomial of F_Complex)

st [even_part(p),odd_part(p)] is positive &

even_part(p),odd_part(p) have_no_common_roots

holds (for x being Element of F_Complex

st Re(x) = 0 & eval(odd_part(p),x) <> 0

holds Re(eval([even_part(p),odd_part(p)],x)) >= 0) &

even_part(p) + odd_part(p) is Hurwitz;

The corresponding Mizar proof is rather technical. The basic idea consists of
considering in addition to

Z(x) =
fe(x)

fo(x)
(7)

10 A. Rowinska-Schwarzweller and C. Schwarzweller

the rational function

W (x) =
Z(x)− 1

Z(x) + 1
=

num(Z)(x) − denom(Z)(x)

num(Z)(x) + denom(Z)(x)
. (8)

and to analyze the absolute values |W (x)|. If Z(x) is positive, then |W (x)| ≤ 1
for all x with ℜ(x) ≥ 0, which implies that W (x) has no poles for ℜ(x) ≥ 0. Thus
the denominator polynomial can have roots only for ℜ(x) < 0, so num(Z)(x) +
denom(Z)(x) is a Hurwitz polynomial.

The main theorem now easily follows from theorem 2, because the degree
condition implies that even_part(p) and odd_part(p) have no common roots.

5 Discussion — Lessons Learned

In the following we discuss our formalization from the last section with respect
to the tree criteria developed in the introduction. Though restricted to Mizar
we claim that the situation in other repositories is similar, so that most of our
results hold in a more general context also.

In [SR07] we already presented a Mizar formalization of Schur’s theorem,
another helpful criterion for stability checking. Based on polynomials only its
formalization was rather harmless. The only missing point that caused some
work was division of polynomials. However, as we will see, stability checking in
general needs definitely more extension than in this case.

5.1 Amount of Knowledge

Complex numbers and polynomials (over arbitrary rings) are included in MML.
A lot of theorems have been proved here, so that almost all we needed could be
found in the repository. Interestingly rational functions — a rather basic struc-
ture — had not been defined, yet. The reason might be that rational functions
are mathematically rather simple and this is the first time that a theorem relying
on rational functions has been formalized.

Though even and odd functions were already included in MML, the even
and odd part of a polynomial was not. This, however, comes with no surprise,
just because these polynomial operations are rather seldom used. We hence had
to prove a number of theorems dealing with these polynomials, most of them
however being elementary like for example

theorem

for p being real Polynomial of F_Complex

for x being Element of F_Complex st Re(x) = 0

holds Re(eval(odd_part(p),x)) = 0;

Summarizing, besides the lack of rational functions, MML provides the amount
of knowledge for stability checking one could expected.

On Building a Knowledge Base for Stability Theory 11

5.2 Representation of Knowledge

The construction of rational functions can be performed in different ways. Of
course, one can define rational functions as pairs of polynomials. On the other
hand there is the possibility to construct (the field of) rational functions as the
completion of polynomial rings. Though the second version is mathematically
more challenging we decided to use pairs. We wanted to emphasize the contri-
bution to applications by concentrating on prior knowledge of potential users:
Electrical engineers are probably not interested in (working with!) abstract al-
gebra, their interests and needs are different.

In the same context there is another representational problem: In MML we
find both the complex numbers and the field of complex numbers. Not a problem
in itself, this may cause some confusion when searching for notions and theorems:
The functors ⁀Re and Im giving the real and imaginary part, for exmaple, are
defined for complex numbers only, thus — theoretically — not applicable to
elements of a field. In Mizar, however, this is not necessarily the case: Using
a special registration — identify [Kor09] — the user can identify terms and
operations from different structures, here complex numbers with elements of the
field of complex numbers:

registration

let a,b be complex number;

let x,y be Element of F_Complex;

identify x+y with a+b when x=a, y=b;

identify x*y with a*b when x=a, y=b;

end;

In effect, after this registration functors ⁀Re and Im are applicable to elements
of the field of complex numbers.

In general, different views on mathematical objects — here, complex numbers
as numbers or elements of a field — have to be handled carefully in mathemat-
ical repositories in order to not confuse possible users. Even the rudimentary
difference between a polnomial and its polynomial function can lead to surprises
and incomprehension for people not familiar with the formal treatment of math-
ematics in repositories.

5.3 Applicability of Knowledge

As we have already seen, the adaption of general knowledge in MML to special
cases is straightforward: One just instantiates parameters describing the gen-
eral domain with the special one, so for example Polynomial of F_Complex for
polynomials over the (field of) complex numbers.

This, on the other hands, means that to work with such instantiations the
user has to apply theorems about the general structure. Though highly desirable
from the mathematical point of view, it is not clear whether this is really conve-
nient for application users: To work in the special field of complex numbers, for
example, then means to search for helpful theorems in the theory of fields, rings

12 A. Rowinska-Schwarzweller and C. Schwarzweller

or even groups and semigroups. Maybe here a search tool that generates and
collects theorems for special instances of theories would be a reasonable help.

The organization of MML is mainly by articles in which authors prove not
only their main theorems, but also whatever is necessary and not found in MML.
As a consequence theorems of the same topic, e.g. polynomials, can be spread
over the repository. A step to overcome this shortcoming is an ongoing project
called Mizar encyclopedia building articles with monographic character whose
contents is semi-automatically extracted from contributed Mizar articles. Unfor-
tunately polynomials have not been considered in this project, yet.

Summarizing the Mizar system though flexible in order to support special
applications lacks an organization of its corresponding repository to support
application users in their efforts.

6 Conclusions

We have presented a Mizar formalization of a theorem for stability checking
and have discussed how the knowledge contained in MML supported the process
from an application user’s point of view. Here we want to emphasize two points.

First, when building a knowledge base for an application area, it is hardly
foreseeable what knowledge is necessary. We have seen that the formalization
of Schur’s theorem went through without major problems, while the present
theorem caused definitely more work and preparation. Furthermore, there are
theorems on stability checking using even involved mathematical techniques such
as, e.g., analytic functions and the maximum principle.

Second, attractiveness of mathematical repositories does not only depend on
the amount of knowledge included. Equally important are a clear representation
and organization of knowledge in the sense that it stays familiar for users outside
the mathematical community.

Consequently is it essential to communicate with experts from the applica-
tion area. If we want our repositories to be widely used we have both to provide
a reasonable knowledge base and to take care of the fact that application users
might represent mathematical knowledge in a different way we are used to.

References

[Byl90] C. Byliński, The Complex Numbers; Formalized Mathematics, 1(3), pp. 507–
513, 1990.

[Ban03] G. Bancerek, On the Structure of Mizar Types; in: H. Geuvers and F. Ka-
mareddine (eds.), Proc. of MLC 2003, ENTCS 85(7), 2003.

[Dav81] M. Davies, Obvious Logical Inferences; in: Proceedings of the 7th Interna-
tional Joint Conference on Artificial Intelligence, pp. 530-531, 1981.

[DeB87] N.G. de Bruijn, The Mathematical Vernacular, a language for mathemat-
ics with typed sets; in P. Dybjer et al. (eds.), Proc. of the Workshop on
Programming Languages, Marstrand, Sweden, 1987.

On Building a Knowledge Base for Stability Theory 13

[Jaś34] S. Jaśkowski, On the Rules of Suppositon in Formal Logic; in: Studia Logica,
vol. 1, 1934.

[Kor09] A. Korni lowicz, How to Define Terms in Mizar Effectively; in: Studies in
Logic, Grammar and Rhetoric, vol. 18(31), pp. 67-77, 2009.

[Mil01a] A.J. Milewska, The Field of Complex Numbers; Formalized Mathematics,
9(2), pp. 265–269, 2001.

[Mil01b] R. Milewski, The Ring of Polynomials; Formalized Mathematics, 9(2),
pp. 339–346, 2001.

[Miz10] The Mizar Home Page, http://mizar.org.
[NB04] A. Naumowicz and C. Byliński, Improving Mizar texts with properties and

requirements, in: A. Asperti, G. Bancerek, and A. Trybulec (eds.), Proc. of
MKM 2004, Lecture Notes in Computer Science 3119, pp. 190–301, 2004.

[OS98] A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing (2nd
edition); Prenctice-Hall, New Jersey, 1998.

[RT01] P. Rudnicki and A. Trybulec, Mathematical Knowledge Management in
Mizar; in: B. Buchberger, O. Caprotti (eds.), Proc. of MKM 2001, Linz,
Austria, 2001.

[Sch10] C. Schwarzweller, Rational Functions; to appear in Journal of Formalized
Mathematics.

[Sch21] J. Schur, Über Algebraische Gleichungen, die nur Wurzeln mit negativen Re-
alteilen besitzen; in: Zeitschrift für angewandte Mathematik und Mechanik,
vol. 1, pp. 95–110, 1921.

[SR07] A. Rowinska-Schwarzweller and C. Schwarzweller, Towards Mathematical
Knowledge Management for Electrical Engineering; in: M. Kauers, M. Ker-
ber, R. Miner, W. Windsteiger (eds.), Towards Mechanized Mathematical
Assistants, Lecture Notes in Artificial Intelligence 4573, pp. 371-380, 2007.

[SR10] C. Schwarzweller and A. Rowinska-Schwarzweller, A Theorem for Checking
Stability of Networks; to appear in Journal of Formalized Mathematics.

[Tar39] A. Tarski, On Well-Ordered Subsets of Any Set; in: Fundamenta Mathemat-
icae, vol. 32, pp. 176–183, 1939.

[Unb93] R. Unbehauen, Netzwerk- und Filtersynthese: Grundlagen und Anwendun-
gen (4. Auflage); Oldenbourg-Verlag, 1993.

