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Abstract. We give a sequential model for noninterference security in-
cluding probability (but not demonic choice), thus supporting reasoning
about the likelihood that high-security values might be revealed by obser-
vations of low-security activity. Our novel methodological contribution is
the definition of a refinement order (C) and its use to compare security
measures between specifications and (their supposed) implementations.
This contrasts with the more common practice of evaluating the security
of individual programs in isolation.

The appropriateness of our model and order is supported by our show-
ing that (C) is the greatest compositional relation —the compositional
closure— with respect to our semantics and an “elementary” order based
on Bayes Risk — a security measure already in widespread use. We also
relate refinement to other measures such as Shannon Entropy.

By applying the approach to a non-trivial example, the anonymous-
majority Three-Judges protocol, we demonstrate by example that cor-
rectness arguments can be simplified by the sort of layered developments
—through levels of increasing detail- that are allowed and encouraged by
compositional semantics.
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1 Introduction

We apply notions of testing equivalence and refinement, based on Bayes Risk, to
the topic of noninterference security [10] with probability but without demonic
choice. Previously, we have studied noninterference for demonic systems without
probabilistic choice [26, 27], and we have studied probability and demonic choice
without noninterfence [28,21]. Here thus we are completing a programme of
treating these features “pairwise.”

Our long-term aim —as we explain in the conclusion— is to treat all three
features together, based on the lessons we have learned by treating strict subsets
of them. The benefit (should we succeed) would apply not only to security,
but also to conventional program development where, in the presence of both
probabilistic and demonic choice, the technique of data-transformation (aka.
data refinement or data reification) becomes unexpectedly complex: variables
inside local scopes must be treated analogously to “high security” variables in
noninterference security.

We take the view, learned from others, that program/system development
benefits from a comparison of specification programs with (putative) implemen-
tations of them, wherever this is possible, via a mathematically defined “refine-
ment” relation whose formulation depends ultimately on a notion of testing that
is agreed-to subjectively by all parties concerned [8].* To explain our position
unambiguously, we begin by recalling the well known effects of this approach for
conventional, sequential programming.

1.1 Elementary testing and refinement for conventional programs

Consider sequential programs operating over a state-space of named variables
with fixed types, including a program abort that diverges (such as an infinite
loop). We allow demonic nondeterminsm, statements such as x:=0Mx:=1, in
the now-conventional way in which they represent equally abstraction (we do
not care whether x is assigned 0 or 1, as long as it is one or the other), on the
one hand, or unpredictable and arbitrary run-time choice on the other.

Having determined a “specification” program S, we address the question of
whether we are prepared to accept some program I that purports to “implement”
it. Although there is nowadays a widely accepted answer to this, we imagine that
we are considering the question for the first time and that we are hoping to find
an answer that everybody will accept. For that we search for a test on programs
that is “elementary” in the sense that it is conceptually simple and that no
“reasonable” person could ever argue that S is implemented by I if it is the case
that S always passes the test but I might fail it.

4 We say “wherever this is possible” since there are many aspects of system develop-
ment that cannot be pinned down mathematically. But —we argue— those that can
be, should be.

5 There is a possibly dichotomy here between “may testing” and “must testing,” and
we are taking the latter in this example: if S must pass a certain test, then so must
I if it is to be considered an implementation.
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A common choice for such an elementary test is “can diverge,” where diver-
gence is considered to be a bad thing: using it, our criterion becomes “if I indeed
implements S and I can diverge, then it must be possible for S to diverge also.”
We note that the elementary test cannot be objectively justified: it is an “ax-
iom” of the approach that will be built on it; and it is via the subjective axioms
(in any approach) that we touch reality, where we avoid an infinite definitional
regress.

The elementary test provides an “only if” answer to the implementation
question, but not an “if.” That is, we do not say that I implements S if either
I never fails the test or S might fail it: this is not practical, because of context.
For an example, let S be if x#£0 then abort fi and let I be simply abort.
Then indeed S passes the test if I does (because they both fail); but we cannot
accept I generally as a replacement for S because context x:=0; S “protects” .S,
and passes the test as a whole; but the same context does not protect I, since
x:= 0; I (still) fails. This illustrates the inutility of the elementary view taken on
its own, and it shows that we need a more sophisticated comparison in order to
have a practical tool that respects contexts. (Thus it is clear above that we must
add “if executed from the same initial state.”) The story leads on from here
to a definition, ultimately, of sequential-program refinement (C) as the unique
relation such that ©

(i) soundness  If SCI then for all contexts C we have that C(I) passes the
elementary test if C(S) does, and

(ii) completeness If SIZI then there is some context C such that C(I) fails the
elementary test although C(S) passes it.

That relation turns out to have the direct definition that SCI just when, for all
initial states s, if executing I from s can deliver some final state s’ then —from
s again— either S can deliver s’, as well, or S can diverge. Crucially, it is the
direct definition that allows (C) to be determined without examining all possible
contexts.

1.2 Elementary testing and refinement for probabilistic
noninterference-secure programs

In attempting to follow the trajectory of §1.1 into the modern context of nonin-
terference and probability, we immediately run into the problem that there are
competing notions of elementary test. Here are just four of them:

Bayes Risk [34,5,1,2] is based on the probability an attacker can reveal a
high-security, “hidden” variable h using a single query “Is h equal to h?”
where h is some value in h’s type. Here (and below) the elementary testing
of S wrt. I requires that the probability of revealing h in I cannot be higher
than it is in S.

5 We say “a” rather thean “the” definition of refinement because this is just an ex-
ample: other elementary tests, and other possible contexts, lead naturally to other
definitions.
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marginal guesswork [30, 15] is measured in terms of how many queries of the
form “Is h equal to h?” are needed to determine h’s value with a given
probability.

Shannon Entropy [33] is related to the use of multiple queries of the form “Is
h in some set H?” where H is a subset of h’s type.

guessing entropy [19,15] is the average number of “Is h equal to h?” guesses
necessary to determine h’s value.

Not only do these criteria compete for popularity, it turns out that on their
own they are not even objectively comparable. For instance, Pliam [30] finds
that there can be no general ordering between marginal guesswork and Shannon
Entropy: that is, from a marginal-guesswork judgement of whether S passes all
tests that I does, there is no way to determine whether the same would hold
for Shannon-entropy judgements, nor vice versa. Similarly, Smith has compared
Bayes Risk and Shannon Entropy, and claims that these measures are inconsis-
tent in the same sense [34]. The general view seems to be that none of these
(four) methods can be said to be generally more- or less discriminating than any
of the others.

In spite of the above, one of our contributions here is to show that Bayes Risk
is maximally discriminating among those four if context is taken into account.

1.3 Features of our approach: a summary

Our most significant deviation from traditional noninterference is that, rather
than calculating security measures of programs in isolation, instead we focus on
comparing security measures between programs: typically one is supposed to be
a specification, and another is supposed to be an implementation of it. What we
are looking for is an implementation that is at least as secure as its specification.

Since we never consider the security of programs in isolation, an advantage is
that it is possible easily to arrange certain kinds of permissible information flow.
For example whenever s> holds, a program I that leaks only the i low-order
bits of a hidden integer h is secure with respect to a specification S that leaks
the s low-order bits of h — that is, for any implementation of S, the leaking of
up to s low-order bits of h is allowed but no more. This way we sometimes can
avoid separate tools for declassification: to allow an implementation to release
(partial) information, we simply arrange that its specification does so.

Typically it is both functional- and security properties (however we measure
them) that are of interest. As such, we would like to define a relation (E) between
these programs so that SCI just when implementation I has all the functional
and the security properties that specification S does, where “all” is interpreted
within our terms of reference. For incremental, compositional reasoning with such
an order, it has been known from the very beginning [37] that the refinement
relation (C) must satisfy two key technical properties:

Transitivity If SCMC]T then also SCI. Because of this a comparison between
two large programs S, can be carried out via S T M; C --- C My E T
through many small steps over a long time.
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Monotonicity of contexts If S C I then also C(S) C C(I), where C is any
program context. Because of this, a large comparison can be carried out via
many small steps independently by a large programming team working in
parallel.

As argued above, since our comparisons rest ultimately on subjective criteria
for failure, we reduce that dependency on what is essentially an arbitrary choice
by making those criteria as elementary as possible: when can you be absolutely
sure that SIZI, that refinement should fail? For this purpose we identify an
elementary testing relation (=) based on Bayes Risk, such that if SAI then I
“certainly” (but still subjectively) does not satisfy the specification S in terms
of “reasonable” functional- and probabilistically secure properties.

Because our (=) is not respected by all contexts (there exist programs S, I
and context C such that S<I, yet C(S)ZAC(I) in spite of that) our relation (C) is
chosen so that it is smaller —i.e. more restrictive— than (<), so that it excludes
just those “apparent” refinements that can be voided by context.

Our refinement relation is the compositional closure of (<), the largest rela-
tion (C) such that SCI implies C(S)=C(I) for all possible contexts C. Abusing
terminology slightly, we will for simplicity say that (C) is compositional just
when it is respected by all possible contexts C (whereas strictly speaking we
should say that all such C’s are (C)-monotonic). Further, we note that if we de-
fine equivalence A~B to be “bi-refinement” ACB and BCA then monotonicity
of (C) implies that (~) is is a congruence for all contexts C.

There are two further, smaller idiosyncracies of our approach. The first is
that we allow the high-security, “hidden” variables to be assigned-to by the pro-
gram, so that it is the secrecy of the final value h’ of h that is of concern to
us, not the initial value h. This is because we could not otherwise meaningfully
compare functional properties, nor would we be able to treat (sequential) com-
positional contexts. The other difference, more a position we take, is that we
allow an attacker both perfect recall and an awareness of implicit flow: that the
intermediate values of low-security “visible” program variables are observable,
even if subsequently overwritten; and that the control-flow of non-atomic pro-
gram statements is observable. As shown in our case study (§8.3) it is this which
allows us to model distributed applications: there, the values of intermediate
variables can be observed (and recalled) if they are sent on an insecure channel,
and the control flow of a program may be witnessed (for example) by observing
which request an agent is instructed to fulfill.

In summary, our TECHNICAL CONTRIBUTION is that we (i) give a sequential
semantics for probabilistic noninterference, (ii) define the above order (<) based
on Bayes Risk, (iii) show it is not compositional, (iv) identify a compositional
subset of it, a refinement order (C) such that SCI implies C(S)=C(I) for all
contexts C and (v) show that (C) is in fact the compositional closure of (<), so
that in fact we have SZI only when C(S)ZAC(I) for some C.

Finally, we note (vi) that (C) is sound for the other three, competing no-
tions of elementary test and that therefore Bayes-Risk testing, with context, is
maximally discriminating among them.
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These technical contributions further our general goal of structuring secure
protocols hierarchically and then designing/verifying them in separate pieces,
a claim that we illustrate by showing how our model and our secure-program
ordering may be used to give an incremental development of The Three Judges,
an “anonymous majority” protocol we constructed precisely to make this point.

2 A probabilistic, noninterference sequential semantics

We identify visible variables (low-security), typically v in some finite type V, and
hidden variables (high-security), typically h in finite H. Variables are in sans serif
to distinguish them from (decorated) values v: V, h: H they might contain.”

As an example, let hidden h:{0,1,2} represent one of three boxes: Box 0
has two black balls; Box 1 has one black- and one white ball; and Box 2 has
two white balls. Then let v: {w,b, L} represent a ball colour: white, black or
unknown. Our first experiment in this system is Program S, informally written
h:=0®1®2;v:e {w@%,b@l_%}};vzzj_7 that chooses box h uniformly, and then
draws a ball v from that Box h: from the description above (and the code) we
can see that with probability h/2 the ball is white, and with probability 1—h/2
it is black. Then the ball is replaced. A typical security concern is “How much
information about h is revealed by its assignments to v?”

We use this program, and that question, to motivate our program syntax and
semantics, to make Program S the above program precise and to provide the
framework for asking —and answering— such security questions.

We begin by introducing distribution notation, generalising the notations for
naive set theory.

2.1 Distributions: explicit, implicit and expected values over them

We write function application as f.z, with “.” associating to the left. Operators
without their operands are written between parentheses, as (<) for example.
Set comprehensions are written as {s:S | G « E} meaning the set formed by
instantiating bound variable s in the expression E over those elements of S
satisfying formula G.®

By DS we mean the set of discrete sub-distributions on set S that sum to no
more than one, and DS means the full distributions that sum to one exactly. The
support [§] of (sub-)distribution §: DS is those elements s in S with d.s#0, and
the weight 3 § of a distribution is (> s: [d] « d.s), so that full distributions have

7 We say hidden and visible, rather than high- and low security, because of the con-
nection with data refinement where the same technical issues occur but there are no
security implications.

& This is a different order from the usual notation { £ | s€SAG}, but we have good rea-
sons for using it: calculations involving both sets and quantifications are made more
reliable by a careful treatment of bound variables and by arranging that the order
S/G/E is the same in both comprehensions and quantifications (asin (Vs: S | G « E)
and (3s:S |G« E)).
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weight 1. Distributions can be scaled and summed according to the usual point-

wise extension of arithmetic to real-valued functions, so that (cxd).s is cx(d.s)

for example; the normalisation of a (sub-)distribution 0 is defined [6]:=4d/ 4.
Here are our notations for explicit distributions (cf. set enumerations):

multiple We write {{.T@p Ly9e z@r}} for the distribution assigning probabil-
ities p,q,- -+ ,r to elements x, vy, - - , z respectively, with p+q+---+r < 1.

uniform When explicit probabilities are omitted they are uniform: thus {z} is
the point distribution {2}, and {z,y, 2} is {293,535, 293 }. And 6B,
is 91 1 ®s.

In general, we write (©d:0 « E) for the expected value (> d:[d] « 6.dx E)
of expression E interpreted as a random variable in d over distribution §.° If
however E is Boolean, then it is taken to be 1 if E holds and 0 otherwise: thus
in that case (®d:d « F) is the combined probability in § of all elements d that
satisty E.

We write implicit distributions (cf. set comprehensions) as {d:d | R « E}},
for distribution 4, real expression R and expression E, meaning

(©d:6« R« {E}) / (®@d:6 « R) (1)

where, first, an expected value is formed in the numerator by scaling and adding
point-distribution {E} as a real-valued function: this gives another distribu-
tion. The scalar denominator then normalises to give a distribution yet again. A
missing F is implicitly d itself. If R is missing, however, then {d: ¢ « E} is just
(©d:0 « {E}) — in that case we do not multiply by R in the numerator, nor
do we divide (by anything).

Thus {d: « E} maps expression F in d over distribution § to make a new
distribution on E’s type. When R is present, and Boolean, it is converted to 0,1;
thus in that case {d:d | R} is §’s conditioning over formula R as predicate on
d.

Finally, for Bayesian belief revision we let 6 be an a-priori distribution over
some D, and we let expression R for each d in D be the probability of a certain
subsequent result if that d is chosen. Then {d:§ | R} is the a-posteriori distri-
bution over D when that result actually occurs. Thus in the three-box program
S let the value first assigned to v be ¢. The a-priori distribution over h is uni-
form, and the probability that the chosen ball is white, that 9=w, is therefore
1/3%(0/2+4 1/2+2/2) = 1/2. But the a-posteriori distribution of h given that
o=w is {h:d | h/2}, which from (1) we can evaluate

— ER{0L2) S nh) / Erfo L2} - B) = 2%y

that is {{1@%,2@%}, to calculate our way to the conclusion that if a white ball
is drawn (0=w) then the chance it came from Box 2 is 2/3, the probability of
h=2 in the a-posteriori distribution.

9 Tt is a dot-product between the distribution and the random variable as state-vectors.
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2.2 Program denotations over a visible/hidden “split” state-space

We account for the visible and hidden partitioning of the finite state space VxH
in our new model by building split-states of type VxDH, whose typical element
(v,0) indicates that we know v=v exactly, but that all we know about h —which
is not directly observable— is that it takes value h with probability d.h.

Programs become functions (VxDH) — D(VxD?H) from split-states to dis-
tributions over them, called hyper-distributions since they are distributions with
other distributions inside them: the outer distribution is directly visible but the
inner distribution(s) over H are not. Thus for a program P with semantics [P],
the application [P].(v,d) is the distribution of final split-states produced from
initial (v,d). Each (v,¢") in the support of that outcome, with probability p
say in the outer- (left-hand) D in D(VxD%H), means that with probability p an
attacker will observe that v is v’ and simultaneously will be able to deduce (via
the explicit observation of v and v" and other implicit observations) that h has
distribution ¢§’.

When applied to hyper-distributions, addition, scaling and probabilistic choice
(,®) are to be interpreted as operations on the outer distributions (as explained
in §2.1).

2.3 Program syntax and semantics

The programming language semantics is given in Fig. 1. In this presentation we
do not treat loops and, therefore, all our programs are terminating.

When we refer to classical semantics, we mean the interpretation of a pro-
gram without distinguishing its visible and hidden variables, thus as a “relation”
of type (WxH) — D(VxH). 10

Atomic commands Syntactically atomic program (fragments), noted * in
Fig. 1, are first interpreted with respect to their classical probabilistic semantics,
and are then embedded into the split-state model. To emphasise that they are
syntaxtically atomic, we call them “A” (rather than “P”) in this section.

Thus the first step is to interpret an atomic program A as a function from
VxH -pairs to distributions D(Vx#H) of them [16,21] — call that classical in-
terpretation [A]c so that for an initial (v, h) program A produces a final distri-
bution [A]¢.(v, k), that is some distribution ¢'€eD(VxH).

Given such a distribution ¢’, define its v-projection vProj.d’ to be given by
{(v,h):0" « v}, that is the distribution over V), alone, that ¢’ defines if we ignore
(and aggregate) the h-components for each distinct v.

Then define for §’ its v’-conditioning vCond.d’.v’, that is the distribution
{(v,h): 8" | v=v" « b} over H that we get by concentrating on a particular value

v

10 Classical relational and non-probabilistic semantics over a state-space VxH is strictly
speaking (VxH)<>(VxH) or equivalently P((VxH)?). Further formulations include
however both (VxH)—=P(VxH) and V—-H—P(VxH). Because all these are essen-
tially the same, we call (VxH)—D(VxH) a “relational” semantics.
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Program type Program text P Semantics [P].(v, )
Identity skip { (v,0) }

Assign to visible vi=Ev.h {hée(Evh{h:6]| Ev.h'=Ev.h})}

Assign to hidden h:=Ev.h  { (v,{h:d Evh})}

Choose prob. visible v:e D.v.h {0 :(©@h:§ + Dw.h) o (v, {h":6 | Dw.hW'}) }
Choose prob. hidden h:€ Dv.h { (v, (©h:6 « D.v.h)) }

Composition P P ©®,8): [Pi].(v,8) » [P2].(v',8"))

General prob. choice Py 4v.h® P2 px [Pi].(v,{h:0 | gv.h}) pis@nis* qun

+ (1=p) * [P2].(v,{h:6 | 1—q.v.h})
Probabilistic choice ~ P1 p,® P> px* [P1].(v,8) + (1—p) * [P2].(v,8) 5 is constant

Conditional choice if Giv.h then P, px [P].(v,{h:0 | Gv.h}) pis@hris® Gon
else Py fi + (1—p) % [Pf]-(v, {h: 0 | -G.v.h})

For simplicity let V and H have the same type X'. Expression E.v.h is then of type X,
distribution D.v.h is of type DX and expression G.v.h is Boolean. Expressions p and
q.v.h are of type [0, 1].

The syntactically atomic commands marked x have semantics calculated by taking the
classical meaning and then applying Def. 1. The third column for x’d commands is the
result of doing that.

Further, the Assign-to semantics are special cases of the Choose-prob. semantics, ob-
tained by making the distribution D equal to the point distribution {E£}. And the
(simple) probabilistic choice is a special case of the general prob. choice, taking q.v.h
to be the constant function always returning p. Finally, conditional choice is the special
case of general prob. choice obtained by taking ¢.v.h to be 1 when G.v.h holds and 0
otherwise.

For distributions in program texts we allow the more familiar infix notation ,®, so that

1

we can write h::O%@l for h:c {093, 1@%} and h:=0&1 for the uniform h:€ {0,1}.
The degenerate cases h:=0 and h:€ {0} are then equivalent, as they should be.

Fig. 1. Split-state semantics of commands

With these two preliminaries, the distribution over VxD#H we get by inter-
preting 4" atomically is defined

embed.dy’ = {v':vProj.0’ « (v',vCond.d’.v")} ,

which is in essence just the “grouping together” of all elements (v, h') in ¢’ that
have the same v'.

There are two routine steps left to finish off the embedding of whole programs;
and they are given here in Def. 1:

Definition 1. Induced secure semantics for atomic programs  Given a syntac-
tically atomic program A we define its induced secure semantics [A] via

[A].(v,6) := embed.(®h:d « [A]c.(v,h)) . (2)

Ll S S S
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Thus A is applied to the incoming distribution (v,d) by applying its classical
meaning [A]c to each (v, h)-pair separately, noting that pair’s implied weight,
and then using those weights to combine the resulting (v’, h')-distributions into
a single distribution ¢’ of type D(VxH). That distribution ¢’ is then embedded
into the split-state model as above.

The effect overall is that an embedding imposes the largest possible ignorance
of 1/ that is consistent with seeing v" and knowing the classical semantics [A]¢.
O

We illustrate the definitions in Fig. 1 by looking at some simple examples.

Program skip modifies neither v nor h, nor does it change an attacker’s
knowledge of h. Assignments to v or h can use an expression F.v.h or a distribu-
tion D.v.h; and assignments to v might reveal information about h. For example,
from Fig. 1 we can explore various assignments to v:

(i) A direct assignment of h to v reveals everything about h:

[vi=h].(v,6) = {h:0 « (h, {R})}

(ii) Choosing v from a distribution independent of h reveals nothing about h:

[[V:: 0 1/3EB 1]]'(1)7 6) = {{(Ou 6)@%7 (]-7 6)@%}}
(iii) Partially h-dependent assignments to v might reveal something about h:

[[V:: h mod 2]]'(1)7 {07 1, 2}) = {(Ov {07 2}})@%7 (17 {{1})@%}}

As a further illustration, we calculate the effect of the first assignment to v in
Program S as follows:

[v:ie {w®s, 65 }].(v, {0,1,2})

= {v:1/3x({o} + {w, b} + {w}) - , / “Choose prob. visible”
(o, §0: 40,12} | {w% 69 % }'}) }

= “simplify the summation”

£ fw, b}« (o, 1 40,1, 2} | fw®5 b =54 '}) }

= “evaluate outer comprehension”

{{ (w,{{h/:{{O,LQ}} | %l}})7 (b, {{hl:{{O’LQ}} | 1_%/}}) }}

= { (w, {1@%,2@%}), (b, {{0@%, 1@%}) } . “evaluate conditional distributions”

As for assignments to h, we see that they affect ¢ directly; thus Choosing
hidden h might

(iv) increase our uncertainty of h: [h:=001®2].(v, {0,1}) = {(v, {0,1,2})}

(v) or reduce it: [h:=0®1].(v, £0,1,2}) = {(v, {0, 1} }
(vi) or leave it unchanged: [h:=2-h].(v,{0,1,2}) = {(v, {2,1,0})}

In all of the above, we saw that the assignment statements were atomic — an
attacker may not directly witness the evaluation of their right-hand sides. For
instance, the atomic probabilistic choice v:i=h@®—h does not reveal which of the
equally likely operands of (@) was used.
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Non-atomic commands The first, Composition P;; Ps, gives an attacker per-
fect recall after P, of the visible variable v as it was after P;, even if Py over-
writes v.!! To see the effects of this, we compare the three-box Program S from
the start of §2, that is

h:=091®2;v:e {w@%,b@lfg}};v:: 4,

with the simpler Program I defined h:=0®1®2;v:= 1 in which no ball is drawn:
the final hyper-distributions are respectively

£ (L {195,298 ), (L, {0°%,1°5}) } (A%)
and { (L, f0,1,2}) } . (A7)

We calculated A as follows:

[h:= 08162 vie {w®s, 6915} vi= 1].(v, 6)
= [vie {w®2, 02 };vi= 1].(v, £0,1,2}) “Choose hidden; Composition”
= (©(5,0): [v:e {wz, 6913 }].(v, §0,1,2}) « [vi= L].(6,0)) “Composition”

= “assignment v:= L independent of h”

(@ (6,8): [v:e fw™s, b9 J1.(0, €0, 1,2}) + £(L.)})

= “Choose prob. visible (see earlier calculation)”

(@ (0,0): { (w, {15,295 ), (b, {0°3,1°5 1)} - {(L,0)})
= {(L, {1@%,2@%]}), (L, {0@%, 1@%}})}} . “evaluate expected value”

In neither case Ay nor A} does the final value L of v reveal anything about
h. But A} is a point (outer) distribution (thus concentrated on a single split-
state), whereas Ay is a uniform distribution over two split-states each of which
recalls implicitly the observation of an intermediate value © of v that was made
during the execution leading to that state. Generally, if two split-states (v',07)
and (v, d5) occur with §]#d5 then it means an attacker can deduce whether h’s
distribution is 6] or ¢5 even though v has the same final value v" in both cases.
Although the direct evidence ¥ has been overwritten, the distinct split-states
preserve the attacker’s deductions from it.

The meaning of General prob. choice Py p..n@® Py —of which both Probabilistic
choice and Conditional choice are specific instances— makes it behave like [P;]
with probability p.v.h and [P;] with the remaining probability. The definition
allows an attacker to observe which branch was taken and, knowing that, she
might be able to deduce new facts about h. Thus unlike for (v) above we have
[h:=0 & h:=1].(v,d) = {(v, {O}), (v, {1})}, which is an example of implicit
flow.

1 1t is effectively the Kleisli composition over the outer distribution.
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A similar implicit information flow in any Conditional choice with guard
G.v.h makes it possible for an attacker to deduce the value of the guard exactly.

For General prob. choice P; ,y.h@® P> however, the implicit flow might only
partially reveal the value of the expression p.v.h. For example, suppose we execute
the probabilistic assignment h::i <) %, which establishes that h is either % or
1 with equal probability of each: its output is {(v, {1, 2})}. Then we execute
program skip & skip from there, and we find that we do not entirely discover
the value of h. But still we do discover something: we find that

1
1@3

. . @2
[[sklphEBsklp]].(u{{i,%) = {( {3 ,% 3

3 2
5 193

ENCRE RS R
and see that indeed the chance of guessing h’s value has increased, though we
still do not know it for certain. Our probability initially of guessing h is 1/2.
But after the choice we will guess h:% when we see the choice went left, which
happens with probability 3/8; but if we saw the choice going right we will guess
h:%7 which happens with probability 5/8. Our average chance of guessing h is
thus (2/3)%(3/8)4(3/5)*(5/8) = 5/8, which is more than the 1/2 it was initially:
that increased knowledge is what was revealed by the (h@®).

3 The Bayes-Risk based elementary testing order

The elementary testing order comprises functional- and security characteristics.

Say that two programs are functionally equivalent iff from the same input
they produce the same overall output distribution [16,21], defined for hyper-
distribution A’ to be ft.A”:= {(v,8"): A'; /28" « (v, ') }. 12 We consider state-
space VxH jointly, i.e. not V alone, because differing distributions over h alone
can be revealed by the context (—; v:=h) that appends an assignment v:=h.

We measure the security of a program with “Bayes Risk” [34, 5,1, 2], which
determines an attacker’s chance of guessing the final value of h in one try. The
most effective such attack is to determine which split-state (v’,4’) in a final
hyper-distribution actually occurred, and then to guess that h has some value
B’ that maximises ¢’, i.e. so that §’h’ = LU§’. For a whole hyper-distribution we
average the attacks over its elements, weighted by the probability it gives to each,
and so we we define the Bayes Vulnerability of A’ to be bv.A":=(® (v, §"): A’ »
I_ICS/) . 13

For Program S the vulnerability is the chance of guessing h by remembering
v’s intermediate value, say 0, and then guessing that h at that point had the value
most likely to have produced that ¢: when O=w (probability 1/2), guess h=2;

12 Two program texts Pyy 2y denote functionally equivalent secure programs just when
their classical denotations agree, that is when [Pi]c=[P2]c. The function ft ex-
presses that semantically, and the connection is thus that [Pi]c=[P:]c just when
ft.([P1]- (v, 8))=ft.([P2]-(v, §)) for all (v,0).

We use vulnerability rather than risk because “greatest chance of leak” is more
convenient than the dual “least chance of no leak.” Our definition corresponds to
Smith’s vulnerability [34].
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when 9=b, guess h=0. Via bv.A’; that vulnerability is 1/2%2/3+1/2%2/3 = 2/3.
For I, however, there is no “leaking” ¢, and so it is less vulnerable, having
bv.A7 =1/3.

The elementary testing order on hyper-distributions is then defined Ag=<A;
iff ft. Ag=ft.A; and bv.Ag>bv.A;, and it extends pointwise to the elementary
testing order on whole programs. That is, we say that S=1I just when for corre-
sponding inputs (i) S, I are functionally equivalent and (ii) the vulnerability of I
is no more than the vulnerability of S. Thus S=I; because they are functionally
equivalent and the vulnerabilities of S, I; are 2/3,1/3 resp.

The direction of the inequality (<) corresponds to increasing security (and
thus decreasing vulnerability). This agrees with other notions of security that
increase with increasing entropy of the hidden distribution.

4 Non-compositionality of the elementary testing order

Although SAI is an (elementary) failure of implementation, the complementary
S=I is not necessarily a success: it is quite possible, in spite of that, that there
is a context C with C(S)ZAC(I). That is, simply having S<I does not mean that
I is safe to use in place of S in general.

Thus for stepwise development we require more than just S<I: we must
ensure that C(S)=C(I) holds for all contexts C(-) in which S, I might be placed
— and we do not know in advance what those contexts might be.

Returning to the boxes, we consider now another variation Program I3 in
which both Boxes 0,1 have two black balls: thus the program code becomes
h:=00132;v:€ {w®M+2) p@1=(=2)W.y:— | with final hyper-distribution

f (L f2h®s, (L {015 } (A7,)

The vulnerability of I5 is 1/3x1+2/3%1/2, again 2/3 so that S<I,. Now if context
C is defined (—; h:=h=2), the vulnerability of C(S) is 1/2%2/3 + 1/2+1 = 5/6:
it is more than for S alone because there are fewer final h-values to choose from.
But for C(I3) it is greater still, at 1/3%1 +2/3%1 = 1.

Thus S=I; but C(S)AC(I2), and so (=) is not compositional. This makes
(=) unsuitable, on its own, for secure-program development of any size; and its
failure of compositionality is the principal problem we solve.

5 The refinement order, and compositional closure

The compositional closure of an “elementary” partial order over programs, call
it (<g), is the largest subset of that order that is preserved by composition with
other programs, that is with being placed in a program context. Call that closure
(<e).

The utility of (<¢) is first that A<¢ B implies A<gB, so that A< B suffices
if A<gB is all that we want: but it implies further that C(A4)<gC(B) for all
contexts C, as well. Tts being the greatest such subset of (<g) means that it
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relates as many programs as possible, never claiming that AL~ B unless there
is some context C that forces it to do so because in fact C(A)ZLgC(B).

Thus to address the non-compositionality exposed in §4, we seek the compo-
sitional closure of (<), the unique refinement relation (C) such that (soundness)
if SCT then for all C we have C(S)=<C(I); and (completeness) if SZI then for
some C we have C(S)AC(I). Soundness gives refinement the property (§4) we
need for stepwise development; and completeness makes refinement as liberal as
possible consistent with that.

We found above that SIZI2; we show later (§6.4) that we do have SCI;.

6 Constructive definition of the refinement order

Although saying thet (C) is the compositional closure of (=) does define it com-
pletely, it is of little use if to establish SCI in practice we have to evaluate
and compare C(S)=C(I) for all contexts C. Instead we seek an explicit construc-
tion that is easily verified for specific cases. We give a detailed example to help
introduce our definition.

For integers z, n, let zrndn be a distribution over the multiple(s) of n closest
to x: usually there will be exactly two such multiples, one on either side of x and,
in that case, the probabilities of each are inversely proportional to their distance
from x. Thus 1rnd 4 is {097,497} and 2 rnd 4 is {0°2,4°2} and 3 rnd 4
is {{O@i,ll@%]}. If however = happens to be an integer multiple of n then the
outcome is definite, a point distribution: thus 0rnd4 = {0} and 4rnd4 = {4}.

Now consider the two programs

Py:= h=1682®3; v:iehrnd 2; v:i=hmod 2 3)
and Pyp= h:=1626¢3; v:€ehrnd4; vi=hmod 2 .

Both reveal hmod2 in v’s final value v/, but each P,, also reveals in the overwrit-
ten visible 0, say, something about h rnd n; and intuition suggests that P,,CP,,
for n<m only. Yet in fact the vulnerability is 5/6 for both P4, which we can
see from their final hyper-distributions; they are A, and A%, given by

{ (07{{2?&)@1%, (1,{1}2)@%3(17{{1173}})@%,1(17{{3})@1 } (A%,)
{025, (1, 177,30 ))°5, (1, {195,395 )5} (4%,

With overall probability 1/3%3/4 + 1/3%1/4 = 1/3 the final v’ will be 1 and ¥ will be 0; since
v’ is 1 then h must be 1 or 3; but if © was 0 that h is three times as likely to have been 1.

so that e.g. 1/3%1 4 1/3%3/4 + 1/3%3/4 = 5/6 for P,. The overall distribution

of (v/,h') is {(0,2),(1,1),(1,3)} in both cases, so that P4 are functionally
equivalent; but they have different residual uncertainties of h.

ol

6.1 Hyper-distributions as partitions of fractions

In our definition of refinement we will consider the hyper-distributions corre-
sponding to each value of v separately.
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In the example above, if we consider just the h-distributions associated with
v'=1 then we can, by multiplying through their associated probabilities from
the hyper-distributions, present them as a collection of fractions, that is sub-
distributions over H. We call such collections partitions and here they are given
for P, and P, respectively by

. The (0 1780 )
st {0 ly fediey) O

In general, let the function fracs.A.v for hyper-distribution A and value v
give the partition of fractions extracted from A for v=v, as we extracted IT %2 1

from AY, ,, and v'=1 at (4) above.

6.2 Operations on fractions and partitions

Distribution operations such as support ([-]) and weight (>°) and normalise
[] apply to fractions, and for example we have that {19} + {195,39%} is
£193,396} and 3 {193,396} is 1/2 and [{193,396}] is {193,395}, For
partitions IT we write > IT as shorthand for ((>_m:IT « 7)), so that

DR 106370 i ({19530

Note that the sum of a partition is still a partition, albeit always with only a
single fraction in it. Scaling, when applied partition is applied pointwise to each
of its fractions. An empty partition is written (), and a zero(-weight) fraction is
written {}}; thus ({}) is a zero-weight partition containing exactly one fraction.

Finally, the Bayes Vulnerability of a partition bv.IT is (3 m:IT « Un), and
the Bayes Vulnerability of a hyper-distribution may be equivalently expressed
using partitions as (> v:V « bv.(fracs.A.v)).

6.3 Relationships between fractions and partitions

Say that two non-zero fractions 7y oy are similar, written 7 ~m, just when their
normalisations are equal, that is when [m]=[mg] so that they are multiples of
each other: this is an equivalence relation. For example we have {{1@%,2@%}} ~
{193,292} because both normalise to the former.

Say that a partition is reduced just when it contains no two similar fractions,
and no zero fractions at all. > For any hyper-distribution A and value v, we
have that fracs.A.v is in reduced form by construction. Thus partitions are more
expressive than hyper-distributions.

The reduction of a partition is obtained by by adding-up all its similar frac-
tions and removing its all-zero fractions, that is by reducing it, and we say that

14 Strictly speaking, partitions are multisets of fractions, i.e. without order but possibly
having repeated elements.
15 Allowing zero fractions, in the unreduced case, simplifies some proofs.
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two partitions Il oy are similar, written I11~11, just when they have the same
reduction. Thus for example we have

(£) €05}, 195,290}, f195,2°6}) ~ (£0°5}, 199,20}, {1°5,2°5 ),

because both reduce to ({093 }, {193,295 }). If two partitions are similar then.
for any distribution § over H, the probability that an attacker may deduce that
h is distributed according to ¢ is the same in either partition.

Say that one partition I1y is as fine as another Il, written II1CIl5, just
when Ay can be obtained by adding-up one or more groups of fractions in A;.
Thus for example we have

(093}, {199,299}, {195,29%}) T ({05}, {193,295 })

by adding-up the second and third fractions on the left. For as-fine-as the added-
up fractions do not have to be similar: if however they are similar, then we have
I ~115 as well as II1C15; if they are not similar, we can write ng II5.

Combining two dissimilar fractions in a partition represents removal of the
implicit observations that distinguished them. Hence if ng 15 then partition
11, conceals h strictly better than I7; does.

Note that in both cases II1~Il; and II,CIl; we have ) II) = ) I, ie.
that neither relation allows a change in the overall probability assigned to each
of the elements.

6.4 Constructive definition of refinement
We use the relations (=) and (C) between partitions to define refinement.

Definition 2. Secure refinement We say that hyper-distribution Ag is securely-
refined by A, written Ag © Ay, just when for every v there is some intermediate
partition IT of fractions so that first (i) fracs.Ag.v is similar to IT and then (ii)
IT is as fine as fracs.A;.v.'6 That is, we have

Ag C Af ifft  fracss.Ag.w ~ II C fracs.A;.v  for some partition I7.

The fractions of Ag are first split-up into similar sub-fractions; and then some
of those sub-fractions are rejoined to create the fractions of Aj.

Refinement of hyper-distributions extends pointwise to the programs that
produce them. O

Note that since both (=) and (C) preserve partition-sum, we have that (C)
from Def. 2 implies functional equality. Informally speaking, refinement may
not change the functional behaviour of a secure program, but it may reduce
the implicit observations available to an attacker, and hence the deductions an
attacker can make about h.

16 Tn our earlier qualitative work [27] refinement reduces to taking unions of equivalence
classes of hidden values, so-called “Shadows.” Kopf et al. observe similar effects [15].
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We return to Ay for an example, getting <{{1@% , 2@%}, {{0@%, 19% By for
fracs. Aly. L by multiplying through. For A7 we get ({{O@%, 193 293 ) simi-
larly for fracs. A7 . L. The two fractions of the former sum to the single fraction
of the latter, and so SCI; according to our definition Def. 2 of secure refinement.

For the more detailed A, CAL, and v'=1, we need the intermediate partition
II:= ({196}, {1°72,3%% }, {1972, 397: }, {395 }), whose middle two fractions
turn out to be equal, thus certainly similar: summing them gives the middle
{1@%,3@%}} of IT,, so that ITp ~II. On the other hand, summing the first two

fractions of II gives {19%,3912}, the first fraction of IT p,» and summing the
last two give the second fraction of ITp, ; thus ITCIT}, . Partition ({293 }) deals

trivially with v'=0, and so indeed we have P,C P, altogether. In §D we show
however that P,[ZPs.

6.5 Properties of refinement

The refinement relation (C) is a partial order (hence it is transitive), and pro-
gram contexts preserve it (thus it is monotonic). Consequently, we can reason
incrementally and compositionally about refinement relation between large pro-
grams.

Theorem 1. Partial order The refinement relation (C) is a partial order over
the set of hyper-distributions; and so, by extension, it is a partial order over

programs.
Proof:  See §C.1. a

Theorem 2. Monotonicity of refinement If SCI then C(S)CC(I) for all con-
texts C built from programs as defined in Fig. 1.
Proof:  See §C.2. a

Furthermore, we define strict refinement such that S C I when S C I but
I1ZS.

7 Refinement (C) is the compositional closure of (=)

In this proof we will manipulate partitions, sequential composition, refinement
and Bayes Vulnerability in terms of matrices, as follows.

7.1 Matrix representation and manipulation of partitions

Partitions as matrices Assume wlog that H is the integers 1..H. For a par-
ticular input (v, ) and a chosen visible output v/, a program P will produce as
output a partition IT = fracs.([P].(v,d)).v" over hidden values containing some
number F' of fractions that we index 1..F. Each fraction on its own is a vector
of length H of probabilities; if we put them together as rows, we get an F'x H-
matrix that represents the partition as a whole. For example, we have from (4)
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the following matrix representations of partitions output from Programs Py 4
for v'=1:

1/60 0 .

/ , /4 01/12

Iy : 1/6 0 1/6 Iy, : < ) . (5)
P 0 01/6 P 1/120 1/4

There are three possible values of h in each case, so that H=3; and P,’s partition
has 3 fractions, so that F»=3 and thus it generates a 3x3 matrix. Program P,’s
partition has only 2 fractions, so that Fy=2 and it generates a 2x3 matrix.

For simplicity in the proof, we will arrange that H=F" so that all matrices are
of the same (square) dimension NxN. This is without loss of generality, since
we can extend H with extra, unused values; and we can extend our partitions
with extra, zero fractions. For instance IT, becomes a 3x3 matrix, as ITp, is
already, if we add an extra row underneath (representing an all-zero fraction):

1/4 01/12
Ip,: 1/120 1/4 | . (6)
0 00

(A) Sequential composition as matrix multiplication In our completeness
proof, our program-differentiating context C will post-compose a probabilistic
assignment h:€ D.h so that, for each of its incoming values h, the output value
h’ will be chosen from the distribution D.h, thus with probability D.h.h'. In
effect the context redistributes variable h in a way that depends on its current
value.

We can consider D itself to be an N x N matrix whose value in row h and
column A’ is just D.h.h'. If we do that, then the output partition II’ that results
from executing h:€ D.h on input partition IT is just ITx D, where (x) is matrix
multiplication. For example, suppose our post-composed context were

h:ie ({1°2,29%,39%7} ifh=1else {2°7,3°2}), (7)
so that matrix D would be

1/2 1/4 1/4
0 1/21/2
0 1/21/2

From (5) we take the incoming partition IT to the post-composed context (7) to
be the outgoing partition ITp, from Program P, and so determine the outgoing
partition II' from (Pj;h:€ D.h) overall to be

1/60 0 1/21/4 1/4 1/12 1/24 1/24
1/601/6 | x | 0 1/21/2 = 1/12 1/8 1/8
0 01/6 0 1/21/2 0 1/12 1/12
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(B) Refinement as matrix multiplication Also refinement can be formu-
lated as matrix multiplication, since it is essentially a rearranging of fractions
within a partition that, therefore, boils down to rearrangement of rows within
a matrix. For example, from §6.4 we recall that to refine ITp, into ITp we split
the middle fraction of the former into two equal pieces, and add them to the
other two, and that is achieved by the left-hand matrix in the pre-multiplication
shown here:

11/20 1/60 0 1/4 0 1/12
01/21 | x| 1/601/6 = 1/120 1/4
000 0 01/6 0 0 O

In general a partition I1g is refined by II; iff there exists a refinement matriz
R, a matrix whose columns are non-negative and one-summing, such that RxIlg
equals II;. Entry (r, ¢) of such a refinement matrix describes what proportion of
the ct" fraction (row) of IIg is to contribute by addition to the r*" fraction of
1.

(C) Bayes Vulnerability as matrix multiplication Finally we bring Bayes
Vulnerability into the matrix algebra as well. For a partition I as a matrix, the
vulnerability is found by taking the individual row maxima and adding them
together: the result is a scalar. Thus for IT}, , for example, we have the matrix

1/4 0 1/12 100
1/120 1/4 with maxima selected by the strategy matrix G: 001
0 0 0 001

whose maxima have been set in bold and are selected by the 1 entries in the
matrix G at right. Note that strategy matrices have the same shape as the
matrix from which they select, and that they are 0/1 matrices with exactly one
1 per row. 7

To determine the vulnerability associated with the IT, we calculate

(Ustrategy matrices G « tr.(GT xII)) (8)

in general, where ()T is matrix transpose and tr takes the trace of a square
matrix, i.e. the sum of its diagonal. Note that the maximum is actually attained,
for some G, since there are only finitely many of them. In this particular case
we use the G above to calculate tr.(GT xII}, ), and have therefore

100 1/4 01/12 1/4 0 1/12
000 | x[1/120 1/4 = 000 |,
011 00 0 1/12 0 1/4

whose trace is 1/4 + 0+ 1/4 = 1/2 to give the Bayes Vulnerability of IT}, .

17 Of course in an all-zero row it makes no difference which entry is selected.
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(D) The connection between strategy matrices and refinement For any
strategy matrix G, the transpose G'T has exactly one 1 in each column, and thus
can be regarded as a simple refinement matrix, one of those which (when pre-
multiplied with a partition) merges only whole fractions. If we denote the set of
N x N strateGy matrices by Gy, the set of Nx N Refinement matrices by Ry,
and the siMple subset of these (having only one non-zero entry per row) by
My, we thus have that

{G:Gny+GT} = My C Rn.

Furthermore, it can be shown that the complete set of refinement matrices Ry
is in fact the convex closure of its simple subset:

Ry = ccl.(My). 9)

From (8) and by linearity of matrix operations multiplication and trace, we thus
have for any N x N-dimensional IT that the Bayes Vulnerability is given by

bv.ll = (UG:Gy +tr.(GTxIT)) = (UR:Ry «tr.(RxI)), (10)

because the extra elements in Ry but not GyT are only interpolations, and so
cannot increase the maximum of a linear expression. (Recall from above that
this maximum is attained for some R.)

Additionally, R forms a monoid under matrix multiplication, that is

(Rn, %,1y) is a monoid, (11)

where 1y is the NxN unit of matrix multiplication. '® We refer to §A for a
proof of Properties (9) and (11).

7.2 Soundness

Here from STI we must show that C(S)=C(I) for all contexts C. From mono-
tonicity (Thm. 2) it suffices to show that SCTI implies S=<I.

Fix an initial split-state and construct the output hyper-distributions Af{ s.1}
that result from S, I respectively. Then since we assume SCI we must have
AGC A} We now show that this implies Alg<A/.

Since SCI trivially guarantees that ft.Aly = ft.A} —recall Def. 2 we need
to show that the Bayes-Vulnerability condition in the elementary testing or-
der is satisfied. Since bv.A = (D> v:V « bv.(fracs.A.v)), it is enough to show
that for each v:V the vulnerability of ITg:=fracs.A.v is no less than that of
IT}:=fracs. A% .

For any such IT f{ g,y assume wlog that they are represented as N x N matrices.
We then have that

18 Note that it is not a group because only the matrices in Ry that permute —but do
not combine- fractions have inverses.
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bv.IT§
= (UR:Rn * tr.(RxII})) . “from (D), Property (10)”
=  (URy,Ry: Ry » tr.(Rix RyxIT%)) “from (D), Property (11)”
>  (UR1: Ry »tr.(Ry Xf{\gxﬂ/s)) “for any Ry’
= (UR1:Ry e« tr.(RixI})) . “from (B), choose R, so that RyxIT% = IT}”
= bv.Il}. “from (D), Property (10)”

That gives us

Theorem 3. Refinement is sound for Bayes Risk  If STI then C(S)=C(I)
for all contexts C. |

7.3 Completeness

Here from SZI we must discover a context C such that C(S)AC(I). (The proof
here is self-contained; but as background we give a fully worked example in §D).

Since SIZI, there must be an initial split-state (v,d) from which S, I yield
hyper-distributions A/ (5.1 with AGZA7. We can assume however that Al
give equal overall probabilities to wvisible variables since, if they did not, they
would be functionally different, giving SAI immediately. This being so, we can
assume that for some final v we have that partition IIg:=fracs.A%.v’ cannot be
transformed into partition II;:=fracs.A}.v' via the two steps (i), (ii) in Def. 2.
That is, we have Ilg [Z I1;.

We will define a distribution D such that the context (—; C) where C is

if v=0' then h:€ D.h else h:=0 fi

can be used to differentiate S from I using elementary testing.

We dispose of the simple case first: if v/ #v’ then fracs.([S; C].(v,0)).v" equals
fracs.([I; C].(v, 5)) " since, first, hyper-distributions A{s 1} 8ive equal proba-
bilities to that v/ and, second, the final value h’ of h is zero for both S;C and
I; C in that case. The vulnerability associated with these partitions is therefore
the same. To establish [S;C] Z [I;C] for our chosen C, it is thus enough to
show that the vulnerability of fracs.([I; C].(v,d)).v" is strictly greater than for
fracs.([S; C].(v,09)).v". Treating II;g 1y as N xN matrices, we calculate

“Bayes Vulnerability of I1g;C'”

“Bayes Vulnerability of IIgxD” “(A) above; definition of C based on D”

= tr(RxIIgxD) “(10) in (D) above; for some maximising RERn"
tr.(ITx D) “(B) above; for refinement IT = Rx ITs of IIs”

< tr.(II;xD) “D was chosen in advance, using the Separating
Hyperplane Lemma, and does not depend on II: see below”

= tr.(1xII;xD) “identity”
< (UR:RN . tr.(RXHIXD)) “l1eERN”

“Bayes Vulnerability of II;xD” “(10) in (D) above”
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= “Bayes Vulnerability of II;;C” . “(A) above; definition of C”

The structure of the argument is basically a reformulation on the S side, an
appeal to the separation property of the “pre-selected” matrix D, and then a
complementary un-reformulation on the I side. Thus for “see below” we argue
as follows.

To prepare D we consider all possible refinements of ITg together. These
refinements { R: Ry « RxIIs} comprise a convex set of N x N matrices, (where
convexity follows from (9) and linearity of matrix multiplication). Since Iy is
not a refinement of ITg, we know II; is not in that set. If we “flatten out” the
matrices into vectors of length N2, say by glueing their rows together, then we
have a “point” II7 in Euclidean space that is strictly outside of that convex set
and by the Separating Hyperplane Lemma [35] there must be a plane with normal
X that strictly separates that whole set of refinements (including T = RxII s)
from the single point II;. The point X too will be a vector of length N? and,
written with matrices, the strict-separation condition is then that

tr.(IxXT) < tr.(II;xXT) for all IT refining ITg

since the dot-product of two N2-vectors A, B written as matrices of size NxN
is just tr.(AxBT). This is precisely what we required above; and so our D is
made by taking the direction numbers of the separating hyperplane in Euclidean
N2-space and turning them back into a matrix, and transposing the result.

We admit that there is no guarantee that the D constructed as above will
have one-summing rows. However, we can choose D to have all non-negative
coefficients because II7 and all the refinements I of IIg have the same weight,
and thus we can add any constant to all elements of D without affecting its
separating property; similarly we can scale it by any positive number. Thus we
can assume wlog that D is non-negative and that all its rows sum to no more
than 1. To then make each row of D sum to one exactly we can extend it with
an extra “column zero” whose entries are chosen just for that purpose. We then
need to guarantee —as a technical detail- that neither the Bayes Vulnerability
strategy matrix for ITg or I1; chooses h to be zero. We do that, if necessary, by
adding a second context program that acts as skip when h#£0; but when h=0 it
executes a large probabilistic choice over h to distribute the 0 value over enough
new values —1, —2... to make sure none of them individually will have a large
enough probability to attract a maximising choice.'® That gives us

Theorem 4. Refinement is complete for Bayes Risk ~ If SIZI then C(S)AC(I)
for some context C. i

7.4 Maximal discrimination of the Bayes-Risk elementary order

In this section only, we write “<g” for the Bayes-Risk based elementary testing
order (=), and we write “=<;” etc. to stand generically for any similar order
based on one of the four alternative entropy measures set out in §1.2.

19 At most N new values will be required for such a context.
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The problem discussed in §1.2 was that one could have A<; B and yet B<sA
for programs A, B and competing elementary orders (=1) and (=<s). Similarly,
for any of the four (<;) including (<g) itself, it’s easy to manufacture examples
where we have A<1B but there is a context C that reverses the comparison, so
that C(B)=<1C(A). This seems a hopelessly confused situation.

Luckily it turns out (§G) that refinement (C) is sound not only for (<g) but
for the other three orders as well and —since (C) is complete for Bayes Risk—
that gives us

Theorem 5. Bayes Risk is maximally discriminating  With context, Bayes
Risk is maximally discriminating among the orders of §1.2: that is if (=<7) is an
order derived from one of the entropies of §1.2, then whenever for two programs
S, I and all contexts C we have C(S)=<gC(I) we also have C(S)=1C(I) for all C.

Equivalently, if two programs A, B are distinguished by any (<1) from §1.2,
that is AA1 B, then there is a context C such that (<g) in particular distinguishes
C(A) and C(B), that is such that C(A)ZAsC(B).

Proof:  The equivalence of the first and second formulations is straightfor-
ward; 2° we prove the second, reasoning

AA1B
= AUB “soundness of (E) for (<1), see §G”
= C(A)AsC(B) . “completeness of (C) for (<g); some context C”

O

It’s the completeness result for (<g) that makes it maximal, i.e. that seems
to single it out from among the other orders. Whether or not the other orders
are also complete is an open problem.

8 Case study: The Three Judges protocol

The motivation for our case study is to suggest and illustrate techniques for rea-
soning compositionally from specification to implementation of noninterference
[27, 23, 11]. Our previous examples include (unboundedly many) Dining Cryptog-
raphers [6], Oblivious Transfer [32] and Multi-Party Shared Computation [39].
All of them however used our qualitative model for compositional noninterference
[27,23]; here of course we are using instead a quantitative model.

20 First implies second:

If AZ1B then, appealing to the identity context in the conclusion of the first
formulation, for some C we have C(A)ZAsC(B).

Second implies first:

Assume C(S)A1C(I) for some C, whence immediately from the second formu-
lation we have D(C(S))ZsD(C(I)) for some context D(C(-)).
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The example is as follows. Three judges A, B, C' are to give a majority deci-
sion, innocent or guilty, by exchanging messages but concealing their individual
votes a, b and c, respectively. 2!

We describe this protocol with a program fragment, a specification which
captures exactly the functional and security properties we want. Its variables
are Boolean, equivalently {0, 1} and, including some notational conventions ex-
plained below, it evaluates (a+b+4c > 2) atomically, and reveals the value of the
expression to everyone:

visy a; visp b; vise ¢ < These are global variables.
reveal (a+b+c>2). < Atomically evaluate
and reveal expression.

(12)

Note that this specification is not noninterference-secure in the usual sense: for
example when a judges “not guilty” (false) and yet the defendant is found guilty
by majority, Agent A learns that both b, c must have judged “guilty ” — and that
is a release of information. This allows a similar behaviour in the implementation,
strictly speaking a declassification: but we need no special measures to deal with
it.

We interpret the specification as follows. The system comprises four agents:
the judges A, B,C and (say) some Agent X as an external observer. The par-
ticipating agents (A, B, () are distributed, each with its own state-space; and
the external observer has no state. The annotations visg4 p ¢y above indicate
that the variables a, b, ¢ are located with the agents A, B, C respectively and are
visible only to them: that is, only Agent A can see variable a etc. 22

The reveal command (explained in more detail below) publishes its argu-
ment for all agents to see.

The location of a variable has no direct impact on semantics (in our treat-
ment here); but it does affect our judgement of what is directly executable and
what is not. In particular, an expression is said to be localised just when all its
variables are located at the same agent, and only localised expressions can be
directly executed (by that agent, thus). Thus a+b+c > 2 is not localised, in spite
of its being meaningful in the sense of having a well defined value; and it is pre-
cisely because it is not localised that we must develop the specification further.
Assignment statements a:= E, where a is in Agent A, say, and F is localised in
Agent B, are implemented by B’s calculating E and then sending its value in a
message to A.

The wvisibility of a variable does affect semantics. A variable annotated vis 4,
for example, is treated as if it were simply annotated vis when we are reasoning

21 Though this is similar to the (generalised) Dining Cryptographers, it is more difficult:
we do not reveal anonymously the total number of guilty votes; rather we reveal only
whether that total is a majority [11, Morgan:09a).

22 In principle we could have separate annotations for visibility and for location, allow-
ing thus variables located at A that however A cannot see, and (complementarily)
variables located at B that A can see. But in this example we do not need that fine
control, and so we use vis for both.
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from Agent A’s point of view; from Agents’ B, C points of view, it is treated as
if it were annotated hid; and the same applies analogously to the other agents.
Thus in the example we will treat three agents A, B, C' each with her own view:
variables visible to one (declared vis) will be hidden from another (declared hid)
— and vice versa. The “extra” Agent X (mentioned above) sees none of a, b, c,
but does observe the reveal. This simple approach is possible for us because
we are not dealing with agents whose actions can be influenced by other agents’
knowledge.

In principle the vis-subscripting convention means that protocol develop-
ment, e.g. as in §8.3ff. to come, will require a separate proof for each observer
(since the patterns of variables’ visibility might differ); but in practice we can
usually find a single chain of reasoning each of whose steps is valid for two or
even all three observers at once.

Before incrementally developing (12) into an implementation in order to lo-
calise its expressions, we introduce some further extensions, including the reveal
statement mentioned above [22], that will be used in the subsequent program
derivation.

8.1 Further program-language extensions

Multiple- and local variables To this point we have had just two variables,
visible v and hidden h, and a split-state VxD%H to describe their behaviour. In
practice each of V, H will each comprise many variables, represented in the usual
Cartesian way. Thus if we have variables a: A, b: B,c:C,d: D with the first two
a, b visible and the last two c,d hidden, then V is AxB and H is CxD so that
the state-space is AXBxD(CxD). Assignments and projections are handled as
normal.

We allow local variables, both visible and hidden, which are treated (also) as
normal: within the scope of a visible local-variable declaration ||[ vis x: X' -+ ]|,
the Vigcal used is & X Vgioha1. Hidden variables are treated similarly.2

Revelations Command reveal E publishes expression E for all to see: it is
equivalent to the local block

[[[ visv; vi=E ]|, (13)

but it avoids the small extra complexity of declaring the temporary visible-
to-all variable v and the having to introduce the scope brackets as (13) does.
The attraction of this is that the reveal command has a simple algebra of its
own, including for example that reveal £ = reveal F just when E and F
are interdeducible given the values of (other) visible variables [22,24]. Thus for
example (and slightly more generally) we have

reveal aVb; reveal bVc = reveal bVc; reveal cVa ,

23 Implicitly local variables are assumed to be initialised by a uniform choice over
their finite state space. In our examples however, we always initialize local variables
explicitly, to avoid confusion.
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using (V) to denote exclusive-or, because from aVb and bVc an observer can
deduce both bVc and cVa, and vice versa.

Bulk atomicity In Fig. 1 we introduced the semantics of commands and re-
marked that for syntactically atomic commands the secure semantics is given
by Def. 1, based on the classical semantics of the same command. With atomic-
ity brackets ((-)) we make groups of commands atomic “by fiat,” so that Def. 1
applies to them as well. We have

Definition 3. Secure semantics atomicity brackets  Given any program P we
define
[(P)].(v,0) = embed.(®h:d « [P]c.(v,h)) . (14)

The effect overall, as earlier, is to impose the largest possible ignorance of h’
that is consistent with seeing v’ and knowing the classical semantics [P]c of
the program between brackets. In particular, perfect recall and implicit flow are
both suppressed by ((-)). O

A comparison of Defs. 1 and 3 shows immediately that for any syntactically
atomic command A we have A = ((A)), just as one would expect. >* With groups
of commands of course the equality does not hold in general: for example we
cannot reason

v:i=h; v:=0
= (v:i=h)); {v:=0) “syntactically atomic, both”
7= {(vi=h; v:=0)) “invalid step”
= {v:=0) “classical equality”
= wv=0, “syntactically atomic”

because —as we have often stressed— an assignment of h to v does reveal h to an
observer, even of v is immediately overwritten. The invalid step violates the con-
ditions of Lem. 1 immediately below, which gives an important special situation
in which we do have distribution of atomicity inwards:

Lemma 1. Distribution of atomicity Given is a sequential composition of two
programs P; Q. If by observation of the visible variable v before the execution of
P and after the execution @ it is always possible to determine the value v had
between P and @, then we do have

(FQ) = (PhQ)-

Proof:  (sketch) The full proof is given in §E.
It can be shown that the left- and right-hand sides’ classical effect on v and
h are the same, and so the only possible difference between the two can be the

24 Note that although reveal FE looks syntactically atomic, it is via (13) actually an
abbreviation of a compound command: thus in fact {(reveal E)) # reveal E in
general. Actually ((reveal E)) = skip in all cases, whereas reveal E = skip only
when F is visible.
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degree to which h is hidden. On the left, variable h must be maximally hidden
since that is the (defined) effect of the atomicity brackets ((-)). Thus we need
only argue that h is maximally hidden on the right as well.

Since h is maximally hidden after ((P)), the only way h can fail to be max-
imally hidden after the subsequent (@) is if there are two (or more) distinct
values of v after P, say 19 1} each with its associated hidden distribution d¢ 13
of h, that are brought together to the same final value v’ by execution of ). For
that would mean that after Q we could have two distinct distributions 5%071}
of h associated with that single v/, which is precisely what it means not to be
maximally hidden. Each (5’{0’1} would have been derived from the corresponding
00,1} in between.

That scenario cannot occur if for any particular starting v before P that leads
to two (or more) values 97 1} between P and @, we never have ) bringing those
values back together again to a single final value v'. That amounts to being able
to determine the intermediate value ¢ of v from its values before (v) and after
(v"). a

In fact our invalid step {(vi=h;v:=0)) # (vi=h)); {v:=0)) above shows off the
condition exactly. Although v’s intermediate value is indeed determined by the
initial h, that is not good enough because we cannot see that h: we have access
only to the initial v. And v’s final value is always 0, again hiding v’s intermediate
value from us. Knowing v before and after, in this example, does not tell us its
intermediate value (which is in fact h).

By definition, semantic equivalence of P and @ in the classical model entails
semantic equivalence of ((P)) and ((Q)) — that is why within atomicity brackets
we can use classical equality reasoning.

8.2 Subprotocols: qualitative vs. quantitative reasoning

Rather than appeal constantly to the basic semantics (Fig. 1) instead we have
accumulated, with experience, a repertoire of identities —a program algebra—
which we use to reason at the source level. Those identities themselves are proved
directly in the semantics but, after that, they become permanent members of
the designer’s toolkit. One of the most common is the Encryption Lemma.

The Encryption Lemma Let statement (vWh):= E set Booleans v, h so that
their exclusive-or vVh equals Boolean E: there are exactly two possible ways
of doing so. In our earlier work [27], we proved that when the choice is made
demonically, on a single run nothing is revealed about E; in our refinement style
we express that as

skip = ||[visv;hid h; (vWh):=E ]| . (15)

In our current model we can prove that exactly the same identity holds provided
the choice of possible values for v and h is made uniformly:
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Lemma 2. The Encryption Lemma  For any Boolean expression F we have
that the following block is equal to skip, and so reveals nothing;:

I[ vis v;hid h; (vWh):=E]| .

For this we require that the implicit choice in (vWh):= E is made uniformly.
Proof: ~ We calculate

[|[ vis v;hid h; (vVh):=F ]|

= ||[ vis v; hid h; {(vVh):=E)) ]|l “syntactically atomic”
= ||[ vis v; hid h; {{vi=true®false; h:=vVE) ||| “classical equality (1)”
= ||[ vis v; hid h; (vi=true®false)); (h:=vVE)) ||| “Lem. 17
= ||[ vis v; hid h; v:=true®false; h:=vVE ||| “syntactically atomic”
= ||[ vis v; vi=true®false; ||[ hid h; h:=vVE ]|| ]|| “hid h does not capture”
= ||[ vis v; v:i=true®false ]| “assignment to local hidden is skip”
= skip. “value assigned to local v is known already (f)”

O

The crucial step in the proof above was the classical equality at (T), and we
note that other variations are possible: for example we also have the classical
equality

(vWh):=F = h:=true®false; vi=EVh , (16)

which suggests the operational procedure of “flipping a private coin h” and then
revealing (via assignment to local v) the exclusive-or of that private coin with
some expression E. The above reasoning shows that also to be equal to skip.

Finally, we recall that (@©) means choose uniformly, and we now show that
it is essential for the () step and for the equality (16): if for example we had
h:=true ,® false; v:i=EVh in (16) on the right-hand side, but with p#1/2, it
would not be possible to rewrite that in the form v:=true,,® false; h:=vV E as
we had at (f) but with the 1/2 here exposed. Instead we’d have

vi=-E,0F; h:=vVE

and the last step () would then be invalid if F' contained hidden variables (as
it usually would). The role of p=1/2 is thus that the equality

vi==E 4,0 F = vi=true 1 o® false

holds no matter what expression E is, and in particular even if it contains hidden
variables — but only (in general) when the choice is with probability 1/2.

Lem. 2 means that extant qualitative source-level proofs that rely only on
“upgradeable identities” like (15) can be used as is for quantitative results pro-
vided the demonic choices involved are converted to uniform choice. And that is
the case with our current example.

Beyond the Encryption Lemma, we use Two-party Conjunction [39] and
Oblivious Transfer [32] in our implementation. Just as for the Encryption Lemma,
the algebraic proofs of their implementations [27, 23] apply quantitatively pro-
vided we interpret the (formerly) demonic choice as uniform. We now look briefly
at those subprotocols.
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Two-Party Conjunction In the Two-Party Conjunction subprotocol, the con-
junction of two privately held Booleans is published without revealing either
Boolean separately. It is an instance of Yao’s Multi-party Computation technique
[39] and we have given a formal derivation of it elsewhere [23]. Its specification

is
Two-Party Conjunction

visp b; vis¢ ¢; < These are global variables. (17)
reveal bAc,

and its similarity to (12) is clear: a compound outcome b Ac is published without
revealing the components b,c — except that, just as before, if for example the
revealed outcome is false but b is true, then B can deduce that ¢ must have been
false (and similar).

We develop an implementation of (17) in several steps, as follows. Note that
for some steps the justification varies depending on the agent although we have
arranged that the claimed equality is valid for all of them. We have

(17) = skip; “identity”

reveal b A c
= ||[ visg bo, b1; (boVbi):=b; reveal by]||; “Encryption Lemma for A, C;
reveal b A c obvious for B; see below (}).”
= |[[visp bo, b1; “Revelation algebra: in this context b A ¢ = bgVbe
(boVby):=b; reveal by; where b.:= (b; if ¢ else bg).”

reveal b,

If

= ||[visg bo,bs; “Delegate second revelation to Agent C.”

(boVby):=b; reveal by;
|[ visc co; co:=be; reveal ¢ ||

If

= ||[visg bo,b1; Visc cop; “Rearrange declarations; clean up.”
(boVby):=b; reveal by; < This done by Agent B.
Co:=bg; < An “Oblivious Transfer” between B, C.
reveal ¢y < This done by Agent C.

Il

At (1) we find a case where the same equality applies to all agents, although
in fact the reasons for its validity use agent-specific reasoning. For example, for
Agents A, C the fragment is effectively

||[ hid bo,b1; (boVbl):: b; reveal bo]” s

which is a version of the Encryption Lemma in which by, being revealed, takes
the role of the local visible variable. Variable by is the local hidden, and (hidden)
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variable b is the expression E (on which there are no restrictions). On the other
hand, for Agent B the fragment is

[|[ vis bg, b1; (boVbi):=b; reveal byl

with b a global visible: this is trivially equal to skip because all variables are
visible.

At (1) we use the revelation algebra mentioned in §8.1 to reason that once
by is revealed, going on to reveal b A c is equivalent to revealing just b. since
~knowing by~ we can calculate each of b A ¢ and b from the other. 2°

More interesting than any of that, however, is that in the last step we ap-
peal to a further subprotocol by including the specification of the “Oblivious
Transfer Protocol” [31,32]. Here Agent C has a private {0, 1}-valued variable c
and obtains from Agent B either by or by, depending on c. But Agent B does
not discover what c is, and Agent C' does not discover b_.. We give a rigorous
implementation of the protocol elsewhere [27]; an informal explanation may be
found in §F.

Finally, to emphasise our earlier point about declassification, we suppose b is
true but c is false and thus that B learns c by noting that false is revealed overall;
note that this is a property of the specification. Now, in the implementation,
we can see how this happens: when b is true the local variables by ; will be
complementary and so —in spite of not learning ¢ while the Oblivious Transfer is
carried out— Agent B will still learn c afterwards by comparing ¢y with her own
b071.

8.3 The Three-Judges implementation: first attempt

We begin with an implementation attempt that fails, because this will illustrate
two things. The first is that our model prevents incorrect developments, that is it
stops us from constructing implementations less secure than their specifications:
arguably this “negative” aspect of a method is its most important property, since
it would be trivial to describe a method that allowed secure refinements. .. and
all others as well. The key is what is not allowed.

The second thing illustrated here is that a conditional if £ --- fi should be
considered to reveal its condition F implicitly. This implicit flow is a property
forced upon us by our advocacy of program algebra and our use of composition-
ality: since the then- and the else branch of a conditional can be developed
differently after the conditional has been introduced, we must expect that those
differences might reveal to an attacker which branch is being executed (and hence
the condition implicitly). This is exactly what we are about to see.

25 We have

boVb. = (boVby if c else bgVby) = (b if c else false) = bAc.
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We start with some Boolean algebra
(a+b+c>2) = aAn(bvc) VbAc = (bVvcifaelsebAc),
and that suggests the first development steps

reveal (a+b+c > 2)

-~

= “pP z if £ then P else P fi”
if a then reveal (a+b+c > 2)

else reveal (a+b+c > 2)
fi

(18)
= ifa “After then we can assume a;
then reveal b\ c after else we can assume —a.”
else reveal bAc

Now we can deal immediately with the else-part by adapting the Two-Party
Conjunction Protocol of §8.2 so that it reveals bAc only to Agent A; we introduce
a pair of A-private local variables for that purpose. The result is

..= ||[visa ap,ac; visp bg,b1; visc co; “Adapting §8.2”
if a
then reveal bV c
else (bgVby):=b; < Done privately by Agent B.
ap:=bg; < Message B—A.
Co:=bg; < Oblivious Transfer B—C.
ac:=Co; {— Message C—A.

reveal apVac ¢ Agent A announces majority verdict.
fi

n---

For the then-part we write b V ¢ as =(—b A =c) and adapt the else-part
accordingly; the effect overall turns out to be replacing the initial b by —b and
changing the following assignment. Once we factor out the common portion of
the conditional, we have

..= ||[visa ap,ac; visp bg,by; visg co; “Using de Morgan”

if a then (bgVb,):=—b;ag:=b; else (byVb;):=b;ap:=bg fi;
co:=b¢; ac:=cop;
reveal agVac

I
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Now we see that the problem with going further is that Agent A must some-
how arrange that B carries out either (bgVb;):==b or (byVby):=b, with that
arrangement, depending on the value of A’s private variable a. Since B’s two
potential computations are different, there is no way this can occur without B’s
learning the value of a in the process: this code is already incorrect.

Thus we must abandon this attempt, and admit that the questionable step

t (18) above was indeed wrong. In order to allow us to develop distributed
implementations, we make the (reasonable) assumption that each agent knows
the code it is instructed to execute, with those instructions coming possibly from
another agent. In this case Agent B must execute either (boVb;):=—b;ap:=b;
or (bgVb;):=b;apg:=by, depending on the value of a which is supposed to be
visible only to Agent A.

Our semantics recognises implicit flow, and does not allow in general the
transformation of P into if E then P else P fi, for exactly this reason.?%
Similarly, a fragment a:=b;a:=c represents two messages, one B—A and then
a second one C—A; with perfect recall we recognise that A can learn b by
examining a after the first message has arrived, but before the second.

8.4 The Three-Judges implementation: second attempt (sketch)

An “obvious” remedy for §8.3’s problem, that Agent B’s is aware of which pro-
cedure she must follow, is to make B follow both procedures, speculatively: she
does not know which one A will actually use.

The difficulty is now with Agent A, who learns both bAc and bV c. Although
those two values do not (always) determine b and ¢ themselves, they do provide
strictly more information to A than her knowing a and (a+b+c > 2) would have
provided on their own. 27 Thus this approach fails also.

Our attention is therefore drawn to arranging for B (and C') to do both two-
party calculations, but then for A to get the results of only one of them. That
leads naturally to the approach of the next section, a combination of two two-
party computations (letting Agents B, C do both calculations) and two (more)
oblivious transfers (letting Agent A learning about only one of them.) 28

8.5 The Three-Judges implementation: successful development

To repair the problem we encountered above we must arrange that Agents B, C
as far as possible carry out procedures independent of A’s variable a, in particular

26 In our related work for noninterference with demonic choice and without probability
[26,27], we give further arguments for this point of view, but based directly on
program algebra. The extra feature there is that even classical programs have a non-
trivial refinement relation; here, we have proper refinement only for secure programs.

2" If a and (a+b-+c > 2) are both false, then Agent A concludes —~(bAc), for which
there are the three possibilities false/false, true/false, false/true. Agent A’s addition-
ally knowing b V ¢ would eliminate at least one of those three.

28 The “more” refers to the fact that the two-party computations have oblivious trans-
fers inside of them.
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so that calculations relating to bV c and to b Ac both occur, irrespective of which
result A actually needs.

To achieve this we need a slightly more general form of two-party computa-
tion. We begin by introducing the specification of such a two-party conjunction,
with its variables made local so that the introduced code is equivalent to skip:

reveal (a+b+c > 2)

= ||[ visp bo; visc co; (boVeo):=bAc; ||; “Two-party conjunction”
reveal (a+b+c > 2)

From Agent A’s point of view, the introduced statement is trivially equivalent
to skip: all assignments are to local variables that A cannot see. From Agent
B, C’s points of view, it is equivalent to skip because it is an instance of the
Encryption Lemma: each of those two agents can see only one of the two variables
assigned-to, and so learns nothing about the expression b A c. 2?

The statement (bgVcp):=b A ¢ we have introduced is a more general form
of two-party conjunction than the reveal b A ¢ we illustrated earlier in §8.2 —
that is because the conjunction is not actually revealed, not yet; instead it is
split into two “shares,” one belonging to each party B, C. Since each party has
only one share, the conjunction is not revealed at all at this stage. But those
shares can be used as inputs to further two-party computations, while preserving
the security, and the contribution of the conjunction to a larger computation is
revealed at a later point.

The extra generality introduced by the shares does not cause us extra work
here, since we are using only the specification for our reasoning and that (we will
see) suffices. When we come to implement the general two-party conjunction in
more primitive terms, however, we would then have further work to do. We have
given such an implementation elsewhere [23].

With exactly the same reasoning as above we can introduce two-party dis-
junction and, with both conjunction and disjunction present, perform some re-
organisation:

2% The following bogus counter-argument is an example of what having a careful defi-
nition of equality and refinement helps us to avoid.

“Agent B might know that b is false, and then perhaps receive false also in bn.
She concludes that cx is also false, which is a leak since cx is supposed to be private
to C, invisible to B.”

In fact this is not a leak, because to judge it so we must refer to the specification
of this fragment. But that is simply skip and there is no cs declared there: the
revealed variable is local to the implementation only.

That is, publishing the value of a hidden variable declared only in the im-
plementation might look like a leak in the conventional interpretation —consider
[I[ visc ¢; --- ;reveal c ]| for example— but it is actually a leak only if that variable
¢ has come to contain information (via assignments say in the “ --” portion) about
other, more global hidden variables that were present in the specification, originally.
Our semantics checks for that automatically.



Compositional closure for Bayes Risk in probabilistic noninterference 35

..= ||[ visp bo; vis¢ co; (boVeo):=bAc; ]||; “Two-party disjunction”
Il visp bi;visc c1; (b1Ver):=b Ve |||;
reveal (a+b+c > 2)

= |[[visp bo,b1;Visc co,cy; “Reorganise declarations and scoping”

(boVCo)SZ b A C;
(b1Vc1):: bV C;
reveal (a+b+c > 2)

If

= |[[visp bo, b1;Vvisc co,c1; “Boolean algebra”

(boVecg):=b Ac;
(b1Vc1):: bVc;
reveal b, Vc,

..

Now since b, V¢, is revealed to everyone, and thus to A in particular, it does
no harm first to capture that value in variables of A, and then to have Agent A
reveal those instead:

L= ||[ vis4 ap,ac; “Introduce local private variables of A”
ViSB bo, bl;
visc co, €1;

(boVCo)Z: bAc;
(b1VC1)I: bv C;
(apVag):=b,Vcg;
reveal agVac

..

The point of using two variables a;p ¢} rather than one is to be able to split
the transmission of information B,C'— A into two separate oblivious transfers
B—A and C—A.

Thus the protocol boils down to three two-party computations: a conjunction
bAc, a disjunction bV c and an exclusive-or b, Vc,. The rhs of the last is actually
within an atomic conditional on a, that is (bgVcg)ifa=0else (by Vcy).

8.6 Two-party exclusive-or

Our final step is to split the two-party exclusive-or into two separate assignments.
This is achieved by introducing a local shared variable h that is visible to B,C
only, i.e. not to A, and encrypting both hidden variables with it. Thus we take
the step

(apVa¢):=b,Ve,
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= ||[ViSB7C h;
h:=true & false;
ap:=b,Vh;
ac:=¢c,Vh

Il

justified trivially for B, C since the only assignments of non-constants are to
variables visible only to A. For A the justification comes from the the use of
classical equality reasoning within a temporary atomicity block (refer Lem. 1):
the effect of the two fragments above on ap,ac is identical, and there are no
overwritten visible values.

We will now show that in fact the extra variable h is not necessary: by
absorbing it into earlier statements, and with some rearrangement of scopes we
can rewrite our code at the end of §8.5 as

..= |[[visa ap,ac; visg bg, b1; Vvisc cg,c1; visg,o h;

h:=true & false;
(boVCO)Z: b A C;
(b1Ve1):=b Vg

ap:— bth;
ac:=c,Vh;
reveal agVag

I

where in fact we have moved the declaration and initialisation of h right to
the beginning. We now absorb it into the earlier two-party computations by
introducing temporarily variables b{{o,1} and C/{o,1 which correspond to their
unprimed versions except that they, too, are encrypted with h. That gives

.= |[[visa aB,ac; “Boolean reasoning”
3 / /.

VIisSp bOab17b0a 15
M /! /.

visc cp,c1,¢p, €13

visg,c h;

h:=true & false;
(boVCO)I:b/\C; b/O,C65: bth,C()Vh;
(b1Vc1)::b\/c; bll,Caiibth,Cth;

ap:= bfl; < Note primes, justified by earlier.
ac:i=cl; < Assignments to by 1}, o 13-
reveal agVac ||| ...

where we have replaced the b,Vh and c,Vh at the end of the code with their
simpler, primed versions where the encryption in built-in. Now we can rearrange
the statements using h so that not only h but also the unprimed by 1} and cq 13
become auxiliary; that is, we have for the conjunction

(boVCO)ZZb/\C; 6,C/012 bth,Cth
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|I[ visa aB,ac; visp bo, b1; visc co,c1;
bo:=true @ false;
bi:=true & false;

co:= (bVby if c else bo);
ci:= (—by if c else bVby);
ap.:— (b1 if a else bo);

(c1 if a else cp);

Four oblivious transfers.

ac:

reveal agVac ||

We replace the two Two-Party ’junctions by their implementations as oblivious trans-
fers: each becomes two statements instead of one. The random flipping of bits by 13 is
then collected at the start.

The preservation of correctness is guaranteed by the compositionality of the security
semantics.

Fig. 2. Three-Judges Protocol assuming Oblivious Transfers as primitives

= {( (boVco):=bAc; bf,ch:=byVh,coVh ) “introduce atomicity”
= { (byVch)i=bAc; bg,co:=byVh,cgVh ) “classical equality”
= (byVc)):=bAc; bg,co:=byVh,c{iVh, “remove atomicity”

and similarly for the disjunction. Removing the auxiliaries, and then applying a
trivial renaming to get rid of the primes, we end up with

..= |[[visa ap,ac; visp bo,b; vise ¢, c; “Consolidating the above”

(boVecp):=bAc; <+ Two-Party Conjunction (contains Oblivious Transfer).

(b1Vey):=b Vg < Two-Party Disjunction (contains Oblivious Transfer).
ap:=by; <— Oblivious Transfer.
Ac:=Cq; <— Oblivious Transfer.

reveal agVac J||

which is precisely what we sought.
In Fig. 2 we give the code with the (two) two-party computations instanti-
ated. In Fig. 3 we instantiate one of the (four) oblivious transfers.

9 Conclusion: a challenge and an open problem

We have investigated the foundations for probabilistic non-interference security
by proposing a semantics, and a refinement order between its programs, which
we have demonstrated has connections with existing entropy-based measures.
Especially it is related to Bayes Risk and we have given a soundness and com-
pleteness result that establishes compositional closure.

Our approach has a general goal: to justify practical methods which support
accurate analysis of programs operating in a context of probabilistic uncertainty.
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Starting from Fig. 2, we replace the specification of the first of its four oblivious trans-
fers co:= (bVby if ¢ else bp) by an implementation in elementary terms [23]:

||[[ visa ag,ac; visp bo, b1; visc co,c;
bo:=true & false;
bi:=true @ false;

[I[ visg mg, mY;vise ¢/, m';
c:=true @ false;
mg:=true @ false; m}:=true @ false;

m’:=m.; + Done in advance by trusted third party. t
visaBc X, Yo, Yi; < Note these are visible to all three agents.
x:=cVc';
Yo:= bo Vmy;
y1:=bVboVm’;
coi=y.Vm’ + Although y. is public, only Agent C knows m’. I
1II;
ci:= (—b; if c else bVb,); Three more oblivious transfers,
ap:= (by if a else by); each one to be
ac:= (c1 if a else ¢p); expanded as above.

reveal agVac ]|

Each of the other three transfers would expand to a similar block of code, making
about 40 lines of code in all. The Oblivious Transfer is formally derived elsewhere [27];
an informal explanation is given in §F.

The preservation of correctness, under expansion, is again guaranteed by the composi-
tionality of the security semantics.

Note that aside from the statement marked { (and its three other instances within the
three other, unexpanded oblivious transfers), all messages are wholly public because of
the declarations vis x, yo, y1; that is, all the privacy needed is provided already by the
exclusive-or’ing with hidden Booleans, as I shows.

The only private communications (f x 4) are done with the aid of a trusted third party.
As explained by Rivest [32,27] this party’s involvement occurs only before the protocol
begins, and it is trusted not to observe any data exchanged subsequently between the
agents; alternatively, the subsequent transfers can themselves be encrypted without
affecting the protocol’s correctness. (A trusted third party without these limitations
would implement trivially any protocol of this kind, simply by collecting the secret
data, processing it and then distributing the result.)

Fig. 3. Three-Judges Protocol in elementary terms

Abstraction underlies tractable analysis, but the results of such analyses become
relevant only if the method of abstraction aptly preserves the properties intended
for examination. The impact of this research is to show firstly that our refinement
order aptly characterises Bayes Risk, and secondly that the former discrepancies
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between Bayes Risk and other information orders can be rationalised by taking
contexts into account.

By taking a fresh point of view, we have related entropies that were formerly
thought to be inconsistent. Furthermore, we highlight the similarities between
non-interference (as defence against an adversary) and large-scale structuring
techniques (such as stepwise refinement and its associated information hiding
[29]) for probabilistic systems. Both require a careful distinction between what
data can be observed and what data must be protected; by observing that dis-
tinction in the definition of abstraction, we allow the tractable analysis of prop-
erties which rely on “secrecy” (on the one hand) or “probabilistic local state”
(on the other). This unified semantic foundation opens up the possibility for a
uniform approach to the specification of security properties, along with other
safety-critical features, during system design [20].

These positive results now present a challenge and an open problem. The
challenge is to find a model where all three features, probability, nondetermin-
ism and hidden state, can reside together, and then an equivalence between
semantic objects which respects an appropriate definition of testing. The pres-
ence of nondeterminism would then include a treatment of distributed systems
with schedulers having a restricted view of the state [4]; that is because nondeter-
minism can be interpreted either as underspecification, or as a range of decisions
presented to a scheduler. Within such a model we would be increasing the power
of the adversary to harvest information about the hidden state by increasing the
expressivity of the contexts she can create. It is an open problem whether that
increased power is sufficient to make the various information-theoretic orders
(Bayes Risk, Shannon Entropy, Marginal Guesswork etc.) equivalent or whether
they remain truly distinct.

Related techniques

The use of information orders, such as those summarised in §1.2, to determine
the extent to which programs leak their secrets is widespread. Early work that
took this approach includes [25, 38, 13], and more recently it has been employed
in [34,15,1,7,18]. One of the contributions of this paper is to show how those
evaluations can be related by taking a refinement-oriented perspective. Composi-
tionality plays a major role in our definition of refinement and we note that other
orders between probability distributions such as the “peakedness” introduced by
Dubois and Hiillermeir [9] appear not to be compositional when generalised to
our hyperdistributions.

More significant than the particular information order is the way that it is
used in the analysis of programs. Our approach uses specifications to charac-
terise permitted leaks, and a refinement order which ensures that for our chosen
information order (i.e. Bayes Risk), the implementation is at least as secure as
its specification. An alternative mode is taken by Braun et al. [1]. Rather than
restricting the elementary testing-relation (<) to a compositional subset (C),
they identify the safe contexts Cgafe such that I “<X” Cgate(I). With our emphasis
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on implementations I and their specifications S, by analogy we would be looking
for S=I implies Cgafe(S) 2Csate (I).

Building on the theoretical approaches, others have investigated the use of
automation to evaluate the quantitative weaknesses in programs. Heusser and
Malacaria [12], for example, have automated a technique based on Shannon
entropy. Andrés et al. [17] similarly consider efficient calculation of information
leakage, which can provide diagnostic feedback to the designer.

In some ways our semantics is related in structure to Hidden Markov Models
[14] suggesting that, in the future, the algorithmic methods developed in that
field might apply to the special concerns of program development. A Hidden
Markov Model considers a system partitioned into hidden states (our h) and
observable outputs (similar to our v). The h-state evolves according to a Markov
Chain, in our terms repeated execution of a fragment h:€ D.h in which the
probability of the next state b’ is given by a fixed “matrix” D as D.h.h’ where
h is the current state. Associated with each transition is an observation, in our
terms execution of a fragment v:€ E.h. Put together, therefore, the HMM evolves
according to repeated executions of the fragment

h:e D.h; v:e E.h | (19)

which fragment is a special case of our probabilistic-choice statements since the
distributions on the right in (19) do not depend on v, whereas in Fig. 1 they can.
The canonical problems associated with HMM’s are (in the terms above)

1. Given the source code (that is, the matrices D, E), compute the probability
of observing a given sequence of values assigned to v.

2. Given a sequence of output values, determine the most likely values of D, E.

3. Given the source code and a particular sequence of values assigned to v,
calculate the sequence of values assigned to h that was most likely to have
occurred.

The first of those is basically the classical semantics [16,21], but projected
onto v since we are not interested in h’s values. The second we do not treat at
all — it is tantamount to trying to guess a program’s source code (in a limited
repertoire) given the outputs it produces. The third is closest to our security
concerns, since it is in a sense trying to guess h from observation of v.

But in fact we address none of the three problems directly, since even in
the third case we have a different concern: in HMM terms we are comparing
two systems Dg, Fs and Dy, Ey, asking whether —according to certain entropy
measures— the entropy of the a-posteriori distribution of the final value of h is
at least as secure in system Dy, Ey as it is in Dg, Fs. Furthermore, our concern
with compositionality would in HMM terms relate to the question of embedding
each of Dg, Fs and Dy, F; “inside” another system D, E.

The application of HMM techniques to our work would in the first instance
probably be in the efficient calculation of whether Dg, Fg, the specification, was
secure enough for our purposes: once that was done, the refinement relation
would ensure that the implementation Dy, E; was also secure enough, without
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requiring a second calculation. The advantage of this is that the first calculation,
over a smaller and more abstract system, is likely to be much simpler than the
second would have been.
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A Proofs for partition-based matrix representations

We give here the proofs for properties we relied on in §7.

Property 9 (in §7.1): Convex closure of refinement matrices To show
that the set of N x N refinement matrices is the convex closure of the transpose
of the set of NxN strategy matrices, i.e. that

Ry = cc.(My),

we first observe (D) that every element in ccl.(My) is trivially non-negative and
column-one-summing (that is, it is a refinement matrix). It remains to show (C)
that any refinement matrix R in Ry can be expressed as an interpolation of
matrices from M y.

We argue as follows. Fix R, and identify a non-zero minimum element in
each of its columns; let ¢ be the minimum of those column-minima; select the M
in My that has 1’s in the column-minima positions exactly; and subtract ¢cM
from R to give some R'.

Now R’ has at least one more 0 entry than R did, and yet the columns of
R’ still have equal sums, now 1—c. Continue this process from R’ onwards: it
must stop, since the number of 0’s increases each time; and when it does stop
it must be because there is an all-0 column, in which case all columns must be
all-0, since the column sums have remained the same all the way through.

The collection of M’s and their associated c¢’s is the interpolation we had to
find: for example, in three steps the procedure generates the interpolation

(ég i’ﬁ) _ 1/4<(1)(1)>+1/12 ((1)(1)>+2/3(?(1)> .

Property (11) (in §7.1): refinement matrices form a monoid Since ma-
trix multiplication is associative and the identity 1y is an element of Ry, we
need only demonstrate that Ry is closed under multiplication. That can be
checked by direct calculation.

B Secure semantics via matrices

In §7 we appealed to matrix representations of partitions to construct our proof
that (C) is the compositional closure of (=<). Here we we project the rest of
our semantics into matrix algebra, giving matrix representations of split-states,
hyper-distributions, programs, and refinement. These representations are used to
verify both monotonicity (Thm. 2 from §6.5) in §C.2 and the Atomicity Lemma
(Lem. 1 from §8.1) in §E.
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B.1 Notation

For i taken from some ordered index set I we will write (Fi:1 | R « M;) for the
vertical concatenation of matrices M; for those 7 satisfying R, taken in I-order:
for this to be well defined, the column-count must be the same for all M’s; but
their row-counts may differ. In the same way we will write (+4:1 | R « M;) for
horizontal matrix concatenation (in which case the row-counts must agree).

For a given dimension N and expression E.n we write \E.n\| for the NxN
diagonal matrix whose value at the element (doubly) indexed n is E.n. Thus for
example we have 1 = \1\.

B.2 Split-states as single-column matrices

Let N be the cardinality of VxH. A split-state has type VXDH and can be
written as an 1xN matrix, a row of probabilities in some agreed-upon index
order of VxH where the element at (column) index (v, h) gives the probability
6.h associated with that pair.

Naturally the row sums to 1 but —more than that— each such representation
of a split-state will have nonzero entries only in columns whose first index-
component is the v appearing in (v,d). We say that such a row is V-unique and
that it has characteristic v.

Write 1, for the Nx N diagonal matrix \\1 if v=v else 0\ having ones only at
positions whose row- (or equivalently column-) index has that v as its first com-
ponent; elsewhere in the diagonal (and everywhere off the diagonal) the entries
are zero. The row-matrix representation ((v,d)) of split-state (v, d) then satisfies
(v,9)) = ((v,0))x1, because it has characteristic v, so that the multiplication by
1, sets to zero only elements that were zero already.

B.3 Hyper-distributions as matrices

In §7.1 we interpreted whole partitions as matrices, with each row (fraction)
giving a possible distribution over H for some fixed v. Here we proceed similarly,
but we do not fix v, so that a hyper-distribution A whose support has cardinality
F is represented as an F'x N matrix ((A)) each of whose rows is V-unique, as
above, thus independently representing some split-state (v,d). Extending the
matrix representation of individual split-states, we can represent whole hyper-
distributions according to

(A) = (F©,0):[A] « A(v,0) * (v,0))) (20)

where, as in §7.1, with the multiplier A.(v,d) we are scaling the rows so that
the total weight of each gives the probability of that split-state in the hyper-
distribution overall; the distribution the split-state actually contains (the ¢ in
the (v, d) that the row represents) is as usual recoverable by normalising. Because
each of the rows is V-unique we say that the matrix as a whole, also, is V-unique;
but note that it is possible to have several rows with the same characteristic v.
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V-uniqueness means that no two distinct v’s appear with non-zero probability
in the same row.

As for partitions, in such matrices we define similarity between rows and
say that a hyper-distribution is in reduced matrix representation if all its similar
rows have been added together, and all its all-zero rows have been removed. We
say that two hyper-distribution matrices are similar (=) if their reductions are
equivalent up to a reordering of rows. Similarity is a congruence for matrix mul-
tiplication on the right, but not on the left; vertical concatenation () respects
similarity on both sides.

While the column-order of (A)) is fixed by our (arbitrary) ordering of VxH,
the row-order might vary since there is no intrinsic order on fractions. We there-
fore regard ((A)) as determined only up to similarity, and our reasoning below
will be restricted to operations for which similarity is a congruence. In partic-
ular we have that (A1))~((A2)) implies A=A, i.e. that ((+)) is injective up to
similarity.

The operation ((-)) on (sub-)hyper-distributions is linear in the sense that

(px4) = px(Q) (21)
and (A1+42) =~ (A1) + (4Q2) .

B.4 Classical commands as matrices

We recall from §2.3 that the classical “relational” semantics [P]¢ of a program
P is a function VxH — D(VxH) and may hence be treated (just as D.v.h from
87.1 was) as an N x N matrix written (P] whose value in row (v, h) and column
(v} 1) is just [P]c.(v, h).(v)R'). 30

Sequential composition between classical commands is then represented by
matrix multiplication, in the usual Markov style, so that we have

(P; P2) = (1) x(P2) . (22)

B.5 Secure commands as matrices

We will establish that for any secure program P there is an [-indexed set of
N x N matrices such that

(IP)-(v,0)) =~ (Fi:d« (v,0) x M;) (23)

for any split-state (v,d). We think of the matrices as giving a normal form for
P. Using the normal form, we will be able to represent the lifting of P’s secure
semantics using matrix operations, since then

(©@0):A«[P.(v,0)) =~ (Fi:l+(Q) x M) (24)
can be established by the calculation

30 Note that operation (-) applies to texts, i.e. syntax but ((-)) applies to hyper-
distributions, i.e. semantics.
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(©(v,6):A« [P].(v,9)))

= (2w, 0):TA] « Av,98) % [P].(v,6))) “definition expected value §2.1”
~  (F(v,0):TA] « A(v,9) = ([P]-(v,9))) “from (21)”
~  (F(v,8):[A] « A(v,8) % (Fi: 1 » (v,0) x M;)) “normal form (23)”
= (F(v,0):[A];8: 1« (A(v,0) * (v,9))) x M;) “distribute multiplication”
~  (FiD e (F(v,0):[A] « A(v,6) * (v,0))) x M;) “rearrange rows; distribute

post-multiplication”
~ o (Fil . (AQ) x M) . “from (20) defining (A))”

We now show by structural induction how embedded classical commands, general
choice, sequential composition (and hence all of our secure commands) can be
translated into this normal form.

Embedded classical commands In Def. 3 from §8.1 we gave the semantics
[{P)] of a program P considered as an atomic unit; we now do the same here
in matrix style.

If we were to execute an atomic program ((P)) from a split-state (v, d), in the
matrix style we would begin by calculating (v, d))x (P)), giving again a single
row; but that row might not be V-unique, in which case a further step would
be needed. We’d split its possibly non-unique rows into (maximally) V-unique
portions, an operation that corresponds roughly to the embed funtion used in
Def. 1.

Given a row matrix R that is VxH-indexed by column (such as the out-
put (v,9))x(P) from just above) the splitting of its possibly non-unique row is
achieved via

embed.R = (Fv:Ve+Rx1ly), (25)

in which each of the values v’ in V is used, in turn, to construct a row ma-
trix of characteristic v’ projected from R by zeroing all other entries: those
characteristic-v’ projections are then stacked on top of each other with (&) to
make a single (possibly quite tall!) matrix that is derived from R but now is
V-unique. 3' With that apparatus, we have

(I€P)-(v, 1) =  (Fo:V e (v,0) x (P) x L) , (26)

thereby giving the V-unique matrix representation (up to similarity) of the
hyper-distribution output by {(P)) if executed from incoming split-state (v, §). 32

General choice For both general choice and sequential composition we assume
inductively that the semantics of subprograms P, and P, can be written in

31 For example, if the row R is V-unique already then R’:=embed.R will stack up a
great many all-zero rows. But still we will have R~R’, so no damage is done.

32 Note the algebra of similarity here: if we have R=((v,d)) for some R, then
(F£v":V ¢« R x (P) x 1,+) is similar to the right-hand side above.



48 Annabelle Mclver, Larissa Meinicke, and Carroll Morgan

matrix normal form so that for each split-state (v,d) we have

([B)-(v,0)) =~ (FjizJi = (v,0) x Myj,)

To show that general choice can be expressed in matrix normal form, we use
the following identity which expresses the conditioning of a split-state (v,d) by
expression F.v.h in terms of matrix operations:

(@h:d« Ew.h)* (v,{h:d | Ew.h}) = (v,0)) x \E.v.h\ . (27)
We then have
(( [[Pl qv.h® P2]]-<U7 6) )

= “general choice from Fig. 1; p:=(® h:4 * q.v.h)”

(p[P1]-(v, §h:6 [ qv.b}) + (1=p) * [P2] (v, {h: 6 [ 1=q.v.h})))

“from (21)”

*([A]-(v, fh:0 | qo-h})) F+ (1=p) * ([P2]-(v, §h: 0 | 1=q.0.h})))

Q

“inductive assumption: matrix normal form of P; and P»”
* (jijliJl . ((v,{{h:5 | q’()h})) X Ml,jl)
F (-p)* (Fj2: 2« (v, {h:0 [ 1—qv.h})) x Ms,j,)

Q

= “distribute scalar multiplications”
(Fj:Jr e (px (v, fh:6 | qvh}) x M)
F (Fher 2+ ((1=p) * (v, {h: 0 [ 1=q.v.h})) x Ma,j,)

= “recall p:=(© h: ¢ * q.v.h); from (27)”
(F71: 1+ (v,0) x \gv.h\ x M 5,)
F (Fi2ida e (0,0) x \1—gvh\\ x My ;)

= “Let pi.v.h:=¢q.v.h and pz.v.h:=1—q.v.h”

(Fi:{1,2};5: Ji » (v,0)) x \piv.h\ x M; ;) .

Sequential composition For sequential composition of P; and P, we have

(( [[P1, P, (v 5) )

= (@@ &):[P].(v,0) « [P].(v)6"))) “Composition from Fig. 1”
~  (FJa: Jg . (([[Pl]] (v,6))) x Maj,) “(24); matrix normal form of P»”
~ (3*2]1 Jl,jg Jo e ((’U, 5)) X M17j1 X M27j2) . “matrix normal form of P;”

B.6 Refinement as matrix multiplication

In §7.1 we showed how refinement between partitions could be defined using
matrix multiplication. We can promote this to hyper-distributions by dealing
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with each v separately: we have that hyper-distribution Ag is refined by Aj just
when for each veV there exists a refinement matrix (i.e. a non-negative, column
one-summing matrix) R, such that

R, x (As) x1, = ((4)x1,. (28)

The effect of requiring similarity for each v separately is to prevent rows with
differing v’s from being added together.

C Proofs for the refinement relation

C.1 Secure programs are partially ordered by (C)

We show (Thm. 1 in §6.5) that the refinement relation (C) defines a partial order
over hyper-distributions. It follows by extension that it is a partial order over
secure programs.

Reflexivity For any hyper-distribution A reflexivity holds trivially since, for
each v, the intermediate partition fracs.A.v is both similar to and as fine as itself.

Transitivity Assume that A;CA; and AsCA;z. It is enough to show that for
each v we have fracs.Ay.v C fracs.As.v. For each i let II; be the N xN matrix
representation (§7.1) of fracs.A;.v for some N. To prove II; CII5, we need to find
a refinement matrix Rs3; such that [13 is Ry xI1;.

From above there are refinement matrices Rss, Ro1 with I3 = R3ox Il5 and
HQ = R21><H1. Thus Rgl defined R32><R21 satisfies Hg = R31 XHl, and it is a
refinement matrix by Property (11) from §7.1.

Antisymmetry Assume that both A{CAs and AsCA; but Ay # As. From
the first and third assumptions, with Lem. 6 (§G.1) we have that the Shannon
Entropy of A; is strictly less than that of Ag; from the second and third, we
have the opposite — thus a contradiction.

C.2 Monotonicity of secure programs w.r.t. (C)

We use the following technical results to verify that (£) is monotonic with respect
to secure program contexts (Thm. 2 from §6.5). They are verified using the
matrix algebra from §B above.

Lemma 3. For any indexed set of matrices {i: I « M;} each of dimension
FxN and corresponding refinement matrices R; each having F; rows and F
columns, there exists a refinement matrix R such that

(i1« Rix M;) = Rx (il « M) . (29)
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Proof:  Refinement matrix R can be given directly as
(Fi:T o (T« (R;ifi=1elseOpxr))) .

That R is a refinement matrix (i.e. it has non-negative entries and is column-one-
summing) follows from its definition and the fact that each R; is a refinement
matrix. It can be established by matrix multiplication that (29) holds. 33 o

Lemma 4. Additive monotonicity of hyper-distributions For probability p: [0, 1],
and hyper-distributions Ag,, Ag,, Ar,, Az, we have that Ag, T Ay, implies

Asl p@ ASQ E Afl p@ AIz .

Proof:  From (28) it is enough for each v to find a refinement matrix R such
that
R x ((ASI p®d Ag, )) x1l, =~ ((AII p®D Afz)) X1y .

We have:
(( Ah p®D Afz )) x 1,
~ (p(An) F (1-p)*(4An)) x 1, “from (21)”
= px(An) x1, ¥ (1-p)x(An)) x 1, “distribute post-multiplication”
R “Ag,CAyp, implies (Ar,))x1y &= Rix(As,))x1, for some refinement
PRy x (As) x 1y + (1-p) * R X (As,) x L matrix A,

= “commute scalar multiplication; distribute post-multiplication”

(R1 xpx(As,) + Ra x (1=p)*((4s,))) x 1

= “Lem. 3 for some refinement matrix R”

Rx(px(4s,) + (1-p)*(4s,)) x L,
R x (( Asl p@ ASQ )) X 11) . “from (21)77

Q

O

Lemma 5. Pointwise monotonicity For all program texts P and hyper-distribut-
ions Ag and A; such that Ag C A;, we have

© (v,0): Ag + [P].(1,6)) T (©(v,0): Ar « [P].(v,9)) .

Proof:  Let {i:I « M;} be a set of NxN matrices giving the normal form
for [P] as at (23) above, so that for any (v,d) we have

(IP)(v,0)) =~ (Fi:L+ (v,0) x M;) .

From (28) and (24), it is enough to show that for each v’€V there exists a refine-
ment matrix R such that Rx (Fi: I « (Ag))XM;) X1y & (Fi: I « M;x (A1) X1,
We have

33 A sketch of the block matrices helps to see the pattern.
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(Fi: I« (Ar) x M;) x 1,
(Fa: T« (Fo:V e (A1) x 1) X M;) x 1,y “((Ar)) is V-unique”
= (Fi:Lv: Ve (Ar) x 1, x M;) x 1 “distribute post-multiplication”

Q

Q

“As C Ay implies (A7) x 1, & Ry x (As)) x 1, for some
(Fi:;0:V » Ry X (As)) X 1y, x M;) X 1, refinement matrix R,”

= Rx (Fi:Lu:V e (Ag)) x 1, x M;) X 1, “Lem. 3

for some refinement matrix R”

Q

Rx (Fi:1+ (Ag)) x M;) x 1, . “distribute post-multiplication;
(As)) is V-unique”

O

Monotonicity of secure programs w.r.t. (C) Using Lem. 4 and Lem. 5 we
now prove Thm. 2 from §6.5. We must show that if STI then C(S)CC(I) for all
contexts C built from programs as defined in Fig. 1.

We use structural induction. For the base case, context C(S):=S is trivially
monotonic.

General probabilistic choice (and hence probabilistic and conditional choice)
is trivially monotonic in either argument from monotonicity of addition over
hyper-distributions (Lem. 4). For example, for monotonicity in the first argument
we have

[S 4.0 B].(v,0)

“Let gs:=(® h:0  q.v.h); General choice from Fig. 17
([S]-(v, £h:6 | qv.h}) ¢;® [R].(v, {h: 0 | 1—q.v.h}))

(H]-(v, {h:0 | gv.h}) ¢s@ [R]-(v, {h: 6 | 1—q.v.h})) “SC I; Lem. 47
[ gvn® R].(v,6) . “General choice from Fig. 1”

1M

To show monotonicity of sequential composition in its right-hand argument
we have for any programs R and S C I and initial state (v, d) that

[R; 5].(v, )
= (©@,d):[R].(v,9) « [S]-(v',d")) “Composition from Fig. 1”
C ©®,0):[R]-(v,6) « [I].(v',4")) “S C I; Lem. 47
= [R;I].(v,9) . “Composition from Fig. 17

For monotonicity in the first argument we have

[S; R].(v,0)
= (©@,d):[S].(v,d) « [R].(v',d")) “Composition from Fig. 1”
C ©®,0):1I].(v,0) « [R].(v,4")) “S C I and Lem. 57

[I; R].(v,6) . “Composition from Fig. 17
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D Example of completeness construction

Here we illustrate the completeness proof set out in §7.3 by applying it to the
example of §6, where we claimed that P,IZP. We use §7.3 to find a C such that
indeed Py;C A Py; C.

Our ¢’ is 1, since that is where we find the difference between P, and Py in
the residual uncertainties of h; with that, we extract the fractions
ITp, = <{1@i73@%}1{1@%73@i}>
Te, = ({1%%), {1939, {37 )
and find that there are two values of h, two fractions in ITp, and three fractions
in ITp,. Accordingly we set N to 3 and include an extra column for h=2 and
an extra, zero fraction in ITp,. Note that Y IIp, = > IIp, and that the total
weight (of each) is 2/3.

The N xN matrix corresponding to IIp, is then as at right 1/60 0
with its columns corresponding to values 1,2, 3 of h and the 1/601/6
rows to IIp,’s three fractions. The point obtained by con- 0 01/6
catenating the rows is (1/6,0,0,1/6,0,1/6,0,0,1/6), and is
in 9-dimensional space; but to avoid a proliferation of fractions, we scale ev-
erything up from now on by a factor of 12, and so take zp, to be the point
(2,0,0,2,0,2,0,0,2).

Now the scaled-up (and extended) matrix corresponding to I1p,, with a se-
lection of refinement-forming matrices M in My, is given by

when v'=1 {

301 111 101 101 011
103 and 000}),{010}),{000]},{100
000 000 000 010 000

Carrying out the matrix multiplications gives us these four possible refinements
of Hp42
404 301 301 103
000],{103]),{000]),[301
000 000 103 000

Doing all of them for M in My, and concatenating their rows to make points
in 9-dimensional space, gives us this collection of refinements altogether:

{ (4,0,4,0,0,0,0,0,0) , (3,0,1,1,0,3,0,0,0) , (3,0,1,0,0,0,1,0,3) , (30
(1507373707 1507070) ) (07070’4507470?070) ) (0707073707 17 17073) )
(1,0,3,0,0,0,3,0,1) , (0,0,0,1,0,3,3,0,1) , (0,0,0,0,0,0,4,0,4) }.

Our claim that P4IZP, suggests that the point xp, (corresponding to the matrix
derived from I7p,) should not lie in the convex closure of the points (30) above.

We can see this easily by concentrating on the first and third dimensions
only: for IT, we get (2,0); and for IIp,, that is (30), after removing duplicates
we get (4,4), (3,1), (1,3) and (0,0). The ITp,-point xp, is not in the convex
closure of the other four because all of them have their two coordinates both
positive or both zero, a property preserved by any convex combination but not
shared by (2,0).
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Now that we can concentrate on
just two dimensions, it’s easy to find a
separating hyperplane with a picture.
Fig. 4 shows the IIp,-point as an open
circle at (2,0), while the filled cir-
cles give the vertices of the diamond-
shaped convex closure corresponding
to refinements of I1p,. Clearly the (de-
generate) hyperplane y = (z—1)/3
separates the point from the diamond.
The normal of that hyperplane (up
and left, perpendicular to the line)
has direction (—1,3), and when we
fill in the other seven dimensions as
zero —since they’re not needed for
Fig. 4. Finding a separating hyperplane separation— that gives us a candidate
y = (z—1)/3 in 2-space. normal of X:=(-1,0,3,0,0,0,0,0,0)

in 9-space. By translating X to ma-
trix form and transposing it, we can
then give a tentatitive definition of D as shown at right. However this is not
quite our final value for it.

We insert a hyperplane (just a line, in
2-space) midway between the separated
point and the convex shape, parallel to the
boundary of the latter.

The dot-product of X with IIp,, that is tr.(IIp,xD), 7(1) 88
turns out to be —2; and with the refinements of IIp, shown 300

at (30) we get the dot-products 8 and 0 (multiple times),

showing indeed the separation we expect, but in the wrong direction: the values
0 and 8 for P, are both strictly greater than the value —2 for P, and we want
them to be strictly less. Accordingly we multiply the tentative D above by —1 34
and then add 3 to all its elements to make them non-negative; finally we divide
everything by 10 to make its rows sum to no more than 1. To get the final D from
this we must then add a new “zero-th column” to make each row one-summing
exactly. That gives

\L Zero’th column, for one-summing

0 04 03 0.3
D:= (01 03 03 0.3
04 0 03 0.3

The distinguishing context (—; C'), say, must then overwrite h according to the
distribution given by a row of D, the one selected by the value h of h incoming
to C; thus we construct C' to be

if v=1 then h:c ({1©04 2903 39030 jf h=1 else {004 2903 39037
else h:=01fi,

34 The fact we can simply multiply by —1 to reverse the sense of the comparison does
not mean we can just as easily construct a context to show P>[ZP; — which would
indeed be a worry. In fact for P,IZP; we’d need a shape Xp, and a point xp,; and
then we would find zp, inside the shape Xp,, thus unable to be separated from it.
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with the outer if effectively restricting our attack to occur only when v'=1.
(That allows us to ignore the h=2 case in D, as well.) Thus we have our context
(—; C). Let us now check that it actually works.
We begin with Py; C. Its output hyper-distribution is (after some calculation)
given by
{ (0, g0 ,
(1, {{0@0.1’ 1@0.372@043’3@0.3}})@§ ,
(1’{0@0‘3’ 1@0.172@0.3’3@0.3})@% 1,

whose Bayes Vulnerability is 1/3%1 + 1/3%0.3 + 1/3%0.3 ~ 0.53. On the other
hand, for Py;C the output hyper-distribution is

£ g0y, 1
(1’ {{1@0.472@0.373@0.3}})@5 )
(1 {0@0.2 1@0.2 2@0.3 3@0.3})@%
1
(17 {{0@0'4’2@0'373@0‘3}})@6 } ;

and here the vulnerability is 1/3%1 + 1/6%0.4 + 1/3%0.3 + 1/6%0.3 =~ 0.55. Note
that in the third summand we took 0.3 rather than the larger 0.4 associated
with 0, since as part of our construction we exclude guesses that h is 0.3°
Thus we have established that Py;C £ Py;C (for the adjusted C' — see
Footnote 35), because the vulnerability of the former is 0.53 but for the latter
the vulnerability is the greater 0.55. Hence when our refinement relation insists
that P,IZP, —as we argued earlier above— in fact it is not being too severe, but
rather it is acting just as a compositional closure should. It protects us not only
against the context C' we just made, but all other contexts too — in spite of the
fact that in isolation Py and P, are not distinguished by elementary testing.
Finally, in this example there are many hyperplanes with distinct normals
that achieve the separation we need, and each of these may be used to construct
different distinguishing contexts. For example, since there exists a separating
hyperplane with normal (0,0,2,1,0,0,1,0,0) we can use it to define another

35 Dealing with this detail would split the 0O-case in half, uniformly distributed over
—1,—2, since the resulting probability 0.4/2 for each would then be small enough
that a Bayes-Vulnerability attack would never choose it. The adjusted context C’
would contain

h:E ({1@ 0.4’ 2@0437 3@0.3} if h=1 else { _ 2@0.2’ _1@ OA27 2@ 0.37 3@ 0.3})

and the resulting output for P»; C’ would be
07 {OH)@% I

1
3
’

(
(
(1’ { _ 2@0.1’ _1@0.1’ 1@0.272@0.373@043}})@
(1,4 - 2@0.2’ _1@0.272@0.373@0.3}})@% 3},

in which neither —2 nor —1 would ever be chosen for a Bayes-Vulnerability attack.
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distribution matrix

0.5 0.25 0.25
D = 0 O 0
0 05 05

from which we can specify the distinguishing context (—; C'), where C' is

if v=1 then
h:e (£192,29%,395} if h=1 else {297,392}) (31)
else h:=1fi,

which requires no h:=0 case for D since the rows of its defining normal just
happen to have the same sum. (That’s not true for the middle row; but as
before we can ignore it since, in the v'=1 case we are considering, that row is
never used.) 3¢

Finding the normal that
generates (31), however, is
harder if done geometrically: it
turns out that we would have
had to specialise to three coor-
dinate indices 3, 4 and 7 rather
than just 1 and 3. The re-
sulting inspection —to see just
where to slip the hyperplane in
between— would then have had
to be done in three- rather than
two dimensions, as Fig. 5 il-
lustrates (in a side view). In
general such hyperplanes can
of course be found, without
drawing pictures, by using con-
straint solvers to deal with the
linear inequalities symbolically.

normal M

hyperplane

Fig. 5. Finding a separating hyperplane, with
(2,1,1) as normal, in 3 of the 9 dimensions.

E Proof of the Atomicity Lemma

To prove the atomicity distribution lemma (Lem. 1 from §8.1) we use the matrix
algebra from §B.

36 Tt can be shown that this is a legitimate counter-example by using (4) and (31) to
calculate the partitions

/ 1{ Hpyor (172,292 393}, {1975, 2°% 393} {2712, 3% 12 })
V=

Mpgo: (195,205 3% ), f1%95,29% 195 }) .

and observing that the vulnerability of IIp,;c is 1/8+7/48 = 13/48, which is just
smaller than the vulnerability of IIp,;c at 1/12+1/8+1/12 = 7/24.
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Suppose we have matrix representations (P oy) for the classical program
texts P; and P, and a row-matrix representation ((v,d)) of an incoming split-
state.

If from every initial and final v-state of Py; P> it is possible to determine the
intermediate value of v (after P; and before P) then there must exist a total
function f:V—V—V such that for all v,v" we have

Ly x (P1) x (Pe) x 1y = 1, X (P1) X Ljper X (P2 X 1y (32)
from which we have for all ¥ # f.v.v’ that
1, x (P1) x 1 x (P2) x1,, = Opn, (33)

where Oy is the N x N matrix of zeros.

Assuming such an f with properties (32) and (33), we can calculate

(16Ps; P))-(0,8))
~ (F:V e (v,0) X (Pr; Po)) X 1) “embedding”
= (F0:V e+ (v,0) x (P1) x (P2) x 1) “classical composition”
= (F05V (0,0) x 1 x (Pi) x (Po) x 1) “(0,6)x10 = (0,5
= (FV:V e (v,9) X1y x (P1]) X 1y p X (P2)) X 1) “(32)”

=  (F,0:V | o=furv « (v,0) x 1, X (P1) x 15 x (P2) X 1,7) “one-point rule
for (+)"

Q

“01x N is unit of concatenation, up to similarity”
"o (0,0) x 1, X (P1]) x 15 x (P2) x 1)
"o 01><N)

fov o (v,6) x1, x (P1) x 15 x QP;DV;
O£ fo o (v,8) x 1, x (P1)) X 15 x (P2) x

Q

“b=fv.v" and O£ f.v.v’ are disjoint and exhaustive;
(%) is commutative and associative up to similarity”

(FV,0:V ¢ (v,0)) x 1, x (Pr) X 15 X (Pa)) x 1)

= (F010:V « (v,0) x (P1) x 15 x (P) x 1,r) “(0,8)x1y = ((v,0))”
— (Ve (D (0,8) X (Pi) X 1) X (Po) % 1) “distribute 47
~ (([[«Pl», (Pa)]-(v, 5))) ) “composition, embedding”

whence our result follows because ((+)) is injective up to similarity and (v, d) was
arbitrary.
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F Informal description of the Oblivious Transfer
implementation 3"

Given are two agents B, C; Agent B has two messsages my 1y, bit-strings of the
same length; Agent C has a message variable m and a choice c: {0, 1} of which
of myg,1y is to be assigned to m. The specification is thus

visgp mg, my; visg m,c;
m:=mc .

Note that B does not discover ¢ and that C' does not discover m_.

The implementation is, informally, as follows:

This is the prelude of the protocol

1. Agent B chooses privately two random bit-strings mﬁgo,1} to be used for V-
encrypting my 1y respectively.

2. Agent C chooses privately in ¢’: {0, 1} which of the encrypting strings mf{o’l}
will be revealed to her.

3. A trusted third party collects both m’{o,l} from B, collects ¢’ from C and

then reveals (only) m’, to C. She throws m’ _, away, and then leaves.

From here is the main part of the protocol
4. Agent C then tells B to encrypt and send messages in the following way:

(a) If Agent C wants mo and has m{, then she instructs B to send her
both mpVm{, and m;Vm/. Because she has m{ she can recover my via
(moVm{) V m{; but she cannot recover my.

(b) Similarly, if Agent C' wants mg but has m) instead (of m{), then she
simply instructs B to send her both mgVm} and m;Vm(, i.e. with the
encryption the other way around.

(c¢) If Agent C' wants my and has m{; — as for (4b).

(d) If Agent C' wants m; and has m} — as for (4a).

The four cases (4a—4d) can be described succinctly —if cryptically— simply

by instructing B to send m;Vm!g g for i =0, 1.

37 An even more informal description is this fairy tale. An Apprentice magician is about
to graduate, and he must now choose between black- or white magic. His Sorcerer
will allow him to read either the Black Tome or the White Tome, not both; and his
choice must be his own, uncoerced, thus never revealed to the Academy.

The Sorcerer summons a trusted third party Djinn who gives him two locks, one
black and one white; and the Djinn gives a single, golden key to the Apprentice.
On the key is a small dot that only the Apprentice can see: it is the colour of the
matching lock. The Djinn then returns to his own dimension.

The Apprentice tells the Sorcerer to match the lock colours to the Tomes, or to
reverse them: it depends on whether his choice matches the colour of the dot. The
Sorcerer then leaves; the Apprentice can unlock only the Tome of his choice; and
—provided he locks it again— no one afterwards will know which one he read.
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Note that only Step (3) involves private messages (first between B and the third
party, and then between the third party and C), and that is only in the prelude,
before any of the actual data myq 1y, c has appeared. Steps (1) and (2) involve no
messages at all; and the messages occurring in Step (4) are V-encrypted already.
In effect the prelude has created a one-time pad.

A formal derivation of this implementation is given elsewhere [27].

G Alternative uncertainty measures

G.1 Shannon Entropy

The Shannon Entropy of a (full) distribution §: DX is H.0:=(©d: 0 « —1g(d.d)),
that is the weighted average of the negated base-2 logarithms of its constituent
probabilities [33]. By extension, for any hyper-distribution A we define the con-
ditional Shannon Entropy H.A to be (® (v,0): A « H.§), the expected value of
the entropies of its support [3].

Going further, if we split up our hyper-distribution by v into its partitions,
we have an equivalent presentation of entropy as the sum of individual partition-
entropies H.A = (3" v:V « H.(fracs.A.v)), provided we define the entropy of a
single partition, and of a single fraction, as follows:

HIT:= (. m: Il «Hm)
= (34)
Hr:= (©d:r«lg([n].d)),
where we write lg for —lg to avoid a proliferation of minus signs, and [r] is
normalisation of the fraction , scaling it up (if necessary) to give a distribution
again.
The ordering (<y) based on hyper-distributions

Ag =y Ar = (f‘t.AS = ft.A]) A (HAS < HAI)

is then specified, as for the Bayes order (=), so that Ag=<pyA; if they are func-
tionally equivalent and the uncertainty (the Shannon Entropy in this case) of Ay
is no less than that of Ag. It extends pointwise to secure programs. Furthermore
we write that S <y I when S <y I but I A4 S.

Non-compositionality Consider again two functionally-equivalent programs

from our three-box puzzle example from §2 and §4:

Si= h=0@1e2; v:e {ws, b1 3} vi= 1
I : h:=09192; vie {w®h+2) p@1==20. .= |

with final hyper-distributions

(L {195,290, (L, 05,195 ) } (4%)
and f L f2hes, (Lo ipes } . (A7)
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The Shannon entropy of Af, calculated 2 %(%E% + %E%), is slightly more
than 0.918, exceeding the entropy A’Iz that, by the simpler calculation given by
%(El) + %(2*%@%), turns out to be exactly %; and so Io=<yS.

However if we define context C to be (—; h:=(1 if h=2 else h)) then the
entropy of C(I3) is the same as before at 2; but the entropy of C(S) is now only
a half of what it was, at ~0.459. Hence C(I2) An C(5).

Soundness We follow initially the structure of the soundness proof for Bayes
Risk. Fix an initial split-state and construct the output hyper-distributions
A’{ s.1} that result from S, I respectively. Then since we assume SCI we must
have A C A, We now show that this implies Ay=<yA].

Since SCI trivially guarantees that ft.Ay=ft. A}, we need to show that the
Shannon Entropy condition in (=y) is satisfied. Since we have that H.A’ is
(3" V « H.(fracs.A.w")), it is enough to show that for each v': V the entropy of
ITg:=fracs.A’.v" is no less than the entropy of ITj:=fracs.A}.v’, provided that
II =~ II' T II; for some partition II’ depending on v'.

For II ~II' we consider the unique II that is the reduction of both: it is
formed in each case by adding together groups of similar fractions. From (34)
and arithmetic, we obtain immediately that H.IT§ = H.IT = H.IT'.3®

For IT'CII; we know that the fractions of IT; are sums of groups of not-
necessarily-similar fractions in II’. We consider the special case of just two frac-
tions 7y 93 in IT" summing to a single fraction m:=m+my in I}, and look at
their relative contributions to the sum (34); we have

H.m
= H.(’/T1+71'2)
(©d: (my+m2)  lg([m1+m2].d)) -
(@d:my « lg([m1+ma].d)) + (© d: o « lg([m1+72].d))
@d:my « lg([m1].d)) + (©d: g » 1g([m2].d)) “see below”
H.’/Tl + H.’/TQ ,

vl

that is that the contribution to the conditional entropy of 7 on its own is at
least as great as it was when was separated into m; }.

For “see below” we refer to the Key Lemma [36, p5] which states that for
two total distributions 6,6’ of equal support, the weighted sum (® d: d « 1g(¢’.d))
attains its minimum over &’ when §=¢".

Extending the argument similarly to multiple additions gives H.IT" < H.IT;
as required and thus we have H.IT§ < H.II} overall. We note that the inequality
at T is strict when 71 %72, because then e.g. [m]#[m+m2]. 3 We have established

Theorem 6. Soundness of (C) w.r.t. () For all secure programs S and I
and contexts C, we have that SCI implies C(S)=nyC(I). O

38 If Ao then [m1]=[m2]=[m1+m2] and so the line marked { below becomes an equality.
39 This follows from a strengthening of the Key Lemma to “... only when §=¢’,” which
is implied by the proof of Thm. 1 [op. cit.] immediately before.
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Finally, when SCI but S # I so that Ax#A/ for some initial split-state we
must have IT¢#II; for some final v/, since both those partitions are in reduced
form: that is, reduced partitions cannot be similar without actually being equal.
Thus also IT'#I1;, and so we can find particular w127y to realise the strict
inequality at t. That gives us

Lemma 6. Strict soundness  For all hyper-distributions Ay o3 we have that
A1C A, but Ay 75 Ag implies A1=<pAs. O

G.2 Marginal guesswork

The Marginal guesswork [30] of a distribution ¢:DX is the least number of
guesses an attacker requires to be sure that her chance of guessing some h chosen
according to ¢ is at least a given probability . We define it

Wo.d = (Mi:1.N | U > )

where we write L0, or more generally Li‘r for fraction 7 to mean the sum of
the i greatest probabilities in 7, and N is the cardinality of X. Note that by
super-distribution of maximum over addition we have LI*(7y+mo) < Uy + LT
for any 4 in the proper range. To avoid clutter, we will omit the range 1..N for
1 from here on.

For a hyper-distribution A we define

W, A= (Mi | (@ (v,68): A« U8 > a) ' (35)
or equivalently W,.A := (Mi| O v:V;m:fracs.Aw « U'm) > «)
which is the least value 7 such that if an attacker is allowed to make that many
guesses then she can discover the value of h with probability at least a.
Observe that our definition of W,.A is not the same as the conditional
marginal guesswork (©3d: A « W,.0) as conventionally defined [15]. We argue
that conditional marginal guesswork is not a reasonable measure of the number
of guesses required by an attacker to ensure that the probability of guessing h
in A is greater than «. Consider for example the hyper-distributions

As={(v, 0}, (0. {14} and  Ap={(v. {0} & {1.4})} 10

Note that AgCA; since the latter is obtained by merging the two split-states of
the former.

Now an attacker has more information about how h was chosen in Ag than in
Ay for Ag she knows not only that h is distributed according to the distribution
{0} @ {1..4} overall (as for Aj), but as well she knows when h was chosen from
{0} and when h was chosen from {1..4}. However, when we set a:=1/2 the

1

conditional marginal guesswork of Ag is (1) + 3(4«), that is 3/2 — which is

higher than for Ay, which gives only 1. This suggests that it is harder for an

0 Alternatively we could write out {0} @ {1..4} with its explicit probabilities as
{{O@%, 19% , 29% , 39% , 4@5}, but we prefer to avoid the superscripts.
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attacker to guess h in Ag than in Ay, in spite of the fact that the attacker knows
more about the final h-distribution in Ag when launching an attack.

Using our W, we have Wy ,5.Ag = W .47, that is 1 in both cases: with
just one guess at her disposal an attacker is guaranteed to guess h at least half
the time. Applying her one guess to Ag, half the time she can guess 0 and is
sure to be right; in A; she guesses 0 and will be right half the time.

The ordering between hyper-distributions based on marginal guesswork is

Ag =w, A = (ft.AS = ft.A]) A\ (WQ.AS < Wa.AI)

which extends pointwise to programs.

Non-compositionality When « is not zero, marginal guesswork —like the other
measures— is non-compositional for our subset of programs. For such an a#0
take, for example, functionally equivalent programs
S:=he{0,1,2} y® {—N..—1};
viE ({{w@%,b@(l_%)}} if h>0 else {w@%,b@%]});
vi=_1

~
I

h:e §0,1,2} o® {—N..—1};
vie (w2 5O ME2Y fh>0 else {w®s, 5% Y);
vi=_1

such that if a=1 then N=0 else N > 3x 1_70‘ These programs have the final
output distributions

{(J—7{1@%72@%} a® {*Nf]-}); (lvﬁo@%al@%} a® {7N712}})} (A%’)
and L2y e {—N..—11)%, (L, 0,1} o@ {-N..—1})5} . (A))

We can calculate that both W,. Al and W,.A’; are 2, and so S <w,, I, but that
for context C defined as (—; h:=(h <+ 2 if h>0 else h)) we have W,.A} is only
1, while W, A% remains at 2 — and so C(S) Aw, C(I).

Soundness

Lemma 7. (C) implies (Zw,) For all hyper-distributions Ag and A; and
probabilities ¢, if AgCAj then also Ag=w,_ Ar; consequently SCTI impliesS=<w, 1.

Proof:  From (35) and the definition of refinement (Def. 2, §6.4) it is enough
to show that for any partition I7 and ¢ in range that (i) if the fractions in
IT are similar then (Y. m:II « Uir) = LW (Y m:II) else (i) (O m: Il « Uim) >
U8 (3> IT) . To show (ii) we have by generalising LI (71 +mo) < Uiy + Ui that
indeed

m Il - Uin) > (),

and for (i) we can replace inequality by equality since (L) distributes over
summation in that case. m]
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Theorem 7. Soundness of (C) w.r.t. (Xw,) For all probabilities «, secure
programs S, I and contexts C we have that S C I implies C(S) =w,, C(I).
Proof: ~ Lem. 7 and monotonicity of (C) (Thm. 2 from §6.5). O

G.3 Guessing entropy

The guessing entropy [19] of a distribution ¢ is the (least) average number of
guesses required to guess h in 4. It is equivalent to the average a-marginal guess-
work over all values of « [30], and we define it

W.o = (31N %)

where %5 is the sum of the i smallest probabilities in §. 4" Note that by subdis-
tribution of minimum over addition we have M*(m;4mq) > MPmy + Mty for any
7 in range. For hyper-distribution A we define the conditional guessing entropy,

thus
W.A = (©(v,d):A«W.0)

or equivalently W.A = (Y v:V;m:fracs.Aw « W) |
where W.r is defined in the same way as W.§. We define the ordering by
Ag =w 47 = (ft.AS = ft.AI) AN (WAS < WA]) s

which extends pointwise to secure programs.

Non-compositionality To show non-compositionality of ordering (=Xw) we
refer again (as we did for Shannon entropy in §G.1) to the functionally equivalent
programs S and I». First we calculate that

WAy = 230+ =
md WA, = L0430+ () =

ol Lol

)

so that we have Iy <w S. Again taking context C to be (—; h:= (1 if h=2 else h))
we get that the guessing entropy of C(S) is reduced to % while that of C(I3) is
still 3, and hence C(I3) Zw C(S).

Soundness

Lemma 8. (C) implies (Xw) For all hyper-distributions Ag and Ay, we have
that AgC Ay implies Ag=wAr; and consequently SCI implies S=<wI.

Proof:  As in the proof of soundness for marginal guesswork, it is enough
to show that for any partition IT (i) if the fractions in II are similar then
OomI « W) =W. O m IT) else (i) O m I« W.r) <W. (Y m:1II). For
(ii) we reason:

41 If wlog the four probabilities a,b, ¢, d are ordered greatest to least, then the best
strategy is to guess (the value associated with) a first, and then to go on to guess
b,c,d in order as necessary. The average number of guesses needed overall is then
a+ 2b+ 3¢+ 4d, that is d + (d+c) + (d+c+b) + (d+c+b+a).
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Oom Il « W)
= CmIle (3iemin)) “definition W for a partition”
= i O m Il «in)) “swap summations”
< OZiemt (S mIlem)) “subdistribute minimisation”
= W.Oomn) . “definition W for partition”

When all the fractions 7 in IT are similar, we can replace the inequality in the
second-last step with equality, establishing (i). o

Theorem 8. Soundness of (C) w.r.t. (2w) For all programs S and I and
contexts C we have that SCI implies C(S)=wC(I).

Proof: ~ Immediate from Lem. 8 and monotonicity of (C) (Thm. 2 in §6.5).
O



