arXiv:1004.4286v2 [cs.PF] 27 Apr 2010

Space-efficient scheduling of
stochastically generated tasks

Tomas Brazdil*, Javier EsparZa Stefan Kiefet**, and Michael Luttenbergér

1 Faculty of Informatics, Masaryk University, Brno, CzechgRblic
2 Institut far Informatik, Technische Universitat Mire, Germany
3 Oxford University Computing Laboratory, UK

Abstract. We study the problem of scheduling tasks for execution byoags-
sor when the tasks can stochastically generate new tasiss @an be of different
types, and each type has a fixed, known probability of geimerather tasks. We
present results on the random varialsté modeling the maximal space needed
by the processor to store the currently active tasks wheéngaahder the sched-
ulero. We obtain tail bounds for the distribution §f for both offline and online
schedulers, and investigate the expected VA% |.

1 Introduction

We study the problem of scheduling tasks that can stocladigtigenerate new tasks.
We assume that the execution of a taskan generate a set of subtasks. Tasks can
be of different types, and each type has a fixed, known prdibyabf generating new
subtasks.

Systems of tasks can be described using a notation simildratoof stochastic
grammars. For instance

X2 xxy x2xyy x29 v2x v 2w

describes a system with two types of tasks. Tasks of fypean generaté tasks of
type X, one task of each type, or zero tasks with probabilii€s0.3, and0.5, respec-
tively (angular brackets denote multisets). Tasks of typean generate one task, of
type X orY, with probability0.7 and0.3. Tasks are executed by one processor. The
processor repeatedly selects a task from a pool of unpredéasks, processes it, and
puts the generated subtasks (if any) back into the pool. Bogipitially contains one
task of typeXy, and the next task to be processed is selecteddzhaduler

We study random variables modeling the time and space nded®dnpletelyex-
ecute a task, i.e., to empty the pool of unprocessed tasks assumingrfietly the
pool only contains task. We assume that processing a task takes one time unit, and
storing it in the pool takes a unit of memory. So ttempletion timeés given by the total
number of tasks processed, and tloepletion spacby the maximum size reached by
the pool during the computation. The completion time hasistedied in [13], and so

* Supported by Czech Science Foundation, grant No. P202/a9/1
** Supported by the EPSRC projestitomated Verification of Probabilistic Programs

http://arxiv.org/abs/1004.4286v2

the bulk of the paper is devoted to studying the distributibthe completion space for
different classes of schedulers.

Our computational model is abstract, but relevant for difé scenarios. In the
context of search problems, a task is a problem instancethensicheduler is part of
a branch-and-bound algorithm (see e.g. [19]). In the moregd context of multi-
threaded computations, a task models a thread, which marafemew threads. The
problem of scheduling multithreaded computations spdfiiently on multiprocessor
machines has been extensively studied (see e.g. [22,7, Zése papers assume
that schedulers know nothing about the program, while wesiden the case in which
stochastic information on the program behaviour is avélédibtained from sampling).

We study the performance ohlineschedulers that know only the past of the com-
putation, and compare them with thptimal offlinescheduler, which has complete in-
formation about the future. Intuitively, this schedulesla@cess to an oracle that knows
how the stochastic choices will be resolved. The oracle @areplaced by a machine
that inspects the code of a task and determines which suditasitl generate (if any).

We consider task systems with completion probability 1,clitéan be further di-
vided into those with finite and infinite expected completiome, often calledsubcrit-
ical andcritical. Many of our results are related to the probability genagafunc-
tions (pgfs) associated to a task system. The functionshereixample above are
fx(z,y) = 0.222 + 0.3zy + 0.5 and fy (z,y) = 0.7z + 0.3y, and the reader can
easily guess the formal definition. The completion prolighia the least fixed point of
the system of pgfs [17].

Our first results (Section 3) concern the distribution of toenpletion space°?
of the optimal offline schedulerp on a fixed but arbitrary task system wif{x) as
pafs (in vector form). We exhibit a very surprising connentbetween the probabil-
ities Pr[S°P = k] and theNewton approximant® the least fixed point of (x) (the
approximations to the least fixed point obtained by appljegton’s method for ap-
proximating a zero of a differentiable function ffx) — = 0 with seed0). This
connection allows us to apply recent results on the convegepeed of Newton's
method [20, 12], leading to tail bounds 67, i.e., bounds oPr[S°? > k]. We then
study (Section 4) the distribution 6 for an online scheduler, and obtain upper and
lower bounds for the performancearfiyonline scheduler in subcritical systems. These
bounds suggest a way of assigning weights to task typestiefidwow likely they are
to require large space. We stuliyht-first schedulers, in which “light” tasks are chosen
before “heavy” tasks with larger components, and obtaimgréved tail bound.

So far we have assumed that there are no dependencies béaskgnrequiring a
task to be executed before another. We study in Section é &tbe in which a task can
only terminate after all the tasks it has (recursively) spasvhave terminated. These
are thestrict computations studied in [7]. The optimal scheduler in tlasecis the
depth-firstscheduler, i.e., the one that completely executes the sldbefore its par-
ent, resulting in the familiar stack-based execution. Wrthlis scheduler our tasks are
equivalent to special classes of recursive state machiiigsahd probabilistic push-
down automata [14]. We determine the exact asymptotic padace of depth-first
schedulers, hereby making use of recent results [9].

We restrict ourselves to the case in which a task has at mastiwldren, i.e., all
rulesX <% (X1,...,X,) satisfyn < 2. This case already allows to model the forking-
mechanism underlying many multithreaded operating systerg. Unix-like systems.

Related workSpace-efficient scheduling for search problems or muététled com-
putations has been studied in [19,22,7,2,1]. These papstaree that nothing is
known about the program generating the computations. Wiy she case in which
statistical information is available on the probabilitatltomputations split or die.

The theory ofbranching processestudies stochastic processes modeling popula-
tions whose members can reproduce or die [17,4]. In comeience terminology,
all existing work on branching processes assumes that timd@uof processors isn-
bounded3, 8, 21, 23, 25, 27]. We study the 1-processor case, andrtkramwledge we
are the first to do so.

Structure of the papeflhe rest of the paper is structured as follows. The prelimi-
naries in Section 2 formalize the notions from the introéhreand summarize known
results on which we build. In Section 3 we study the perforoeafptimal offline sched-
ulers. Section 4 is dedicated to online schedulers. Firgpnoee performance bounds
that hold uniformly for all online schedulers, then we prawproved bounds for light-
first schedulers, and finally we determine the exact asynegiehaviour of depth-first
schedulers. In Section 5 we obtain several results on theotag space consumption
under different schedulers. Section 6 contains some csiocis. Full proofs can be
found in the appendix..

2 Preliminaries

Let A be a finite set. We regard elementd\f andR“ asvectorsand use boldface (like
u, v) to denote vectors. The vector whose components abgedbp.1) is denoted by
(resp.1). We use angular brackets to denote multisets and oftenifigenultisets over
A and vectors indexed byt. For instance, ifA = {X,Y} andv € N4 with vy = 1
andvy = 2, thenv = (X,Y,Y). We often shortera) to a. M5 denotes the multisets
over A containing at mos? elements.

Definition 2.1. A task systems a tupleA = (I',—, Prob, X,) whereI is a finite
set of task types— C I' x M1§2 is a set oftransition rules Prob is a function as-
signing positive probabilities to transition rules so thfar every X € I' we have
Yo xesgy Prob((X,a)) = 1,and X, € I'is theinitial type.

We write X <> o wheneverX — o and Prob((X,a)) = p. Executions of a task
system are modeled as family trees, defined as follows. Fixrhitrary total order<
onI'. A family treet is a pair(N, L) whereN C {0,1}* is a finite binary tree (i.e. a
prefix-closed finite set of words ov§d,1}) andL : N — I'is a labelling such that
every nodav € N satisfies one of the following conditions:is a leaf and.(w) — &,
or w has a unique chilay0, andL(w) satisfiesL(w) < L(w0), orw has two children
w0 andwl, andL(w0), L(w1) satisfyL(w) — (L(w0), L(w1)) andL(w0) < L(wl).
Given a nodev € N, the subtree of rooted atw, denoted byt,,, is the family tree
(N', L") such thatw’ € N’ iff ww’ € N andL/(w') = L(ww') for everyw’ € N'. If

a treet has a subtreg, or t;, we call this subtree ehild of ¢. (So, the ternchild can
refer to a node or a tree, but there will be no confusion.)

We define a functio®r which, loosely speaking, assigns to a family ttee (N, L)
its probability (see the assumption below). Assume thatdbeoft is labeled byX . If ¢
consists only of the root, anil e, thenPr[t] = p; if the root has only one child (the
node0) labeled byy’, andX < Y, thenPr(t] = p - Pr[to]; if the root has two children
(the node$ and1) labeled byy” andZ, andX < (Y, Z), thenPr[t] = p-Pr[to]-Pr[t1].
We denote byr'x the set of all family trees whose root is labeledX¥yand byPr x the
restriction ofPr to 7x . We drop the subscript dfr x if X is understood.

Example 2.2.Figure 1 shows (a) a task system with= {X,Y, Z}; and (b) a family
treet of the system with probabilityr[t] = 0.25-0.1-0.75-0.6 - 0.4 - 0.9. The name
and label of a node are written close to it.

e, X
(J
x22 w2z v (xz 7225w / \
0.75 0.9 0.6 0,Y e o 1,7
) Y <50 Z<=0 \
00, X @ 01,Z e e 10,Y

(@ (b)

Fig. 1. (a) A task system. (b) A family tree.

Assumptions. Throughout the paper we assume that a task system
A = (I',—, Prob, X,) satisfies the following two conditions for every type € I

(1) X is reachablefrom X, meaning that some tree ifix, contains a node labeled
by X, and (2)Pr[Tx] = >, Pr[t] = 1. So we assume thalx,Prx) is a
discrete probability space withiy as set of elementary events afdy as probability
function. This is the formal counterpart to assuming thargvask is completed with
probability 1.

Proposition 2.3. It can be decided in polynomial time whether assumptionarfti)(2)
are satisfied.

Proof. (1) is trivial. For (2) let theprobability generating functiorfpgf) of the task
system be defined as the functign R — R’ of A where for everyX € I"

fx)= Z p-vy vz + Z p-vy—l-Zp.
X (v, 2) X< (v) X0

It is well known (see e.g. [17]) that (2) holds iff the leasthmegative fixed point of
equalsl, which is decidable in polynomial time [15]. a

Derivations and schedulerdet ¢t = (N, L) be a family tree. Astateof ¢ is a
maximal subset oV in which no node is a proper prefix of another node (graphicall
no node is a proper descendant of another node). The eleoierdtate are callegsks
If sis a state ana € s, then thew-successor of is the uniquely determined staté
defined as follows: ifw is a leaf of N, thens’ = s\ {w}; if w has one childv0, then
s' = (s\{w})U{w0};if w has two childrenv0 andw1, thens’ = (s\{w})U{w0, wl}.
We writes = ¢’ if s is thew-successor of for somew. A derivation oft is a sequence
s1 = ... = sy of states such that; = {e} ands; = 0. A schedulelis a mappingr
that assigns to a family treea derivations (¢) of ¢. If o(t) = (s1 = ... = si), thenfor
everyl < i < k we denote by (¢)[i] a task ofs; such that,; is theo(t)[i]-successor
of s;. Intuitively, o(¢)[é] is the task ofs; scheduled byr. This definition allows for
schedulers that know the tree, and so how future tasks wilbbe In Section 4 we
define and study online schedulers which only know the pastodomputation. Notice

that schedulers are deterministic (non-randomized).
Example 2.4.A schedulers; may schedule the treein Figure 1 as follows{ec} =

{0,1} = {0,10} = {0} = {00,01} = {01} = {}. Let o2 be the sched-
uler which always picks the least unprocessed task w.et.lékicographical order
on {0,1}*. (This is an example of an online scheduler.) It schedulas follows:
{e} = {0,1} = {00,01,1} = {01,1} = {1} = {10} = {}.

Time and spaceGiven X € I, we define a random variablgy, the completion
time of X, that assigns to a tree € Tx its number of nodes. Assuming that tasks
are executed for one time unit before its generated subtaskeeturned to the pool,
Tx corresponds to the time required to completely executeOur assumption (2)
guarantees thafx is finite with probability1, but its expectatiofit[Tx] may or may
not be finite. A task system is calledsubcriticalif E[Tx] is finite for everyX e I
Otherwise it is callectritical. If A is subcritical, therE[Tx] can be easily computed
by solving a system of linear equations [13]. The notion diaality comes from the
theory of branching processes, see e.g. [17, 4]. Here waeoll the following results:

Proposition 2.5 ([17,15]).Let A be a task system with pgf. Denote byf’(1) the
Jacobian matrix of partial derivatives of evaluated atl. If A is critical, then the
spectral radius off’(1) is equal to1; otherwise it is strictly less than. It can be
decided in polynomial time whethg is critical.

A state models a pool of tasks awaiting to be scheduled. Wen&eeested in the
maximal size of the pool during the execution of a derivati®a we define the ran-
dom completion spaces$ as follows. If o(t) = (s1 = ... = si), then S (¢) =
max{|s1],...,|sk|}, where|s;| is the cardinality ofs;. Sometimes we write5” (¢),
meaningS% (¢) for the typeX labelling the root of. If we write S without specifying

the application to any tree, then we mes .
Example 2.6.For the schedulers of Example 2.4 we h&e (t) = 2 andS?>(t) = 3.

3 Optimal (Offline) Schedulers

Let S°P be the random variable that assigns to a family tree the naihammpletion
space of its derivations. We cal°? () the optimal completion spacef ¢. The opti-
mal scheduler assigns to each tree a derivation with optm@lpletion space. In the

multithreading scenario, it corresponds to a scheduldrdha inspect the code of a
thread and decide whether it will spawn a new thread or note ttmat, although the
optimal scheduler “knows” how the stochastic choices aselwed, the optimal com-
pletion space5°P(t) is still a random variable, because it depends on a randam tre
The following proposition characterizes the optimal coetipin space of a tree in terms
of the optimal completion space of its children.

Proposition 3.1. Lett be a family tree. Then
i XS (t0) + 1.57(11)},
§o0 () = max{S(ty), S°P(t1) + 1}
S°P(tg) if t has exactly one chil¢,
1 if £ has no children.

} if ¢ has two childreng, ¢,

Proof sketchThe only nontrivial case is whenhas two childrerty and¢;. Consider
the following schedulings fot, where: € {0,1}: Execute first all tasks of, and
then all tasks of;_;; within both¢; andt;_;, execute tasks in optimal order. While
executingt;, the root task of, _; remains in the pool, and so the completion space is
s(i) = max{S°P(¢;)+1, S°?P(t1—;) }. The optimal scheduler chooses the valu¢tbht
minimizess(i). O

Given a typeX, we are interested in the probabiliti®s[S’ < k| for £ > 1.
Proposition 3.1 yields a recurrence relation which at figdttsseems difficult to handle.
However, using results of [11, 10] we can exhibit a surpgsionnection between these
probabilities and the pgf.

Let i denote the least fixed point gfand recall from the proof of Proposition 2.3
thaty = 1. Clearly, 1 is a zero off(x) — «. It has recently been shown thatcan
be computed by applying tf(x) — = Newton’s method for approximating a zero of a
differentiable function [15, 20]. More precisely, = lim;_, . v*) where

O —0 and p*t) — W 4 (1 - fp®))L (f(u(k)) _ ,,(k))

and f'(v*)) denotes the Jacobian matrix of partial derivativeg advaluated at(*)
and/ the identity matrix. Computing, however, is in our case uninteresting, because
we already know thafs = 1. So, why do we need Newton’s method? Because the
sequence of Newton approximants provides exactly thernmdtion we are looking for:

Theorem 3.2. Pr[SY < k] = ugf) for every typeX and everyk > 0.

Proof sketchWe illustrate the proof idea on the one-type task system pgth/ («) =
pr? + ¢, whereq = 1 — p. Let T<;, and7_, denote the sets of treesvith S°P(¢) < k
andS°?(t) = k, respectively. We showr[T<;] = v* for all k& by induction onk.
The casé = 0 is trivial. Assume that(*) = Pr[7<x] holds for somé: > 0. We prove
Pr[T<j41] = v*+t1). Notice that

p+1) (k) ff{}fj@@? = o) 4 (F®)) =y) P ()i
Let B,(ﬂzl be the set of trees that have two children both of which betorig;, and,

for everyi > 0, let B,(j:f) be the set of trees with two children, one belongingiq,

the other one t(B,ﬁl. By Proposition 3.1 we hav@<i+1 = U, B,(Cﬂ)rl. We prove
Pr [B,(;)Ll} = f'(v®)" (f(v® — v(*)) by an (inner) induction om, which completes
the proof. For the base= 0, let A<, be the set of trees with two children #x;; by
induction hypothesis we hawer[A<;] = pr®v(F) In a tree of A<, either (a) both
children belong to/_y, and sat € B,(CO) or (b) at most one child belongs #&.,. By

41!
Proposition 3.1, the trees satisfying (b) belongia. In fact, a stronger property holds:

atree of/<;, either satisfies (b) or it has one single node. Since the pilityaf the tree
with one node ig, we getPr[A<;] = Pr [B,(fgl} +Pr[T<k]—q. Applying the induction
hypothesis again we obtaiPr [Bfﬁzl] = k) g — v = FR)) — pE),

For the induction step, leét > 0. Divide B,(fll into two sets, one containing the trees
whose left (right) child belongs tB,(jJ)rl (to 7<x), and the other the trees whose left
(right) child belongs td/<, (to B,(Ql). Using both induction hypotheses, we get that the
probability of each set isv®) f/(v®)Yi(f(1(¥)) — v(¥)). SoPr [B,ﬁijﬂ = (2p).
FWE)(f®) — v, Sincef(x) = pz? + g we havef’(v*)) = 2pv¥), and so

Pr {B,(fjll)} = (W) F1(f(®) — F)) as desired. m

Example 3.3.Consider the task systeti —» (X, X), X < 0 with pof flx) =
px? + ¢, wherep is a parameter ang = 1 — p. The least fixed point of is 1 if

p < 1/2 andq/p otherwise. So we consider only the case< 1/2. The system is
critical forp = 1/2 and subcritical fop < 1/2. Using Newton approximants we obtain
the following recurrence relation for the distribution dietoptimal scheduler, where
pr = Pr[S? > k] =1 — v+ VD:pp iy = (pp?)/(1 — 2p + 2ppy). In particular, for
the critical valuep = 1/2 we getp;, = 2! =% andE[S°P] =), ., Pr[S°P > k] = 2.

Theorem 3.2 allows to compute the probability mass funatiofi’?. As a Newton
iteration require)(|I'|?) arithmetical operations, we obtain the following coroflar
where by the unit cost model we refer to the cost in the Blumbs8male model, in
which arithmetic operations have cost 1 independently@sthe of the operands [6].

Corollary 3.4. Pr[S$¥ = k] can be computed in tin@®(k-|I"|*) in the unit cost model.

It is easy to see that Newton’s method converges quaddgticalsubcritical systems
(see e.qg. [24]). For critical systems, it has recently beewgd that Newton's method
still converges linearly [20, 12]. These results lead tbidaunds forSy’:

Corollary 3.5. For any task system there are real numbergs > 0 and0 < d < 1
such thatPr[SF > k] < ¢ - d* for all k € N. If A is subcritical, then there are real

numbers: > 0 and0 < d < 1 such thatPr[SY > k] < c- d" forall k € N.

4 Online Schedulers

From this section on we concentrate on online schedulersttiaknow the past of the
computation. Formally, a scheduleris onlineif for every treet with o(t) = (s1 =

... = si) and for everyl < i < k, the tasks(¢)[i] depends onlyog; = ... = s;
and on the restriction of the labelling functidnto | J;_, s;.

Compact Task Systermdny task system can be transformed into a so-cati@thpact
task system such that for every scheduler of the compacsjest&m we can construct a
scheduler of the original system with nearly the same prtaseA typell” is compacif
thereis aruleX — (Y, Z) such thatX is reachable froniV’. A task system isompact
if all its types are compacErom now on we assume that task systems are compast.
assumption is essentially without loss of generality, agwmele in Appendix C.2.

4.1 Tail Bounds for Online Schedulers

The following main theorem gives computable lower and ugpmrinds which hold
uniformly for all online schedulers.

Theorem 4.1. Let A be subcritical.

— Letv,w € (1,)! be vectors withf (v) < v and f(w) > w. Denote byv,,.,,
andw,, .. the least component efand the greatest componentwf respectively.
Then

wx, — 1 vy, — 1)
7,5?2 <Pr[S7 > k] < 7,:(“ for all online schedulers.
w -1 L —

max man

— Vectorsv, w € (1,00)! with f(v) < v and f(w) > w exist and can be computed
in polynomial time.

Proof sketchChooseh > 1 andu € (0,00)!" such thath®x = vx forall X € I
Define for alli > 1 the variablen® = z(®) <y where % denotes the scalar prod-
uct, i.e.,m(Y) measures the number of tasks at tilneighted by types according

to w. One can show that™"”) hm(z), ... Is a supermartingale for any online sched-
uler o, and, using the Optional Stopping Theorem [28], tRafsup, m(Y) > z] <
(vx, —1)/(h® — 1) for all z (see the appendix for the details and [16, 26] for a sim-
ilar argument on random walks). As each type has at leasthiveaig;,,, we have that
S7 > kimpliessup; m® > ku,i,. HencePr[S > k] < Pr [supim(i) > ktmin] <
(vx, —1)/(vk ., —1). The lower bound is shown similarly. O

All online schedulers perform within the bounds of Theorer. #or an applica-
tion of the upper bound, assume one wants to provide as made §13 is necessary to
guarantee that, say, 99.9% of the executions of a task systamun without needing
additional memory. This can be accomplished, regardlesiseo§cheduler, by provid-
ing k space units, wherk is chosen such that the upper bound of Theorem 4.1 is at
most0.001.

A comparison of the lower bound with Corollary 3.5 proves $oibcritical task
systems that the asymptotic performance of any online sgbed is far away from
that of the optimal offline scheduler: the ra?o[S° > k| /Pr[S°? > k] is unbounded.

Example 4.2.Consider again the task system with ggf) = pax?+¢. Forp < 1/2the
pgf has two fixed pointd, andg/p. In particularg/p > 1, soq/p can be used to obtain

both an upper and a lower bound for online schedulers. S tis only one type
of tasks, vectors have only one component, and the maxindgairémimal components
coincide; moreover, in this case the exponemt2 of the lower bound can be improved
to k. So the upper and lower bounds coincide, and wePggt’ > k| = (qq/;;;il for
every online scheduler. In particular, as one intuitively expects, all online sdhlers
are equivalent.

4.2 Tail Bounds for Light-First Schedulers

We present a class of online schedulers for which a sharpmrdmund than the one
given by Theorem 4.1 can be proved. It may be intuitive thai@dgheuristic is to pick
the task with the smallest expected completion time. If wapote a vectow with
f(v) < v in polynomial time according to the proof of Theorem 4.1 rthibe type
Xmin forwhichwvy, , = v, holds turns out to be the type with smallest expected
completion time. This suggests choosing the active t{pwith smallest component
in v. So we look aty as a vector of weights, and always choose the lightest ayihee

In fact, for this (intuitively good) scheduler we obtain taifferent upper bounds.

Given a vectorv with f(v) < v we denote byC a total order on/” such that
wheneverX C Y thenvy < wvy. If X C Y, then we say thaX is lighter thanY. The
v-light-first scheduleis an online scheduler that, in each step, picks a task oightebt
type available in the pool according o Theorem 4.3 below strengthens the upper
bound of Theorem 4.1 for light-first schedulers. For the sdqeart of Theorem 4.3 we
use the notion ob-accumulating typesA type X € I' is v-accumulating if for every
k > 0 the v-light-first scheduler has a nonzero probability of reaghanstate with at
leastk tasks of typeX in the pool.

Theorem 4.3. Let A be subcritical andv € (1,00)!" with f(v) < v. Leto be a

v-light-first scheduler. Lebinmasz 1= minx—s(y,z) max{vy,vz} (here the mini-
mum is taken over all transition rules with two types on ttghtihand side). Then
Vminmaz > Umin @and forallk > 1

vy, — 1
Pr[S7 > k] < o :
UminVminmaz — 1
Moreover, letvinaee = min{vx | X € I, Xiswv-accumulating. Then

Vminace = Uminmaz, Uminace CAN be computed in polynomial time, and there is an
integer/ such that for allk > ¢

'UXO—l

Vi k—¢ 1
ViinVminace 1

Pr[s7 > K] <

Proof sketchRecall the proof sketch of Theorem 4.1 where we used $dat> &
impliessup; m® > ku,.;,,, as each type has at least weiahy;,,. Let £ be such that
no more thar? tasks of non-accumulating type can be in the pool at the sanee t
ThenS? > k imp|ieSsupim(i) > lmin + (K — £)Usminace Which leads to the final
inequality of Theorem 4.3 in a way analogous to the proofctkef Theorem 4.1. O

4 For this exampléPr[S° > k] can also be computed by elementary means.

Intuitively, a light-first scheduler “works against” ligltasks by picking them as
soon as possible. In this way it may be able to avoid the actation of some light
types, so it may achieve,,;,qcc > vmin- This is illustrated in the following example.

Example 4.4.Consider the task system with 2 task types and pgfsasxy + a1y +ag
andy = boxy + b1y + b, Whereas + a1 + ag = 1 = by + b1 + by = 1. The system
is subcritical ifa;by < asby — as + by. The pgfs have a greatest fixed pointvith
vVx = (1—a2—b1—a1b2+a2b1)/b2 and’UY = (1—b1—bg)/(ag—i—ale—ale). We have
vx < wy iff ag—by < asby —aqbs, and so the light-first scheduler choosébeforeY’

if this condition holds, and” beforeX otherwise. We show that the light-first scheduler
is asymptotically optimal. Assume w.l.o.gx < vy. ThenX is not accumulating
(becauseX -tasks are picked as soon as they are created), angl $Q.. = vy . So the
upper bound for the light-weight scheduler yields a cortstasuch thaPr[S7 > k] <
c2/v%.. But the general lower bound for arbitrary online schedutgates that there is
a constant; such thatPr[S° > k] > ¢; /v, so we are done.

4.3 Tail Bounds for Depth-first Schedulers

Space-efficient scheduling of multithreaded computati@ssreceived considerable at-
tention [22,7, 2, 1]. The setting of these papers is sligifferent from ours, because
they assume data dependencies among the threads, whiclaosgyacthread to wait for
a result from another thread. In this sense our setting igagito that of [19], where, in
thread terminology, the threads can execute independently

These papers focus alepth-firsicomputations, in which if thread has to wait for
threadB, then B was spawned byl or by a descendant of. The optimal scheduler
is the one that, wherd spawnsB, interrupts the execution of and continues witlB;
this online scheduler produces the familiar stack-basedwion [7, 22].

We study the performance of thidepth-firstscheduler. Formally, a depth-first
schedulew, is determined by a functiok that assigns to each rule= X — (Y, Z)
eitherYZ or ZY. If A(r) = Y Z, thenZ models the continuation of the thread,
while Y models a new thread for whose terminatidnvaits. The depth-first scheduler
oy keeps as an internal data structure a word '™, a “stack”, such that the Parikh
image ofw is the multiset of the task types in the poolulf= Xw’ for somew’ € I'*,
theno picks X. If a transition ruleX — « “fires”, theno) replacesXw’ by fw’ where
B =AX <= a).

Using techniques of [9] foprobabilistic pushdown systemse obtain the following:

Theorem 4.5. Let A be subcritical ando be any depth-first scheduler. Then
Pr[S° = k] can be computed in tim&(k - |I"|?) in the unit-cost model. Moreover,
there is0 < p < 1 such thatPr[S? > k] € O(p*), i.e, there arec, C > 0 such
that cp® < Pr[S? > k] < Cp* for all k. Furthermore,p is the spectral radius of a
nonnegative matri3 € R7'*!", whereB can be computed in polynomial time.

While the proof of Theorem 4.5 does not conceptually reqmiteeh more than the
results of [9], the technical details are delicate. The pcao be found in the appendix.

10

5 Expectations

In this section we study the expected completion spacetlie expectatiof[S?] for
both offline and online schedulers. Fix a task syst&rm (I, —, Prob, Xy).

Optimal (Offline) Scheduler3he results of Section 3 allow to efficiently approxi-
mate the expectatioB[S°?]. Recall that for any random variable with values in the
natural numbers we havéR] = >, Pr[R > i|. So we can (under-) approximate
E[R] by Zle Pr[R > i] for finite k. We say thak terms computé bits of E[S°?] if
E[S?] - Yl (1—vi)) <27t

Theorem 5.1. The expectatiofi[S°?] is finite (no matter whethed is critical or sub-
critical). Moreover,O(b) terms computé bits of E[S°7]. If the task system is sub-
critical, thenlog, b+ O(1) terms computé bits of E[S°?]. Finally, computingk terms
takes timeD(k - |I"|*) in the unit cost model.

Online SchedulersThe main result for online schedulers states that the fiagen
of E[S?] does not depend on the choice of the online scheduler

Theorem 5.2. If A is subcritical, therE[S?] is finite for every online scheduler. If
Alis critical, thenE[S7] is infinite for every online scheduler

Proof sketchThe first assertion follows from Theorem 4.1. Létbe critical. For this
sketch we focus on the case whéfgis reachable from every type. By Proposition 2.5
the spectral radius of’(1) equalsl. Then Perron-Frobenius theory guarantees the
existence of a vecton with f'(1)u = w andux > 0 for all X. Using a martin-
gale argument, similar to the one of Theorem 4.1, one can shawthe sequence
mM m®@ . with m® = 29y is a martingale for every scheduler and, us-
ing the Optional-Stopping Theorem, that[S° > k] > wux,/(k + 2). So we have
E[S7] = 3252 Pr[S7 > k] > 3772 ux, /(k +2) = co. 0
Since we can decide in polynomial time whether a system isrgidal or critical,
we can do the same to decide on the finiteness of the expeatgulation time.
Depth-first Schedulerd.o approximatel[S?] for a given depth-first scheduler,
we can employ the same technique as for optimal offline sdbesju.e., we approx-
imate E[S“] by Zle Pr[S? > i] for finite k. We say that terms computé bits of

E[S°]if E[S°] — Y2F | Pr[s” > <27,

Theorem 5.3 (see Theorem 19 of [9]L.et A be subcritical, and let- be a depth-first
scheduler. Thed(b) terms computé bits of E[S“], and computing: terms takes time
O(k - |I'|?) in the unit cost model.

6 Conclusions

We have initiated the study of scheduling tasks that carhsitally generate other
tasks. We have provided strong results on the performanbetbfonline and offline
schedulers for the case of one processor and task systemsamitpletion probabil-
ity 1. It is an open problem how to compute and analyze onlaedulers which are

11

optimal in a sense. While we profited from the theory of bramgprocesses, the theory
considers (in computer science terms) systems with an urdsslinumber of proces-
sors, and therefore many questions had not been addredseel tveeven posed.

AcknowledgemeniVe thank the referees for their helpful comments.

References

=

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

K. Agrawal, C.E. Leiserson, Y. He, and W.J. Hsu. Adaptiarkestealing with parallelism
feedback ACM TOCS$26(3), 2008.

. N.S. Arora, R.D. Blumofe, and C.G. Plaxton. Thread schiegdor multiprogrammed mi-

croprocessorsTheory of Computing Systen®st:115-144, 2001.

. K.B. Athreya. On the maximum sequence of a critical brargbrocessAnnals of Proba-

bility, 16:502-507, 1988.

. K.B. Athreya and P.E. NeBranching ProcessesSpringer, 1972.
. A. Berman and R.J. Plemmonklonnegative matrices in the mathematical sciendssa-

demic Press, 1979.

. L. Blum, F. Cucker, M. Shub, and S. Smaleomplexity and Real Computatio®pringer-

Verlag, 1998.

. R.D. Blumofe and C.E. Leiserson. Scheduling multithesacbmputations by work stealing.

Journal of the ACM46(5):720-748, 1999.

. K.A. Borovkov and V.A. Vatutin. On distribution tails amctpectations of maxima in critical

branching processedournal of Applied Probability33(3):614—622, 1996.

. T.Brazdil, J. Esparza, and S. Kiefer. On the memory canpsion of probabilistic pushdown

automata. IrProceedings of FSTTCBages 49-60, 2009.

J. Esparza, S. Kiefer, and M. Luttenberger. An extensibNewton's method tao-
continuous semirings. IBLT'07, LNCS 4588, pages 157-168. Springer, 2007.

J. Esparza, S. Kiefer, and M. Luttenberger. On fixed pefquations over commutative
semirings. ISTACS'07LNCS 4397, pages 296—-307. Springer, 2007.

J. Esparza, S. Kiefer, and M. Luttenberger. Convergtmesholds of Newton's method for
monotone polynomial equations. 8TACS 2008pages 289-300, 2008.

J. Esparza, A. KuCera, and R. Mayr. Quantitative amalytprobabilistic pushdown au-
tomata: Expectations and variancesLI€S 2005 pages 117-126. IEEE, 2005.

J. Esparza, A. KuCera, and R. Mayr. Model checking gritistic pushdown automata. In
LICS 2004 pages 12-21. IEEE Computer Society, 2004.

K. Etessami and M. Yannakakis. Recursive markov chatnshastic grammars, and mono-
tone systems of nonlinear equatiodsurnal of the ACM56(1):1-66, 2009.

W. Feller.An introduction to probability theory and its applicatignglume I. John Wiley
& Sons, 1968.

T.E. Harris.The Theory of Branching Process&pringer, 1963.

R.A. Horn and C.A. JohnsoMatrix Analysis Cambridge University Press, 1985.

R.M. Karp and Y. Zhang. Randomized parallel algorithorsfacktrack search and branch-
and-bound computatiodournal of the ACM40(3):765—-789, 1993.

S. Kiefer, M. Luttenberger, and J. Esparza. On the cgevexe of Newton’s method for
monotone systems of polynomial equationsSIFOC 2007pages 217-226. ACM, 2007.

T. Lindvall. On the maximum of a branching proceStandinavian Journal of Statistics
3:209-214, 1976.

G.J. Narlikar and G.E. Belloch. Space-efficient schadubf nested parallelism.ACM
TOPLAS21(1):138-173, 1999.

12

23

24.

25.

26.
27.

28.

. O. Nerman. On the maximal generation size of a non-atfigalton-watson proces&can-
dinavian Journal of Statistic#(3):131-135, 1977.

J.M. Ortega and W.C. Rheinboldterative solution of nonlinear equations in several vari-
ables Academic Press, 1970.

A.G. Pakes. A limit theorem for the maxima of the paraigal simple branching process.
Advances in Applied Probabilify30:740—756, 1998.

F. SpitzerPrinciples of Random WalkSpringer, 1976.

A. Spataru. A maximum sequence in a critical multitypaniching processJournal of
Applied Probability 28(4):893-897, 1991.

D. Williams. Probability with Martingales Cambridge University Press, 1995.

13

A Proofs of Section 2

A.1 Proof of Proposition 2.5

Proposition 2.5 ([17, 15]). Let A be a task system with pgf. Denote byf’(1) the
Jacobian matrix of partial derivatives of evaluated atl. If A is critical, then the
spectral radius off’(1) is equal tol; otherwise it is strictly less than. It can be
decided in polynomial time whethg is critical.

Proof. One can show (see e.g. [14]) tH&{T'x] is the X-component of the least non-
negative fixed point off’(1)x + 1, i.e., the X-component of the (componentwise)
least vectorr € [0,o0c] with x = f'(1)x + 1. This least fixed point is given
by >o2(f'(1))"1, a series that may or may not converge. It is a standard faet (s
e.g. [18]) that the series converges jfff'(1)) < 1 holds for the spectral radius
p(£'(1)) of £/(1).

Assume first thatA is subcritical. Then the above series must converge, so we ha
p(f (1)) < 1in this case. Now assume thditis critical. Then the above series must
diverge, so we have(f'(1)) > 1. On the other hand, in [12,15] it is shown that
p(F'(1)) < 1. (More precisely, it is shown there thatf’(y)) < 1 holds fory that are
strictly less than the least fixed point $f By continuity of eigenvalues(f'(y)) < 1
also holds for the least fixed point gfwhich is1 according to the proof of Proposi-
tion 2.3.) Hence we have(f'(1)) = 1.

In order to decide on the criticality, it thus suffices to dkcivhether the spectral
radius of f'(1) is > 1. This condition holds ifff’(1)z > z holds for a nonnegative,
nonzero vectore (see e.g. Thm. 2.1.11 of [5] and cf. [15]). This can be chedked
polynomial time with linear programming. a

B Proofs of Section 3

B.1 Proof of Proposition 3.1

Proposition 3.1. Lett be a family tree. Then

. max{SOp(to) +1, SOp(tl)},

SP(t) = P max{ 57 (to). 57 (1) + 1}
S°P(tg) if t has exactly one chil¢,
1 if t has no children.

} if ¢ has two childrertg, t;

Proof. Recall the proof sketch from the main body of the paper. Wail#te argu-
ment why one of the two given scheduling strategies is optinga, we argue why the
scheduler cannot save space by interleaving the scheddbng, andt;.

Consider an optimal scheduling afW.l.0.g. the task, terminates first. Then at
least onel;-task sticks around during the whole derivationtgf So this scheduling

14

needs space of at leaSt?(ty) + 1. Obviously, any scheduling df needs space of
at leastS°?(t1). So the optimal scheduler needs space of at least{S°?(ty) +
1,5°P(¢1)}. But this lower bound is matched by the scheduling strateggngin the
main body of the paper. a

B.2 Proof of Theorem 3.2

Theorem 3.2. Pr[SY < k] = ug’;) for every typeX and everyk > 0.

Proof. Let us inductively define the functiohon trees as follows.

0 if ¢ has no children
l(to) + 1 if t has one child

£(t) == < L(tp) + 1 if t has two children and? (ty) > S°P(t1)
L(t1) +1 if ¢t has two children and°? (ty) < S°P(t1)
0 if ¢ has two children and'°?(ty) = S°P(t1) .

With Proposition 3.1/(t) is the length of a longest path from the root to a descendant
with the same5°P-value.
We proceed by induction oy The base case= 0 is trivial. Letk > 0 and lett be

anX-tree withS°P(t) = k + 1. We have to showr[SY =k + 1] = Af)’;“) where
AFFD =37 pr)i (f(,,w)) _ ,,(k)) .
=0

We show the following stronger claim:

PSP =k +1, 1) = i) = (F/0D) (F0®) - o))

<
We proceed by an (inner) induction énFor the induction base= 0 we first dispense
with the casé: = 0. We have

Pr[SY¥(t) =1, £(t) = 0] = Pr[t has no childrep

because if has one child thed(t) > 1 and if ¢t has two children, the (¢t) > 2.
With the definition off we obtain

Pr[SE() =1, (1) = 0] = 3 p=Fx(0) = Fx @) 1.
Xi)e

Now we complete the induction base- 0 with the casé: > 1. We have

Pr[SY(t) = k+ 1, £(t) = 0] = Pr[t has two children S°? (ty) = S°?(t1) = k]
1)

15

because it has one child, thed(t) > 1, and if¢ has no children, the8{?(t) = 1.
Further we have by Proposition 3.1

PriSY(t) <kl= > p-(Pr[SiF(to) < k] Pr[Sy () < K]
XDy, 7)
—Pr[SY7 (to) = k| Pr[SY (t1) = k]) (2)

£ Y PSP () <A
xSy

+Zp.

X
Combining these equations we obtain

Pr(SP(t)=k+1, () =0]= > p-Pr[S{P(to) = k] Pr[SY (1) = k] (by (1)

X5y, 2)
= > p-Pr[S{P(to) < KPr[SF (1) < k] (by (2)
Xy, 7)
+ Zp Pr[S% (to) < k] + Zp
X‘—)Y X%e
—Pr[SY(t) < k]
= Z D- y (k) (k) (ind. hyp. onk)
X (Y, 2)
=+ p-ng) + Z p
X&Y Xik
-
= fx@®) =P (def. of f)

For the induction step, lét> 0. Then by Proposition 3.1 and the definitionfof

Pr[SY(t) =k+1, £(t)=1i+1]
= > p-(Pr[SY(to) S KIPr[SP (1) = k+ 1, £(t) =]

Xy, 2)
+ Pr[Sio,p(to) =k+1, £(ty) =1 Pr[Sgp(tl) < k]

+ > pePr[SYP(to) =k +1, (ty) =1
Xy
= X r (A (e (s -e)),
XY, 2)

16

+ (F M) (F0®) —2®)) i) (ind. hyp. on, i
+ X (PO (F0®) - v®))
xSy
=2 fo) (£ (Fe®) —v®)) (def. of f)
= Fx @) w®) (Fp®) -1 ®)
= (F/@®) (Fo®) - V(k)))x _
O

B.3 Proof of Corollary 3.5

Corollary 3.5. For any task system there are real numbers > 0 and0 < d < 1
such thatPr[S5Y > k] < ¢ - d* for all k € N. If A is subcritical, then there are real

numbers: > 0 and0 < d < 1 such tha®r[SY > k] < c- d forall k € N.

Proof. By Theorem 3.2 we haver[S°P > k| = 1_u§’;0*1> < 1—1/&2. So the corollary
can be understood as a statement on the convergence speewtin$ method for
solvingz = f(x). The fact that Newton’s method startedatonverges td (the least
fixed point of f) is shown in [15].

For the subcritical case, observe that the mafrix f'(1) is nonsingular because
otherwisel would be an eigenvalue of’ (1) which would, together with Proposi-
tion 2.5, contradict the assumption that the task systembsrgical. For nonsingular
systems, it is a standard fact (see e.g. [24]) that Newtor¥had converges quadrati-
cally. AsPr[S°P > k] <1 — ug’;g the statement follows.

For the general case (subcritical or critical) Newton'simoeltfor solvinge = f(x)
has been extensively studied in [20, 12] and it follows frdrare that there is & €

(0,00) such thatt — v ¥ < ¢, - 2-%/("2") wheren = |I'|, implying the statement.

C Proofs of Section 4

C.1 A Characterization of Online Schedulers

For proofs involving online scheduless it is convenient to work with a functiod,,
(defined below) which essentially characterize$o define it, fix an online scheduler
For every tree with o(t) = (s; = ... = s;,) and for everyj > 0, let (/) (¢) denote
the multiset of types labelling the tasks«fif j < k (i.e.,2\9) (t) = (L(w) | w € s;)),
and the empty multiset otherwise. One can show that an ostihedule induces a
partial functiond,, : (N7')* — I" defined as follows, (¢ ... c®) is defined if there
is atreet such that (t) = (s; = ... = s;) with k > i ande® = z(D(t),... e =
2 (t); in this cased, (¢ ...c®) = L(a(t)[i]). Intuitively, if A, gets as input the

17

multisets of types of the states,...,s;, then it returns the type of the task ef
picked up by the scheduler. L&t = A, (2D, ..., 2()), i.e., X is the type picked
up at thei-th step. ThenX® is randomly replaced by new types according to the
distribution on the transition rules. More precisely;{f) := z(+1) 4 X @) — 2() then
Pr[r) =a| X0 = X] = foi .

We will show the following propaosition, which allows us tceintify an online sched-
uler o with the functionA,.

Proposition C.1. Letoy, o5 be online schedulers. ,, = A,,, thenPr[S7* = k] =
Pr[So2 = k] forall k > 1.

Lemma C.2. Leto be an online scheduler. For every family trethe firsti > 1 states
of o(t) are uniquely determined by (t),..., 2 (t). In particular, the functionA,,
is well-defined.

Proof. We proceed by induction on The casei = 1 is trivial. Let us consider
2M(t),...,20t0(t), and letd = (s; = --- = s; = s;11) be a prefix of
the derivationo (¢). By induction,s; = --- = s; is completely determined by
2M(t), ..., 2" (t). By the definition of online scheduler(t)[i] is completely deter-
mined bys; = --- = s; andz()(t),..., 2()(¢). Finally, there is a unique transition
rule L(o(t)[i]) — « wherea = 20+ () — 20 (¢) + (L(o(t)[i])). But thens;, is
also uniquely determined. a

LemmaC.3. Let ¢V ...c® ¢ (NI)* such that for everyl < j < i

the value A,(cM...¢@) is defined. Then Pr[/\;.zlz(j):c(j) -

[1,=1 Prob(Ay (e -+ c¥)) < a;) where for everyl < j < i we have
Q= c(j+1) — 0(7) + <Ao_(c(1) .. C(J))>

Proof. Let us denote byR the set of all family trees such thatz()(t) = ¢\ for
1 < j <i.By Lemma C.2, there is a derivatieh= s; = --- = s; and a function
l:Uj—, s; — I"such that for every = (N, L) € R we have thatl is a prefix ofo (t)

and! coincides with on the subtreg);_, s;. Letus denote by’ the tred J;_, s;. Note
thatt® is a subtree of every tree & rooted ine. Let us denote b¥ the set of all inner
nodes oft®. For everyv € Z, we denote byhild(v) := (I(va) | a € {0,1},va € t*)
the multiset of labels of children of the noden ¢°. Let us denote by the set of all
leaves oft®. It follows directly from the definition oPr, that for allt € R we have

Pr[t] = [[Prob(L(v) < child(v)) -] Prlt.]
vel veL

However, it follows directly from definitions that for everyc 7 there is precisely one
1 < j <isuchthav(t)[j] = v, and therL(v) = A, (cV) ---) andchild(v) = a.
Therefore,

i—1
Prft] = [[Prob(Aq(c)---cY)) = ay) - [] Prlt.]
Jj=1 veEL

18

Finally,

teER vEL t'E€TL(v)

O

Now we can prove Proposition C.1.

Proof (of Proposition C.1)We denote byzf\” the variablez(?) evaluated with respect
to a given schedulek. Let us denote byl the set of allc™") ... c(® ¢ (NI)*+
such thatd,, (¢ ---cU)) = A,,(c™ ---cl)) is defined for alll < j <i— 1, and
¢ = 0. By Lemma C.3, for everg()) - .. ¢V € A,.; we have

i i1
Pr /\ zgjl) =c| = H Prob(Ag, (¢ -+ ¢9)) — o)
Jj=1 Jj=1
i1 ‘
= H Prob(Ag, (¢ - W) < a;)
j=1

=Pr /\ zgzz) = ¢\

j=1

However, therPr[S°t = k] = Pr[S?2 = k] because the values ¢f* and S?2 are

determined by the values ef”), {2, ... andz{), 28, ..., and for all family trees
we have that a prefix oigll) (1), z§,21) (t),...and a prefix ofzglz) (1), zgi) (t),...arein
Adef- O

C.2 Justification for Compactness

In Section 4 we claimed that we can focus on compact taskregstasentially without
loss of generality. We justify this claim now.

A non-compact task system can be compacted by iterativeipveng all rules with
non-compact types on the left hand side, and all occurresicesn-compact types on
the right hand side.

Proposition C.4. Let us denote by” the set of all task types removed frafnby the
above compacting procedure and || = 4. If X, € I, then there is a scheduler
such thatsS? < /.

Assume thaK, ¢ I"". Let A’ be the compacted version df(i.e., " \ I’ is the set
of task types oft’). Every schedules’ for A’ can be transformed into a scheduler
for A such that for allk

Pr[s74 > k| < Pr[s74 > k] < Pr[s7 4 > k-] .

(The second superscript Sfindicates the task system on which the scheduler operates.)

19

i—1 i—1
Z Pr[t] = H Prob(As(cV) ... cW)) — aj)-H Z Pr[t'] = H Prob(Ay(cV - c9)) < ay)
j=1 j=1

Notice that computing from ¢’ is easys acts likes’ but gives preferences to the
types that have been (first) eliminated during the compggtincedure.
Now we prove Proposition C.4.

Proof. Let A; be a non-compact task system with a non-compact typgs, and let
Aq be the (possibly non-compact) task system obtained figrby removing all rules
with non-compact types on the left hand side and all occegenf non-compact types
on the right hand side of all rules, i.e), is obtained fromA; by performing the
first iteration of the compacting procedure. legtbe a scheduler for\y,. Construct a
scheduler; for A; as follows:

The schedules; acts exactly likery until one or tworl,,,-tasks are created
at which point the completion space of the derivation mayrmeeased by
at mostl. Theno; picks al’,,,-task, sayr;. Since thel’,,,-types are non-
compactg; can complete; without further increasing the completion space.
After 1 has been finished, there may be anotfigr, -task left, say, that was
created at the time when was created. If there is such-a theno; completes

79 in the same way it has completed After ; (and possiblyr) have been
completedg; resumes to act likeg.

It follows from this construction that the incorporationtbe non-compact typé&,,.
increases the completion space of a derivation by at most

A straightforward induction on this construction shows fbe statement of the
proposition:

Pr[sy® < k| <Pr[sg* <k o] forall x e r\ 1.

If Xo € I, then the above construction also works. (It extends a stbedp-
erating on a possibly empty task system, but this poses nolens.) So, again by
induction, we obtain a schedulerfor A with SggA </{forall X e I'.

It remains to show the inequalifyr [S}‘(/"A, >k| < Pr S}‘(’A > k|, but this is
clear becausg\’ is obtained from deleting rules and types fralrando is obtained by
extendings’. O

C.3 Proofof Theorem4.1

We split the proof in several lemmata. With regard to the cotation of a suitable
vectorv we first prove the following lemma.

Lemma C.5. Letwu € [1,00)! denote the vector of expected completion times, i.e.,
uy = E[Ty]forall Y € I". Thenu exists and is the unique solutionof= f'(1)z+1.
LetQ(u, u) denote the “quadratic part” off (u), i.e.,(Q(u, u)) x = ZX(_pWZpuy

uy forall X,Y,Z € I'. Lets := 1/q¢mar > 0 Whereg,, . is the largest component
of Q(u,). Then for allr > 0 we havef(1 +ru) <1+ ruiffr <s.

20

Using this lemma a suitabke can be found as follows: First computeby solving
x = f'(1)x + 1. This yieldsQ(u, u), and, consequently, With regard to the upper
bound of the theorem we are interested im avhich is as large as possible, so pick
v := 1+ su. All steps can be performed in polynomial time.

Proof of the lemmaThe fact thatu = f'(1)u + 1 exists and is the vector of ex-
pected completion times follows from the remarks made ab#gnning of the proof
of Proposition 2.5. Recall that the pgfis a vector of polynomials of degree 2 with
positive coefficients. So it can be written as

f(x) =Qz,x) + Lz +c

whereQ(x, x) is the quadratic part of (). A straightforward calculation shows for
allr € Randx € RY
FA+rz)=f)+rf (L)z+r°Q(x,) (Taylor expansion)
=1+rf'(Vz+r°Q(=,z) (asf(1) =1).

Foru = f'(1)u + 1 it follows
FA+ru)=1+7r(u—1)+r°Q(u,u),
so we havef(1 + ru) < 1 + ru iff rQ(u,u) < 1. The statement follows. O

Next we show how a suitablke can be found.

Lemma C.6. One can compute in polynomial time a vecter € (1,00)!" with
f(w) > w.

Proof. Using the Taylor expansion ¢f(1 + rx) as in the previous lemma, we obtain
fA+rx)>1+raiff

rQ(z,x) > (I - f'(1))x. 3)

We will choosew := 1 + rx, so we need to find suitableandx such that (3) holds.
Definey € {0,1}! such thaty y = 1 if the X-component of)(z, =) is not constant

zero (or, equivalently, if there is a rul¥ A (Y, Z) for someY, Z € I'). Otherwise,
i.e., if fy(x) has degree, sety = 0. Definex = f'(1)*y = (I — £/ (1)) 'y.
By the compactness of the task system, all types can reagheaktywith vy, = 1. It
follows thatf’(1)*y is positive in all components. Hence,,;, > 0 wherez,,,,, is the
smallest component af.

Observe that! — f'(1))x = y, so (3) holds at least for the componentswith
yx = 0. Letc denote the smallest nonzero coefficienfoEquation (3) holds also for
the componentX with y = 1 if we setr > 1/(c- @,). The statement follows. O

To complete the proof of Theorem 4.1 it remains to show themdd bounds
onPr[S7 > k.

Theorem 4.1. Let A be subcritical.

21

— Letv,w € (1,)! be vectors withf (v) < v and f(w) > w. Denote byv i,
andw ., the least component efand the greatest componentof respectively.
Then

-1 -1 .

WXo <Pr[S? > k| < %0 = for all online schedulers.

k42 = =M =T

max Vpmin —

— Vectorsv, w € (1,00)! with f(v) < v and f(w) > w exist and can be computed
in polynomial time.

Proof. The second assertion follows from Lemmas C.5 and C.6. Itiresta show the
first assertion.

Leth > 1 andu € (0,00)" such thath*v = vy forall Y € I'. Definem® :=
z() ey where ¥ denotes the scalar product. Not that!) = ux,.

Let us considef > 1. Lety = ¢V, ... | ¢ be a sequence of elementsf with
c) # 0, and letT, be the set of all family treessatisfyingz/) (t) = ¢l for every
1 < j <. Note thatm((t) # 0. Observe that(¥) is constant oveT},, we denote by
m)(T,) its value ovefT,,.

An easy computation reveals that ior:= A, (y) we have

i) e i (i)
E[h”() : ‘Ty} :ElH huz'r(z) T,| =E H ”ZZ Ty| = fy(v) Svy =hm"",
zZel zel’
4)
as f(v) < v. Consequently, we have
E[hm(wl) | Ty} _ E[hz(H]).u | Ty:| (def. Ofm(i+1))
— E|:h(z(i)+r(i)7</1c,(y)>)ou | Ty:| (def Of,r(z))
i i 2 ey —(Ae(y))*u
_g[p= g [pr® [e @) ou S
E{h | Ty} E{h | Ty} E{h | Ty} (const. ortT,
— p () .E[h”“'u | Ty] py (def. of m).
< pm (1) (Equation (4))

As this is true for all online schedulessand alsaE [m () | m() = 0] = 0 we have

i+1)

E [hm(

(1) () ()
m m m
ok]gh :

i.e., the sequendem(l) , hm(z), ... Is a supermartingale.

Define the stopping time;, := inf{i > 1 | m(¥ € {0} U [k,o0)}. Note that
m(™) < k 4 2uUmaz, and hence that(™) € {0} U [k, k + 2Upqz]. We wish to
apply Doob’s Optional-Stopping Theorem [28] (sometimdfedaOptional-Sampling
Theorem) to infer thai® {hm(f’“)} <]E[hmm} = wvx,. 10 this end we define the

sequencen™, m? ... by settingm() := m® fori < 7, andm) := m(™) fori >

22

Tk. The sequencbﬁm , h’ﬁ@), ... Is a martingale aa™" , hmm, ... Is a martingale.
To apply the Optional-Stopping Theorem we also need to make ﬂ;lat|hm“+1) —

»™" | is bounded by a constant, which is the cas@&s € [0, k + 2uq,] for all i.
Define the stopping timey, := inf{i > 1 | m(Y € {0} U [k, 00)}. Doob’s Optional-
Stopping Theorem now yields

(1

E[hm“’”} - E[hm“")} < E[hm } - E{hm(”} — B0 = gy, .

Let, as an abbreviatiopy, := Pr[m(™) > k]. Then we have
vx, ZE[hm“")} >0 (1= pi) +h* - pe = 1 — po + BF - pi

which gives
Vx, — 1
< .
Pk= "5 21

Letting|z(*)| denote the sum of the components6f, andu,,,;, the smallest compo-
nent ofu, we have

’UXO—l

Pr[S° > k] = Pr {Su,p 2] > k] <Pr {sup m® > kumin:| = Pl S 3o

So we have shown the upper bound.
For the lower bound we redefimeandu such thah*y = wy forallY € I" which
allows to show in an analogous way that

(i41) (1) (i) (i)
E[hm R }zhm ,

i.e., the sequendé”(” , pm® ,...is now a submartingale. The Optional-Stopping The-
orem now yieldsE [hmw)} > wy,. Further we now have

m (k) u u
wi, SE[A™] <0 (1= py) 4 B = 1y Ry

which gives
Pk = #;37;1_1
and thus
Pr[S” > k] = Pr [Su_p 2] > ’f} - [S“-pm(i) > Kmar)| = D 2 5
O

23

C.4 Proof of Theorem 4.3
We first prove the following proposition.

Proposition C.7. The set ob-accumulating types can be computed in polynomial time.

Proof. We start with some notations. By-* we denote the reflexive and transitive
closure of=-. We use “” for multiset union. We say thak” can generate multiset
a, denoted byX =% «, if some multiset containing can be derived fronX , i.e., if
X =* a + B for some multiseB3. We writeY ==y « if Y can generate using only
X-bounded rules, i.e., rulgs — 3 such thatZ < X, andY == « to denote that the
light-first scheduler can generate Finally, we denote byy=* (a>*) the restriction
of a to typesy > X (Y > X).

We prove the following characterizatioX: is v-accumulating iff there i¥” such
thatX, == Y andY ==y X + Y. This immediately leads to a polynomial algorithm.

(=): AssumeX is v-accumulating. TheX, = n - X holds for infinitely many
n > 1. We claim that there exists a typg such thatV’ == x n - X for infinitely many
n > 1. For the claim, take the longest suffixes of the witnesses\ipr=>;; n - X
that only use ruleX-bounded rules, and let, be their corresponding initial multisets.
These suffixes are then witnessesdgr== x n- X. By the maximality of the suffixes,
eithera,, = Xy holds for infinitely manyn > 1, or a,,, = 2% does. In the first case,
we takelV := X,. In the second case, l&t, — (3,, be the rule applied to obtaim,,.
Then

Xo =3 (an = Bn) + Zn =iy (an = Bn) + Bn =>x n- X

whereX < Z,. Since the stepa,, — 5,,) + Z,, =i (an — Bn) + Bx is light-first and
X < Z,,we havela,, — 8,) = (an, — Bn)~%, and so there are infinitely mamy> 1
such that3,, = x n - X. Since|8,| < 2 for all n, the typelV exists, and the claim is
proved.

Consider now a witness &V ==y n - X for somen > 2% + 1, wherek is the
number of types. The corresponding tree has depth atAeast, and so it contains a
path in which some typ¥ appears twice. This easily leads¥fo==> y X +Y for some
typeY suchthatX, = Y.

(«+): We start with some simple properties of the relatien§ and=;.

(1) Y =x aanda = a=%, thenY == a.
Consider a family tree having a (prefix of a) derivation thihesses” = x .
So all ancestors of the nodes corresponding tre labeled by symbols that are
< X. It follows that a light-first scheduler may select all artoes of thea-nodes
before selecting ang-node. Henc&” == a.

(2) If X = Y andY :.>lf B, thenX :.>lf B.
X = YimpliesX = Y +a for somen, andY” = §impliesY =7 f+
forsomes;. As X =Y +a, it suffices to find a derivation witnessing+ « =
() that reaches a multiset of the forta- v for somey. Such a derivation is obtained
by interleaving the witnesses fof =7, 8 + 81 =; 0 anda =7; 0.

Assume now thaf{y, = Y andY == x X + Y hold. ThenY == n - X for
everyn > 1. Now (1) yieldsY == n - X, and (2) leads to, = n - X, also for
everyn > 1. SoX isw-accumulating. a

24

Now we complete the proof of Theorem 4.3.

Theorem 4.3.Let A be subcritical andy € (1, 00)? with f(v) < v. Leto be av-light-
first scheduler. Lewinmas = minx iy, zy max{vy,vz} (here the minimum is
taken over all transition rules with two types on the rightidaside). Thew ,,,;nmae >
Vmin and forallk > 1

vx, — 1
Pr[S7 > k] < ~o :
UminUminmaz — 1
Moreover, letv,inaee = min{vx | X € I, Xiswv-accumulating. Then

Uminace = Uminmaz, Uminace CAN D& computed in polynomial time, and there is an
integer? such that for allk > ¢

’UXO—l

vl pFt 1

min Y minacc ~

Pr[S? > k] <

Proof. The inequalityv,inmaz > Vmin IS trivial. For the inequalityv,,inace >
Uminmaz, € Li :={Y € I' | vy < Uminmaz} D€ the set of types that are strictly
lighter thanv,,,;n.mq.- We claim that, in each stepthere is at most one task 6f-type.
More formally, if e(~%) denotes the vector wite{"*” = 1 for Y e Li ande!*" = 0
for Y ¢ Li, then we have:(" «e() < 1 for all i. This can be shown by a straight-
forward induction on the derivation length: at each steptdls& of Li-type (if present)
is selected and replaced by at most two tasks. By definitios,Qf, ..., at most one
of the new tasks haki-type. Hence, the types ihi are not accumulating. It follows
VUminace 2 VUminmax-

The rest of the proof is obtained by a small modification of gneof of The-
orem 4.1: it suffices to show that, in Equation (5), we can aeplku,,;, by
Wpmin + (K — DUminmaz @aNd by ltp,in + (K — £)WUiminace TOr some integel. (The
valuesu,inmaz @aNd u;minge. are defined in the obvious way, i.e., using thérom
the proof of Theorem 4.1 we havé‘minmaez = v, inmae @NAdAY%minace = v, 00000
So we need to show for the light-first scheduterthat |z(Y| > & implies both
m(z) > WUpmin + (k - 1)uminmaw andm(i) > éumin + (k - g)uminacc-

For the first implication, recall that¥ = z() «u. We have argued above that
2z eell) < 1, This impliesm D > wpin + (k — Dtminmae-

For the second implication, Iét be an integer such thaﬁ) < ¢ for all i and for
all non-accumulating types. Let? := |I'| - . Then in each step, there are at most
tasks of non-accumulating type. This implie$?) > (u,in + (k — OWminace. O

C.5 Proof of Theorem 4.5

In the following we letM™* := I+ M + MM + --- for any square matrid/. If M*
converges, then, by basic matrix facts, it equdls- M)~!. Also by basic matrix facts
(see e.g. [18])M* converges iff the spectral radius bf is less than one.
Define for all vectoras, v the vectord. (u) and@(w, v) such that for allX € I
L(u)x := Z puy and Q(u,v)x = Z puyuz .

xSy xSyz

25

Note that the sums extend over the rules after applyinglso note thatl is a linear
vector function and we view it as a matrix whose rows and colsiare indexed witl".
Furthermore, we writ€)(-, v) and@(u, -) for the matrices witlQ (-, v)u = Q(u,v) =
Q(u,-)v.

Here is a restatement of Theorem 4.5:

Theorem 4.5. Let A be subcritical ando be any depth-first scheduler. Then
Pr[S° = k] can be computed in tim@&(k - |I"?) in the unit-cost model. Moreover,
there is0 < p < 1 such thatPr[S” > k] € O(p*), i.e, there arec,C > 0 such
that cp® < Pr[S° > k] < Cp* for all k. Furthermore,p is the spectral radius of a
nonnegative matrixs € R7"™*!", whereB can be computed in polynomial time.

We first prove the first part of Theorem 4.5. In fact, the folilogvproposition allows
to computePr[S¢ > k] for all X € I" at the same time. We define, for &ll> 1, the
vectors[k| € [0,1]! such thats[k] x = Pr[S% > k] for all X.

Proposition C.8. Let A[k] := L+ Q(1 — s[k],-). Then(I — A[k])~! exists and for all
k>1

slk +1] = Alk]s[k +1] + Q(-, 1)s[k] = (I — A[K])"'Q(-, 1)s[k].
Proof. The following equation follows from the definition of a degfihst schedulet.

Pr(S% > k+1]= Y pPr[Sy >k+1]
XSy
+ > p(Pr[SY > k] +Pr[Sy < k|- Pr[Sg > k+1))
XSyZz
Using the definitions this immediately implies the equality
slk+1] = Alk]s[k + 1] + Q(-, 1)s[k] .

For the second equality of the proposition, note tfigtl) = L + Q(1,-) + Q(-, 1).
As the task system is subcritical, the spectral radiug'¢f) is, by Proposition 2.5, less
than one. So the spectral radiusAift] < L+ Q(1,-) < f'(1) is less than one as well.
Hence, by standard matrix facts [18] the suiit]* converges and equals — A[k]) L.
The second equality follows. a

Notice that Proposition C.8 in fact implies the first statetmaf Theorem 4.5, because
Pr[S° = k| = s[k]x, — s[k — 1] x, and a matrix can be inverted in tind®(| I'|) in the
unit-cost model.

For the rest of the proof of Theorem 4.5 we need the followimg auxiliary lem-
mata.

Lemma C.9. Let A be a nonnegative square matrix with spectral radius less thrze.
Let (e,)nen be a sequence with, > €,41 > 0 converging td). Then there exists an
ny1 and a nonnegative matrik” such that for alln > ny

(1= e)A)" > (I — e, K)A* .

26

Proof. We can assume, < 1. Let M = (I — A)~!A. Then by a simple computation
(1= en)A)" = (I + e, M) A"
Choosen; large enough so thate,, M) < 1. Then(e, M)* exists and so

(I+enM) ™" =1 (euM) + (enM)* — (€n M) 4 — -
>1— (e, M)(enM)*
>1— e, M(en, M)*

ChooseK = M (e,, M)* and the claim follows. O

Lemma C.10. LetB := (I — L — Q(1,-))~*Q(-,1). Then the spectral radius @ is
less than 1.

Proof. Observe thaff’(1) = L + Q(1,-) + Q(-,1). As (A, X) is subcritical, Propo-
sition 2.5 implies that the spectral radiusg{1) is less than one. Then it follows that
the spectral radius oB is less than one as well, using the theory of M-matrices and
regular splittings, see [5], Theorem 6.2.3 pagt.P a

To complete the proof of Theorem 4.5 it suffices to show thie¥ghg proposition.

Proposition C.11. Let A be subcritical ands be any depth-first scheduler. L&t :=
(L+Q(1,))"Q(-,1) and p the spectral radius ofB. Then0 < p < 1 and
Pr[S? > k] € O(p*), i.e, there arec,C > 0 such thatcp® < Pr[S7 > k] < Cpk
for all .

Proof. We havep < 1 by Lemma C.10. To shoy > 0, it suffices (by Perron-Frobenius
theory [5]) to show that all row sums @f are (strictly) positive. For this, |& € I" be
the index of an arbitrary row. Then, by compactness of thedgstem, there are types
Xo,...,X; (0 < i <n—1)suchthaty = X; andX; <5 X;_1,..., X1 —> Xo
and X, S ZW for someZ, W € I'. Itis straightforward to show by induction an
that the(Y, Z)-entry of L'Q(-, 1) is positive. It follows that theY, Z)-entry of B is
positive, sop > 1.

For the upper bound, observe that with Proposition C.8 we hav

slk+1] = (L +Q(1 - s[k],-))" Q(-, 1)s[k] < Bs[k]. (6)

By a simple induction it followss[k + i] < Bis[k]. As the absolute values of the
eigenvalues of3 are bounded by we get||s[k + i]|| < C1p’ for someC; > 0, which
implies the claimed upper bound.

For the lower bound, observe that there is a real nuriber < 1 such that for all
typesY € I, the probability thatX reached” is at leastr. So it suffices to find any
Y € I' such that there is@ > 0 with Pr[Sg > k] > c¢;p* for all k.

Recall thatp is the spectral radius dB. It is a corollary (Corollary 2.1.6 of [5]) of
Perron-Frobenius theory th&t has a principal submatri®’ which is irreducible and
also has spectral radiys We write I'; for the subset of” such thatB’ is obtained

27

from B by deleting all rows and columns that are not indexed byAlso by Perron-
Frobenius theoryB’ has an eigenvectar’ € (0, c0)!™ with B/ = pu’ so thatu' is
positive in all components. Defing € [0,00)!" as the vector withuy = u), > 0 for
Y € It anduy = 0 forY ¢ I'}. Hence we havéBu > pu. By the already proven
upper bound there ista> 0 such thats[k] < tp” for all k. We abbreviate;, := tp* so
thats[k] < e 1.

Now we show that there is a natural numbemnd a real numbet > 0 with ¢,d < 1
such that for ali > 0

slk+1 = p' (H(l - €k+j1d)> u. (7
j=1
Asuy = 0forY ¢ I3 it suffices to shows[k + 4] >4 p ([T, (1 - ek+j_1d)) u
where by the notatiom >, w we meanwy > wy forall Y € I;. We proceed by
induction oni and determine the constants on the fly. For the induction fase0)
observe that, as[k] is positive by compactness of the task system, we can enforce
s[k] > w by scaling downu by multiplying it with a small constant. This does not
affect the stated properties af For the step, let > 0. We have

slk+i+1]=(L+Q1—s[k+1],))" Q(-,1)s[k + 1] (by (6))
> (1= erp) (L + Q(1,))" Q(, L)s[k +1] (asslk +] < eril)
> (1= i) (L +Q(1,)))" Q- 1)p’ (H(l - €k+j1d)> u (ind. hypothesis)
j=1
i for a large k an
> (I — e, K)Bp' H(l —€pyj—1d) | u <some matrix K b;/,)
j=1 LemmaC.9
> pt (H(l — ek+j1d)> (pu — €, K Bu) (asBu > pu)
j=1
2t p' (H(l - €k+j1d)) (pu — €xyipdu) (f[(;rBﬁ Slirggr;l With)
j=1

141
— pitl (H(1 - ekﬂ-ld)) u

j=1

This proves (7). So, denoting hy,,;, > 0 the smallest nonzero componentgfwe
have

i+1

slk+ily > p' H(l —eprj1d) | wmin forallY € Iy andalli > 0.
j=1

28

Thus the proof is completed If[;?';k(l — ¢;d) > 0. To see that this inequality holds,
observe that —¢;d = 1—tp/d > 1= is true foraimostalj and tha{ [;2, (1) =
% > 0. This completes the proof. a

D Proofs of Section 5

D.1 Proof of Theorem 5.1

Theorem 5.1. The expectatiof£[S°?] is finite (no matter whethen\ is critical or
subcritical). MoreoverO(b) terms computé bits of E[S°?]. If the task syster\ is
subcritical, thenlog, b + O(1) terms computé bits of E[S°?]. Finally, computingk
terms takes tim&(k - | ') in the unit cost model.

Proof. Note that the second statement implies the first onee’et= 1 — ugg Then
we haveE[S?] — Y ¢ (1 - v = Yk e It follows from [12] that there is a
c1 € (0,00) such that for ali € N we havee™ < ¢; -27%/("2") wheren = |I'|. Using
this inequality we get

e < ¢ 3272 < gy gk (02
=k i=k

K2

with co = ¢1/(1-271/("2"). Choosingt = [(b+log, c2)n2™] we obtaind ;2, e <
2~ which proves the second statement.

For the third statement (about subcritical systems) rdoath Corollary 3.5 that
there are: > 0 and0 < d < 1 such thae(® < ¢-d?' forall i € N. So

2e(i)§§c~d2i §c~§;d2k+i— lfd-d2k.

By choosing a natural numbgrwith k£ > — log,(— log, d) 4 log, b + 1 we obtain for

allb > log = that = - 2" < 27" which proves the third statement.

The final statement follows from Corollary 3.4. a0

D.2 Proof of Theorem 5.2

Theorem 5.2. If A is subcritical, therE[S?] is finite for every online scheduler. If
Alis critical, thenE[S“] is infinite for every online scheduler

Proof. Let A be subcritical. By Theorem 4.1 we have for every online salexd

E[SU]:iPr[S(’Zk] gim < o0,

k .
k=1 k=1 ~min

because it is a geometric series.

Let now A be critical. The proof follows the lines of the proof of Thear 4.1. By
Proposition 2.5 we have(f'(1)) = 1 for the spectral radius of'(1).

Let us fix an online schedulet. First we proveéE[S?] = oo for the case in whictX
is reachable from every typ¥ € I'. Later we will show how to drop this assumption.
If X, is reachable from everyx, it follows that /(1) is an irreducible matrix. Then
Perron-Frobenius theory [5] guarantees the existence @figanvectoru € R of
f'(1) which is positive in all components, i.ef,(1)u = w andux > Oforall X € I'.
W.L.0.g. we can choose such that its largest componentid_et againn() := z() ey,
Note thatm™ = ux, > 0 andm® < [2()| where|z()| denotes the sum of the
components ok (), Also note thatn(” returns a weighted sum of the components
of z(V), Loosely speaking, we will show that its expectation reraa@ionstant.

Let us considet > 1. Lety = ¢V, ... | ¢(¥ be a sequence of elementsNf with
c) £ 0, and letT, be the set of all family treessatisfyingz?) (t) = ¢\ for every
1 < j <. Note thatn(?) (t) # 0. Observe thatn(is constant oveT’,, we denote by
m(T,) its value overT,.

An easy computation reveals that for evéfyc I" we have

B IT) = Y po#() = Flagx (D)
Ao ()

which gives
E[r@ | T,] = £),0)(1) ®)

(Wheref’AU(y)(l) denotes the row vector indexed Hy (y)). Consequently, we have:

#1501 o
::(E[z@>|1;}4—E[r“>|1;}—-E{¢X“>)|1;})-1L (def. of ()
= (B[2917,] + £,) (1) = (A6(w))) *u (by (8))
=m(Ty) + Fh(Du — (As(y)) su (def. of m((T,))
=m(T,) (asf'(1)u = u)

Also clearlyE [m (Y | m(®) = 0] = 0, and hence we have
E%ﬂﬂwnﬂkuwm@ —m®

i.e., the sequence) m 2 ... is a martingale.

Define the stopping time;, := inf{i > 1 | m® € {0} U [k, o0)}. Note that
m(™) < k+2asu < 1, and hence thain(™) ¢ {0} U [k, k + 2]. We wish to
apply Doob’s Optional-Stopping Theorem [28] (sometime#edaOptional-Sampling
Theorem) to infer thak [m(™)] = E[m")] = ux,. To this end we define the sequence
mM m® . by settingm® := m fori < 7, andm® := m(™) fori > 7. The

30

sequencen®, m(? ... is amartingale as"), m? ... is a martingale. To apply the
Optional-Stopping Theorem we also need to make suresifat’) — 7. | is bounded
by a constant, which is the casera¥§’ € [0, k + 2] for all i. Doob’s Optional-Stopping
Theorem now yields

]E|:m(Tk):| — E[m(m)} — E[m(l)} =ux,.
Recall that this is> 0. Sincem(™) € {0} U [k, k + 2],

uUx, = E[m(”)] < 0-Pr {m(”) = 0}+(k+2)-Pr {m(”) > k} = (k+2)-Pr {m(”) > k}

which gives
Pr {m(”) > k} > 2
— 1T k+2
So we have
PI‘[SU > k] —Pr |:Sup |z(i)| > k:| > Pr {supm(l) > k:| =Pr {m(ﬂc) > k} >]:lljfo2 .

Hence,

o o UX,
E[S7] =) Pr[S 2k]22k+2_oo
k=1 k=1
which completes the proof for the case whéfgis reachable from all types.

Now we show thaE[S5“] = o also holds wherX, is not reachable from all types.
Recall thato(f'(1)) = 1. Itis a corollary (Corollary 2.1.6 of [5]) of Perron-Frokias
theory thatf’(1) has a principal submatri® which is irreducible and has spectral
radiusp(B) = 1. LetI"” C I denote the set of types such thatis obtained from
f'(1) by deleting all rows and columns not indexed BY Consider the task system
A’ which is the original task system restrictedita More concretelyA’ has typed™’

and transition rules as follows: A rul¥ <> o’ is in A’ iff X € I"” and there is an
o€ Ml§2 such thaty < a is in the original task system and is obtained fromx by
deleting the types that are notiff. Letg : RI” — R denote the pgf for\’. From
the construction ofA’ it is straightforward to see thd = ¢’(1). Pick an arbitrary
X € I as the initial type ofA’. As B = g’(1) is irreducible,X is reachable from alll
typesinl”’. Hence, the first part of the proof applies and we obtain thad\’, we have
E[S%] = oo for all online schedulers. As A’ was obtained by erasing types and rules
from the original task system, it is easy to see that, alsheroriginal task system, we
haveE[S%] = oo for all online schedulers. As X is reachable fron¥,, it follows
E[S?] = oo for all online schedulers. O

31

