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Abstract. We study the problem of scheduling tasks for execution by a proces-
sor when the tasks can stochastically generate new tasks. Tasks can be of different
types, and each type has a fixed, known probability of generating other tasks. We
present results on the random variableSσ modeling the maximal space needed
by the processor to store the currently active tasks when acting under the sched-
ulerσ. We obtain tail bounds for the distribution ofSσ for both offline and online
schedulers, and investigate the expected valueE[Sσ].

1 Introduction

We study the problem of scheduling tasks that can stochastically generate new tasks.
We assume that the execution of a taskτ can generate a set of subtasks. Tasks can
be of different types, and each type has a fixed, known probability of generating new
subtasks.

Systems of tasks can be described using a notation similar tothat of stochastic
grammars. For instance

X
0.2
−֒−→ 〈X,X〉 X

0.3
−֒−→ 〈X,Y 〉 X

0.5
−֒−→ ∅ Y

0.7
−֒−→ 〈X〉 Y

0.3
−֒−→ 〈Y 〉

describes a system with two types of tasks. Tasks of typeX can generate2 tasks of
typeX , one task of each type, or zero tasks with probabilities0.2, 0.3, and0.5, respec-
tively (angular brackets denote multisets). Tasks of typeY can generate one task, of
typeX or Y , with probability0.7 and0.3. Tasks are executed by one processor. The
processor repeatedly selects a task from a pool of unprocessed tasks, processes it, and
puts the generated subtasks (if any) back into the pool. The pool initially contains one
task of typeX0, and the next task to be processed is selected by ascheduler.

We study random variables modeling the time and space neededto completelyex-
ecute a taskτ , i.e., to empty the pool of unprocessed tasks assuming that initially the
pool only contains taskτ . We assume that processing a task takes one time unit, and
storing it in the pool takes a unit of memory. So thecompletion timeis given by the total
number of tasks processed, and thecompletion spaceby the maximum size reached by
the pool during the computation. The completion time has been studied in [13], and so
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the bulk of the paper is devoted to studying the distributionof the completion space for
different classes of schedulers.

Our computational model is abstract, but relevant for different scenarios. In the
context of search problems, a task is a problem instance, andthe scheduler is part of
a branch-and-bound algorithm (see e.g. [19]). In the more general context of multi-
threaded computations, a task models a thread, which may generate new threads. The
problem of scheduling multithreaded computations space-efficiently onmultiprocessor
machines has been extensively studied (see e.g. [22, 7, 2, 1]). These papers assume
that schedulers know nothing about the program, while we consider the case in which
stochastic information on the program behaviour is available (obtained from sampling).

We study the performance ofonlineschedulers that know only the past of the com-
putation, and compare them with theoptimal offlinescheduler, which has complete in-
formation about the future. Intuitively, this scheduler has access to an oracle that knows
how the stochastic choices will be resolved. The oracle can be replaced by a machine
that inspects the code of a task and determines which subtasks it will generate (if any).

We consider task systems with completion probability 1, which can be further di-
vided into those with finite and infinite expected completiontime, often calledsubcrit-
ical and critical. Many of our results are related to the probability generating func-
tions (pgfs) associated to a task system. The functions for the example above are
fX(x, y) = 0.2x2 + 0.3xy + 0.5 andfY (x, y) = 0.7x + 0.3y, and the reader can
easily guess the formal definition. The completion probability is the least fixed point of
the system of pgfs [17].

Our first results (Section 3) concern the distribution of thecompletion spaceSop

of the optimal offline schedulerop on a fixed but arbitrary task system withf (x) as
pgfs (in vector form). We exhibit a very surprising connection between the probabil-
ities Pr[Sop = k] and theNewton approximantsto the least fixed point off(x) (the
approximations to the least fixed point obtained by applyingNewton’s method for ap-
proximating a zero of a differentiable function tof(x) − x = 0 with seed0). This
connection allows us to apply recent results on the convergence speed of Newton’s
method [20, 12], leading to tail bounds ofSop , i.e., bounds onPr[Sop ≥ k]. We then
study (Section 4) the distribution ofSσ for an online schedulerσ, and obtain upper and
lower bounds for the performance ofanyonline scheduler in subcritical systems. These
bounds suggest a way of assigning weights to task types reflecting how likely they are
to require large space. We studylight-first schedulers, in which “light” tasks are chosen
before “heavy” tasks with larger components, and obtain an improved tail bound.

So far we have assumed that there are no dependencies betweentasks, requiring a
task to be executed before another. We study in Section 4.3 the case in which a task can
only terminate after all the tasks it has (recursively) spawned have terminated. These
are thestrict computations studied in [7]. The optimal scheduler in this case is the
depth-firstscheduler, i.e., the one that completely executes the childtask before its par-
ent, resulting in the familiar stack-based execution. Under this scheduler our tasks are
equivalent to special classes of recursive state machines [15] and probabilistic push-
down automata [14]. We determine the exact asymptotic performance of depth-first
schedulers, hereby making use of recent results [9].
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We restrict ourselves to the case in which a task has at most two children, i.e., all
rulesX

p
−֒→ 〈X1, . . . , Xn〉 satisfyn ≤ 2. This case already allows to model the forking-

mechanism underlying many multithreaded operating systems, e.g. Unix-like systems.
Related work.Space-efficient scheduling for search problems or multithreaded com-

putations has been studied in [19, 22, 7, 2, 1]. These papers assume that nothing is
known about the program generating the computations. We study the case in which
statistical information is available on the probability that computations split or die.

The theory ofbranching processesstudies stochastic processes modeling popula-
tions whose members can reproduce or die [17, 4]. In computerscience terminology,
all existing work on branching processes assumes that the number of processors isun-
bounded[3, 8, 21, 23, 25, 27]. We study the 1-processor case, and to our knowledge we
are the first to do so.

Structure of the paper.The rest of the paper is structured as follows. The prelimi-
naries in Section 2 formalize the notions from the introduction and summarize known
results on which we build. In Section 3 we study the performance ofptimal offline sched-
ulers. Section 4 is dedicated to online schedulers. First weprove performance bounds
that hold uniformly for all online schedulers, then we proveimproved bounds for light-
first schedulers, and finally we determine the exact asymptotic behaviour of depth-first
schedulers. In Section 5 we obtain several results on the expected space consumption
under different schedulers. Section 6 contains some conclusions. Full proofs can be
found in the appendix..

2 Preliminaries

LetA be a finite set. We regard elements ofN
A andRA asvectorsand use boldface (like

u,v) to denote vectors. The vector whose components are all0 (resp.1) is denoted by0
(resp.1). We use angular brackets to denote multisets and often identify multisets over
A and vectors indexed byA. For instance, ifA = {X,Y } andv ∈ N

A with vX = 1

andvY = 2, thenv = 〈X,Y, Y 〉. We often shorten〈a〉 to a.M≤2
A denotes the multisets

overA containing at most2 elements.

Definition 2.1. A task systemis a tuple∆ = (Γ, −֒→,Prob, X0) whereΓ is a finite
set of task types, −֒→ ⊆ Γ × M≤2

Γ is a set oftransition rules, Prob is a function as-
signing positive probabilities to transition rules so thatfor everyX ∈ Γ we have∑

X −֒→α Prob((X,α)) = 1, andX0 ∈ Γ is theinitial type.

We writeX
p
−֒→ α wheneverX −֒→ α andProb((X,α)) = p. Executions of a task

system are modeled as family trees, defined as follows. Fix anarbitrary total order�
onΓ . A family treet is a pair(N,L) whereN ⊆ {0, 1}∗ is a finite binary tree (i.e. a
prefix-closed finite set of words over{0, 1}) andL : N −֒→ Γ is a labelling such that
every nodew ∈ N satisfies one of the following conditions:w is a leaf andL(w) −֒→ ε,
orw has a unique childw0, andL(w) satisfiesL(w) −֒→ L(w0), orw has two children
w0 andw1, andL(w0),L(w1) satisfyL(w) −֒→ 〈L(w0), L(w1)〉 andL(w0) � L(w1).
Given a nodew ∈ N , the subtree oft rooted atw, denoted bytw, is the family tree
(N ′, L′) such thatw′ ∈ N ′ iff ww′ ∈ N andL′(w′) = L(ww′) for everyw′ ∈ N ′. If
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a treet has a subtreet0 or t1, we call this subtree achild of t. (So, the termchild can
refer to a node or a tree, but there will be no confusion.)

We define a functionPrwhich, loosely speaking, assigns to a family treet = (N,L)
its probability (see the assumption below). Assume that theroot oft is labeled byX . If t

consists only of the root, andX
p
−֒→ ε, thenPr[t] = p; if the root has only one child (the

node0) labeled byY , andX
p
−֒→ Y , thenPr[t] = p ·Pr[t0]; if the root has two children

(the nodes0 and1) labeled byY andZ, andX
p
−֒→ 〈Y, Z〉, thenPr[t] = p·Pr[t0]·Pr[t1].

We denote byTX the set of all family trees whose root is labeled byX , and byPrX the
restriction ofPr to TX . We drop the subscript ofPrX if X is understood.

Example 2.2.Figure 1 shows (a) a task system withΓ = {X,Y, Z}; and (b) a family
treet of the system with probabilityPr[t] = 0.25 · 0.1 · 0.75 · 0.6 · 0.4 · 0.9. The name
and label of a node are written close to it.

(a)

X
0.25

−֒−→ 〈Y,Z〉 Y
0.1

−֒−→ 〈X,Z〉 Z
0.4

−֒−→ 〈Y 〉

X
0.75

−֒−→ ∅ Y
0.9

−֒−→ ∅ Z
0.6

−֒−→ ∅

(b)

ε,X

0, Y 1, Z

00, X 01, Z 10, Y

Fig. 1. (a) A task system. (b) A family tree.

Assumptions. Throughout the paper we assume that a task system
∆ = (Γ, −֒→,Prob, X0) satisfies the following two conditions for every typeX ∈ Γ :
(1) X is reachablefrom X0, meaning that some tree inTX0 contains a node labeled
by X , and (2)Pr[TX ] =

∑
t∈TX

Pr[t] = 1. So we assume that(TX ,PrX) is a
discrete probability space withTX as set of elementary events andPrX as probability
function. This is the formal counterpart to assuming that every task is completed with
probability 1.

Proposition 2.3. It can be decided in polynomial time whether assumptions (1)and (2)
are satisfied.

Proof. (1) is trivial. For (2) let theprobability generating function(pgf) of the task
system be defined as the functionf : RΓ → R

Γ of ∆ where for everyX ∈ Γ

fX(v) =
∑

X
p

−֒→〈Y,Z〉

p · vY · vZ +
∑

X
p

−֒→〈Y 〉

p · vY +
∑

X
p

−֒→∅

p .

It is well known (see e.g. [17]) that (2) holds iff the least nonnegative fixed point off
equals1, which is decidable in polynomial time [15]. ⊓⊔
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Derivations and schedulers.Let t = (N,L) be a family tree. Astateof t is a
maximal subset ofN in which no node is a proper prefix of another node (graphically,
no node is a proper descendant of another node). The elementsof a state are calledtasks.
If s is a state andw ∈ s, then thew-successor ofs is the uniquely determined states′

defined as follows: ifw is a leaf ofN , thens′ = s \ {w}; if w has one childw0, then
s′ = (s\{w})∪{w0}; if w has two childrenw0 andw1, thens′ = (s\{w})∪{w0, w1}.
We writes ⇒ s′ if s′ is thew-successor ofs for somew. A derivation oft is a sequence
s1 ⇒ . . . ⇒ sk of states such thats1 = {ǫ} andsk = ∅. A scheduleris a mappingσ
that assigns to a family treet a derivationσ(t) of t. If σ(t) = (s1 ⇒ . . . ⇒ sk), then for
every1 ≤ i < k we denote byσ(t)[i] a task ofsi such thatsi+1 is theσ(t)[i]-successor
of si. Intuitively, σ(t)[i] is the task ofsi scheduled byσ. This definition allows for
schedulers that know the tree, and so how future tasks will behave. In Section 4 we
define and study online schedulers which only know the past ofthe computation. Notice
that schedulers are deterministic (non-randomized).
Example 2.4.A schedulerσ1 may schedule the treet in Figure 1 as follows:{ε} ⇒
{0, 1} ⇒ {0, 10} ⇒ {0} ⇒ {00, 01} ⇒ {01} ⇒ {}. Let σ2 be the sched-
uler which always picks the least unprocessed task w.r.t. the lexicographical order
on {0, 1}∗. (This is an example of an online scheduler.) It schedulest as follows:
{ε} ⇒ {0, 1} ⇒ {00, 01, 1} ⇒ {01, 1} ⇒ {1} ⇒ {10} ⇒ {}.

Time and space.GivenX ∈ Γ , we define a random variableTX , thecompletion
time ofX , that assigns to a treet ∈ TX its number of nodes. Assuming that tasks
are executed for one time unit before its generated subtasksare returned to the pool,
TX corresponds to the time required to completely executeX . Our assumption (2)
guarantees thatTX is finite with probability1, but its expectationE[TX ] may or may
not be finite. A task system∆ is calledsubcritical if E[TX ] is finite for everyX ∈ Γ .
Otherwise it is calledcritical. If ∆ is subcritical, thenE[TX ] can be easily computed
by solving a system of linear equations [13]. The notion of criticality comes from the
theory of branching processes, see e.g. [17, 4]. Here we onlyrecall the following results:

Proposition 2.5 ([17, 15]).Let ∆ be a task system with pgff . Denote byf ′(1) the
Jacobian matrix of partial derivatives off evaluated at1. If ∆ is critical, then the
spectral radius off ′(1) is equal to1; otherwise it is strictly less than1. It can be
decided in polynomial time whether∆ is critical.

A state models a pool of tasks awaiting to be scheduled. We areinterested in the
maximal size of the pool during the execution of a derivation. So we define the ran-
dom completion spaceSσ

X as follows. If σ(t) = (s1 ⇒ . . . ⇒ sk), thenSσ
X(t) :=

max{|s1|, . . . , |sk|}, where|si| is the cardinality ofsi. Sometimes we writeSσ(t),
meaningSσ

X(t) for the typeX labelling the root oft. If we writeSσ without specifying
the application to any tree, then we meanSσ

X0
.

Example 2.6.For the schedulers of Example 2.4 we haveSσ1(t) = 2 andSσ2(t) = 3.

3 Optimal (Offline) Schedulers

Let Sop be the random variable that assigns to a family tree the minimal completion
space of its derivations. We callSop(t) the optimal completion spaceof t. The opti-
mal scheduler assigns to each tree a derivation with optimalcompletion space. In the
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multithreading scenario, it corresponds to a scheduler that can inspect the code of a
thread and decide whether it will spawn a new thread or not. Note that, although the
optimal scheduler “knows” how the stochastic choices are resolved, the optimal com-
pletion spaceSop(t) is still a random variable, because it depends on a random tree.
The following proposition characterizes the optimal completion space of a tree in terms
of the optimal completion space of its children.

Proposition 3.1. Let t be a family tree. Then

Sop(t) =





min

{
max{Sop(t0) + 1, Sop(t1)},

max{Sop(t0), S
op(t1) + 1}

}
if t has two childrent0, t1

Sop(t0) if t has exactly one childt0
1 if t has no children.

Proof sketch.The only nontrivial case is whent has two childrent0 andt1. Consider
the following schedulings fort, wherei ∈ {0, 1}: Execute first all tasks ofti and
then all tasks oft1−i; within both ti andt1−i, execute tasks in optimal order. While
executingti, the root task oft1−i remains in the pool, and so the completion space is
s(i) = max{Sop(ti)+1, Sop(t1−i)}. The optimal scheduler chooses the value ofi that
minimizess(i). ⊓⊔

Given a typeX , we are interested in the probabilitiesPr[Sop
X ≤ k] for k ≥ 1.

Proposition 3.1 yields a recurrence relation which at first sight seems difficult to handle.
However, using results of [11, 10] we can exhibit a surprising connection between these
probabilities and the pgff .

Let µ denote the least fixed point off and recall from the proof of Proposition 2.3
thatµ = 1. Clearly,1 is a zero off(x) − x. It has recently been shown thatµ can
be computed by applying tof (x)− x Newton’s method for approximating a zero of a
differentiable function [15, 20]. More precisely,µ = limk→∞ ν(k) where

ν(0) = 0 and ν(k+1) = ν(k) + (I − f ′(ν(k)))−1
(
f(ν(k))− ν(k)

)

andf ′(ν(k)) denotes the Jacobian matrix of partial derivatives off evaluated atν(k)

andI the identity matrix. Computingµ, however, is in our case uninteresting, because
we already know thatµ = 1. So, why do we need Newton’s method? Because the
sequence of Newton approximants provides exactly the information we are looking for:

Theorem 3.2. Pr[Sop
X ≤ k] = ν

(k)
X for every typeX and everyk ≥ 0.

Proof sketch.We illustrate the proof idea on the one-type task system withpgf f(x) =
px2 + q, whereq = 1− p. Let T≤k andT=k denote the sets of treest with Sop(t) ≤ k
andSop(t) = k, respectively. We showPr[T≤k] = ν(k) for all k by induction onk.
The casek = 0 is trivial. Assume thatν(k) = Pr[T≤k] holds for somek ≥ 0. We prove
Pr[T≤k+1] = ν(k+1). Notice that

ν(k+1) := ν(k) + f(ν(k))−ν(k)

1−f ′(ν(k))
= ν(k) + (f(ν(k))− ν(k)) ·

∑∞
i=0 f

′(ν(k))i.

Let B(0)
k+1 be the set of trees that have two children both of which belongto T=k, and,

for everyi ≥ 0, letB(i+1)
k+1 be the set of trees with two children, one belonging toT≤k,
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the other one toB(i)
k+1. By Proposition 3.1 we haveT≤k+1 =

⋃
i≥0 B

(i)
k+1. We prove

Pr
[
B
(i)
k+1

]
= f ′(ν(k))i (f(ν(k) − ν(k)) by an (inner) induction oni, which completes

the proof. For the basei = 0, letA≤k be the set of trees with two children inT≤k; by
induction hypothesis we havePr[A≤k] = pν(k)ν(k). In a tree ofA≤k either (a) both

children belong toT=k, and sot ∈ B
(0)
k+1, or (b) at most one child belongs toT=k. By

Proposition 3.1, the trees satisfying (b) belong toT≤k. In fact, a stronger property holds:
a tree ofT≤k either satisfies (b) or it has one single node. Since the probability of the tree

with one node isq, we getPr[A≤k] = Pr
[
B
(0)
k+1

]
+Pr[T≤k]−q. Applying the induction

hypothesis again we obtainPr
[
B
(0)
k+1

]
= pν(k)ν(k) + q − ν(k) = f(ν(k)) − ν(k).

For the induction step, leti > 0. Divide B
(i)
k+1 into two sets, one containing the trees

whose left (right) child belongs toB(i)
k+1 (to T≤k), and the other the trees whose left

(right) child belongs toT≤k (toB
(i)
k+1). Using both induction hypotheses, we get that the

probability of each set ispν(k)f ′(ν(k))i(f(ν(k)) − ν(k)). SoPr
[
B
(i+1)
k+1

]
= (2pν(k)) ·

f ′(ν(k))i(f(ν(k)) − ν(k)). Sincef(x) = px2 + q we havef ′(ν(k)) = 2pν(k), and so

Pr
[
B
(i+1)
k+1

]
= f ′(ν(k))i+1(f(ν(k) − ν(k)) as desired. ⊓⊔

Example 3.3.Consider the task systemX
p
−֒→ 〈X,X〉, X

q
−֒→ ∅ with pgf f(x) =

px2 + q, wherep is a parameter andq = 1 − p. The least fixed point off is 1 if
p ≤ 1/2 andq/p otherwise. So we consider only the casep ≤ 1/2. The system is
critical for p = 1/2 and subcritical forp < 1/2. Using Newton approximants we obtain
the following recurrence relation for the distribution of the optimal scheduler, where
pk := Pr[Sop ≥ k] = 1 − ν(k−1): pk+1 = (pp2k)/(1 − 2p + 2ppk). In particular, for
the critical valuep = 1/2 we getpk = 21−k andE[Sop ] =

∑
k≥1 Pr[S

op ≥ k] = 2.

Theorem 3.2 allows to compute the probability mass functionof Sop . As a Newton
iteration requiresO(|Γ |3) arithmetical operations, we obtain the following corollary,
where by the unit cost model we refer to the cost in the Blum-Shub-Smale model, in
which arithmetic operations have cost 1 independently of the size of the operands [6].

Corollary 3.4. Pr[Sop
X = k] can be computed in timeO(k·|Γ |3) in the unit cost model.

It is easy to see that Newton’s method converges quadratically for subcritical systems
(see e.g. [24]). For critical systems, it has recently been proved that Newton’s method
still converges linearly [20, 12]. These results lead to tail bounds forSop

X :

Corollary 3.5. For any task system∆ there are real numbersc > 0 and0 < d < 1
such thatPr[Sop

X ≥ k] ≤ c · dk for all k ∈ N. If ∆ is subcritical, then there are real

numbersc > 0 and0 < d < 1 such thatPr[Sop
X ≥ k] ≤ c · d2

k

for all k ∈ N.

4 Online Schedulers

From this section on we concentrate on online schedulers that only know the past of the
computation. Formally, a schedulerσ is online if for every treet with σ(t) = (s1 ⇒
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. . . ⇒ sk) and for every1 ≤ i < k, the taskσ(t)[i] depends only ons1 ⇒ . . . ⇒ si
and on the restriction of the labelling functionL to

⋃i
j=1 sj .

Compact Task Systems.Any task system can be transformed into a so-calledcompact
task system such that for every scheduler of the compact tasksystem we can construct a
scheduler of the original system with nearly the same properties. A typeW is compactif
there is a ruleX −֒→ 〈Y, Z〉 such thatX is reachable fromW . A task system iscompact
if all its types are compact.From now on we assume that task systems are compact.This
assumption is essentially without loss of generality, as weargue in Appendix C.2.

4.1 Tail Bounds for Online Schedulers

The following main theorem gives computable lower and upperbounds which hold
uniformly for all online schedulersσ.

Theorem 4.1. Let∆ be subcritical.

– Let v,w ∈ (1,∞)Γ be vectors withf(v) ≤ v andf (w) ≥ w. Denote byvmin

andwmax the least component ofv and the greatest component ofw, respectively.
Then

wX0 − 1

wk+2
max − 1

≤ Pr[Sσ ≥ k] ≤
vX0 − 1

vk
min − 1

for all online schedulersσ.

– Vectorsv,w ∈ (1,∞)Γ withf (v) ≤ v andf (w) ≥ w exist and can be computed
in polynomial time.

Proof sketch.Chooseh > 1 andu ∈ (0,∞)Γ such thathuX = vX for all X ∈ Γ .
Define for all i ≥ 1 the variablem(i) = z(i) u where “” denotes the scalar prod-
uct, i.e.,m(i) measures the number of tasks at timei weighted by types according
to u. One can show thathm(1)

, hm(2)

, . . . is a supermartingale for any online sched-
uler σ, and, using the Optional Stopping Theorem [28], thatPr

[
supim

(i) ≥ x
]
≤

(vX0 − 1)/(hx − 1) for all x (see the appendix for the details and [16, 26] for a sim-
ilar argument on random walks). As each type has at least weight umin, we have that
Sσ ≥ k impliessupim

(i) ≥ kumin. HencePr[Sσ ≥ k] ≤ Pr
[
supim

(i) ≥ kumin

]
≤

(vX0 − 1)/(vk
min − 1). The lower bound is shown similarly. ⊓⊔

All online schedulers perform within the bounds of Theorem 4.1. For an applica-
tion of the upper bound, assume one wants to provide as much space as is necessary to
guarantee that, say, 99.9% of the executions of a task systemcan run without needing
additional memory. This can be accomplished, regardless ofthe scheduler, by provid-
ing k space units, wherek is chosen such that the upper bound of Theorem 4.1 is at
most0.001.

A comparison of the lower bound with Corollary 3.5 proves forsubcritical task
systems that the asymptotic performance of any online scheduler σ is far away from
that of the optimal offline scheduler: the ratioPr[Sσ ≥ k] /Pr[Sop ≥ k] is unbounded.

Example 4.2.Consider again the task system with pgff(x) = px2+q. Forp < 1/2 the
pgf has two fixed points,1 andq/p. In particular,q/p > 1, soq/p can be used to obtain
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both an upper and a lower bound for online schedulers. Since there is only one type
of tasks, vectors have only one component, and the maximal and minimal components
coincide; moreover, in this case the exponentk+2 of the lower bound can be improved
to k. So the upper and lower bounds coincide, and we getPr[Sσ ≥ k] = q/p−1

(q/p)k−1 for
every online schedulerσ. In particular, as one intuitively expects, all online schedulers
are equivalent.4

4.2 Tail Bounds for Light-First Schedulers

We present a class of online schedulers for which a sharper upper bound than the one
given by Theorem 4.1 can be proved. It may be intuitive that a good heuristic is to pick
the task with the smallest expected completion time. If we compute a vectorv with
f(v) ≤ v in polynomial time according to the proof of Theorem 4.1, then the type
Xmin for whichvXmin

= vmin holds turns out to be the type with smallest expected
completion time. This suggests choosing the active typeX with smallest component
in v. So we look atv as a vector of weights, and always choose the lightest activetype.
In fact, for this (intuitively good) scheduler we obtain twodifferent upper bounds.

Given a vectorv with f(v) ≤ v we denote by⊑ a total order onΓ such that
wheneverX ⊑ Y thenvX ≤ vY . If X ⊑ Y , then we say thatX is lighter thanY . The
v-light-first scheduleris an online scheduler that, in each step, picks a task of the lightest
type available in the pool according tov. Theorem 4.3 below strengthens the upper
bound of Theorem 4.1 for light-first schedulers. For the second part of Theorem 4.3 we
use the notion ofv-accumulating types. A typeX ∈ Γ is v-accumulating if for every
k ≥ 0 thev-light-first scheduler has a nonzero probability of reaching a state with at
leastk tasks of typeX in the pool.

Theorem 4.3. Let ∆ be subcritical andv ∈ (1,∞)Γ with f (v) ≤ v. Let σ be a
v-light-first scheduler. Letvminmax := minX −֒→〈Y,Z〉 max{vY ,vZ} (here the mini-
mum is taken over all transition rules with two types on the right hand side). Then
vminmax ≥ vmin and for allk ≥ 1

Pr[Sσ ≥ k] ≤
vX0 − 1

vminv
k−1
minmax − 1

.

Moreover, letvminacc := min{vX | X ∈ Γ, X is v-accumulating}. Then
vminacc ≥ vminmax, vminacc can be computed in polynomial time, and there is an
integerℓ such that for allk ≥ ℓ

Pr[Sσ ≥ k] ≤
vX0 − 1

vℓ
minv

k−ℓ
minacc − 1

.

Proof sketch.Recall the proof sketch of Theorem 4.1 where we used thatSσ ≥ k
impliessupim

(i) ≥ kumin, as each type has at least weightumin. Let ℓ be such that
no more thanℓ tasks of non-accumulating type can be in the pool at the same time.
ThenSσ ≥ k implies supim

(i) ≥ ℓumin + (k − ℓ)uminacc which leads to the final
inequality of Theorem 4.3 in a way analogous to the proof sketch of Theorem 4.1. ⊓⊔

4 For this examplePr[Sσ ≥ k] can also be computed by elementary means.
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Intuitively, a light-first scheduler “works against” lighttasks by picking them as
soon as possible. In this way it may be able to avoid the accumulation of some light
types, so it may achievevminacc > vmin. This is illustrated in the following example.

Example 4.4.Consider the task system with 2 task types and pgfsx = a2xy+a1y+a0
andy = b2xy + b1y + b0, wherea2 + a1 + a0 = 1 = b2 + b1 + b0 = 1. The system
is subcritical ifa1b2 < a2b1 − a2 + b0. The pgfs have a greatest fixed pointv with
vX = (1−a2−b1−a1b2+a2b1)/b2 andvY = (1−b1−b2)/(a2+a1b2−a2b1). We have
vX ≤ vY iff a2−b2 ≤ a2b1−a1b2, and so the light-first scheduler choosesX beforeY
if this condition holds, andY beforeX otherwise. We show that the light-first scheduler
is asymptotically optimal. Assume w.l.o.g.vX ≤ vY . ThenX is not accumulating
(becauseX-tasks are picked as soon as they are created), and sovminacc = vY . So the
upper bound for the light-weight scheduler yields a constant c2 such thatPr[Sσ ≥ k] ≤
c2/v

k
Y . But the general lower bound for arbitrary online schedulers states that there is

a constantc1 such thatPr[Sσ ≥ k] ≥ c1/v
k
Y , so we are done.

4.3 Tail Bounds for Depth-first Schedulers

Space-efficient scheduling of multithreaded computationshas received considerable at-
tention [22, 7, 2, 1]. The setting of these papers is slightlydifferent from ours, because
they assume data dependencies among the threads, which may cause a thread to wait for
a result from another thread. In this sense our setting is similar to that of [19], where, in
thread terminology, the threads can execute independently.

These papers focus ondepth-firstcomputations, in which if threadA has to wait for
threadB, thenB was spawned byA or by a descendant ofA. The optimal scheduler
is the one that, whenA spawnsB, interrupts the execution ofA and continues withB;
this online scheduler produces the familiar stack-based execution [7, 22].

We study the performance of thisdepth-firstscheduler. Formally, a depth-first
schedulerσλ is determined by a functionλ that assigns to each ruler = X −֒→ 〈Y, Z〉
eitherY Z or Z Y . If λ(r) = Y Z, thenZ models the continuation of the threadX ,
while Y models a new thread for whose terminationZ waits. The depth-first scheduler
σλ keeps as an internal data structure a wordw ∈ Γ ∗, a “stack”, such that the Parikh
image ofw is the multiset of the task types in the pool. Ifw = Xw′ for somew′ ∈ Γ ∗,
thenσ picksX . If a transition ruleX −֒→ α “fires”, thenσλ replacesXw′ byβw′ where
β = λ(X −֒→ α).
Using techniques of [9] forprobabilistic pushdown systems, we obtain the following:

Theorem 4.5. Let ∆ be subcritical andσ be any depth-first scheduler. Then
Pr[Sσ = k] can be computed in timeO(k · |Γ |3) in the unit-cost model. Moreover,
there is0 < ρ < 1 such thatPr[Sσ ≥ k] ∈ Θ(ρk), i.e, there arec, C > 0 such
that cρk ≤ Pr[Sσ ≥ k] ≤ Cρk for all k. Furthermore,ρ is the spectral radius of a
nonnegative matrixB ∈ R

Γ×Γ , whereB can be computed in polynomial time.

While the proof of Theorem 4.5 does not conceptually requiremuch more than the
results of [9], the technical details are delicate. The proof can be found in the appendix.
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5 Expectations

In this section we study the expected completion space, i.e., the expectationE[Sσ] for
both offline and online schedulers. Fix a task system∆ = (Γ, −֒→,Prob, X0).

Optimal (Offline) Schedulers.The results of Section 3 allow to efficiently approxi-
mate the expectationE[Sop ]. Recall that for any random variableR with values in the
natural numbers we haveE[R] =

∑∞
i=1 Pr[R ≥ i]. So we can (under-) approximate

E[R] by
∑k

i=1 Pr[R ≥ i] for finite k. We say thatk terms computeb bits ofE[Sop ] if

E[Sop ]−
∑k−1

i=0 (1− ν
(i)
X0

) ≤ 2−b.

Theorem 5.1. The expectationE[Sop ] is finite (no matter whether∆ is critical or sub-
critical). Moreover,O(b) terms computeb bits ofE[Sop ]. If the task system∆ is sub-
critical, thenlog2 b+O(1) terms computeb bits ofE[Sop ]. Finally, computingk terms
takes timeO(k · |Γ |3) in the unit cost model.

Online Schedulers.The main result for online schedulers states that the finiteness
of E[Sσ] does not depend on the choice of the online schedulerσ.

Theorem 5.2. If ∆ is subcritical, thenE[Sσ] is finite for every online schedulerσ. If
∆ is critical, thenE[Sσ] is infinite for every online schedulerσ.

Proof sketch.The first assertion follows from Theorem 4.1. Let∆ be critical. For this
sketch we focus on the case whereX0 is reachable from every type. By Proposition 2.5
the spectral radius off ′(1) equals1. Then Perron-Frobenius theory guarantees the
existence of a vectoru with f ′(1)u = u anduX > 0 for all X . Using a martin-
gale argument, similar to the one of Theorem 4.1, one can showthat the sequence
m(1),m(2), . . . with m(i) := z(i) u is a martingale for every schedulerσ, and, us-
ing the Optional-Stopping Theorem, thatPr[Sσ ≥ k] ≥ uX0/(k + 2). So we have
E[Sσ] =

∑∞
k=1 Pr[S

σ ≥ k] ≥
∑∞

k=1 uX0/(k + 2) = ∞. ⊓⊔
Since we can decide in polynomial time whether a system is subcritical or critical,

we can do the same to decide on the finiteness of the expected completion time.
Depth-first Schedulers.To approximateE[Sσ] for a given depth-first schedulerσ,

we can employ the same technique as for optimal offline schedulers, i.e., we approx-
imateE[Sσ] by

∑k
i=1 Pr[S

σ ≥ i] for finite k. We say thatk terms computeb bits of

E[Sσ] if E[Sσ]−
∑k

i=1 Pr[S
σ ≥ i] ≤ 2−b.

Theorem 5.3 (see Theorem 19 of [9]).Let∆ be subcritical, and letσ be a depth-first
scheduler. ThenO(b) terms computeb bits ofE[Sσ], and computingk terms takes time
O(k · |Γ |3) in the unit cost model.

6 Conclusions

We have initiated the study of scheduling tasks that can stochastically generate other
tasks. We have provided strong results on the performance ofboth online and offline
schedulers for the case of one processor and task systems with completion probabil-
ity 1. It is an open problem how to compute and analyze online schedulers which are
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optimal in a sense. While we profited from the theory of branching processes, the theory
considers (in computer science terms) systems with an unbounded number of proces-
sors, and therefore many questions had not been addressed before or even posed.

Acknowledgement.We thank the referees for their helpful comments.
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A Proofs of Section 2

A.1 Proof of Proposition 2.5

Proposition 2.5 ([17, 15]). Let ∆ be a task system with pgff . Denote byf ′(1) the
Jacobian matrix of partial derivatives off evaluated at1. If ∆ is critical, then the
spectral radius off ′(1) is equal to1; otherwise it is strictly less than1. It can be
decided in polynomial time whether∆ is critical.

Proof. One can show (see e.g. [14]) thatE[TX ] is theX-component of the least non-
negative fixed point off ′(1)x+ 1, i.e., theX-component of the (componentwise)
least vectorx ∈ [0,∞]Γ with x = f ′(1)x + 1. This least fixed point is given
by
∑∞

i=0(f
′(1))i1, a series that may or may not converge. It is a standard fact (see

e.g. [18]) that the series converges iffρ(f ′(1)) < 1 holds for the spectral radius
ρ(f ′(1)) of f ′(1).

Assume first that∆ is subcritical. Then the above series must converge, so we have
ρ(f ′(1)) < 1 in this case. Now assume that∆ is critical. Then the above series must
diverge, so we haveρ(f ′(1)) ≥ 1. On the other hand, in [12, 15] it is shown that
ρ(f ′(1)) ≤ 1. (More precisely, it is shown there thatρ(f ′(y)) < 1 holds fory that are
strictly less than the least fixed point off . By continuity of eigenvalues,ρ(f ′(y)) ≤ 1
also holds for the least fixed point off which is1 according to the proof of Proposi-
tion 2.3.) Hence we haveρ(f ′(1)) = 1.

In order to decide on the criticality, it thus suffices to decide whether the spectral
radius off ′(1) is ≥ 1. This condition holds ifff ′(1)x ≥ x holds for a nonnegative,
nonzero vectorx (see e.g. Thm. 2.1.11 of [5] and cf. [15]). This can be checkedin
polynomial time with linear programming. ⊓⊔

B Proofs of Section 3

B.1 Proof of Proposition 3.1

Proposition 3.1. Let t be a family tree. Then

Sop(t) =





min

{
max{Sop(t0) + 1, Sop(t1)},

max{Sop(t0), S
op(t1) + 1}

}
if t has two childrent0, t1

Sop(t0) if t has exactly one childt0
1 if t has no children.

Proof. Recall the proof sketch from the main body of the paper. We detail the argu-
ment why one of the two given scheduling strategies is optimal, i.e., we argue why the
scheduler cannot save space by interleaving the schedulings for t0 andt1.

Consider an optimal scheduling oft. W.l.o.g. the taskt0 terminates first. Then at
least onet1-task sticks around during the whole derivation oft0. So this scheduling
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needs space of at leastSop(t0) + 1. Obviously, any scheduling oft needs space of
at leastSop(t1). So the optimal scheduler needs space of at leastmax{Sop(t0) +
1, Sop(t1)}. But this lower bound is matched by the scheduling strategy given in the
main body of the paper. ⊓⊔

B.2 Proof of Theorem 3.2

Theorem 3.2. Pr[Sop
X ≤ k] = ν

(k)
X for every typeX and everyk ≥ 0.

Proof. Let us inductively define the functionℓ on trees as follows.

ℓ(t) :=





0 if t has no children

ℓ(t0) + 1 if t has one child

ℓ(t0) + 1 if t has two children andSop(t0) > Sop(t1)

ℓ(t1) + 1 if t has two children andSop(t0) < Sop(t1)

0 if t has two children andSop(t0) = Sop(t1) .

With Proposition 3.1,ℓ(t) is the length of a longest path from the root to a descendant
with the sameSop-value.

We proceed by induction onk. The base casek = 0 is trivial. Letk ≥ 0 and lett be
anX-tree withSop(t) = k + 1. We have to showPr[Sop

X = k + 1] = ∆
(k+1)
X where

∆(k+1) =

∞∑

i=0

f ′(ν(k))i
(
f (ν(k))− ν(k)

)
.

We show the following stronger claim:

Pr[Sop
X (t) = k + 1, ℓ(t) = i] =

(
f ′(ν(k))i

(
f (ν(k))− ν(k)

))
X

.

We proceed by an (inner) induction oni. For the induction basei = 0 we first dispense
with the casek = 0. We have

Pr[Sop
X (t) = 1, ℓ(t) = 0] = Pr[t has no children]

because ift has one child thenℓ(t) ≥ 1 and if t has two children, thenSop
X (t) ≥ 2.

With the definition off we obtain

Pr[Sop
X (t) = 1, ℓ(t) = 0] =

∑

X
p

−֒→ǫ

p = fX(0) = fX(ν(0))− ν
(0)
X .

Now we complete the induction basei = 0 with the casek ≥ 1. We have

Pr[Sop
X (t) = k + 1, ℓ(t) = 0] = Pr[t has two children, Sop(t0) = Sop(t1) = k]

(1)
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because ift has one child, thenℓ(t) ≥ 1, and if t has no children, thenSop
X (t) = 1.

Further we have by Proposition 3.1

Pr[Sop
X (t) ≤ k] =

∑

X
p

−֒→〈Y,Z〉

p ·
(
Pr[Sop

Y (t0) ≤ k] Pr[Sop
Z (t1) ≤ k]

−Pr[Sop
Y (t0) = k] Pr[Sop

Z (t1) = k]
)

(2)

+
∑

X
p

−֒→Y

p · Pr[Sop
Y (t0) ≤ k]

+
∑

X
p

−֒→∅

p .

Combining these equations we obtain

Pr[Sop
X (t) = k + 1, ℓ(t) = 0] =

∑

X
p

−֒→〈Y,Z〉

p · Pr[Sop
Y (t0) = k] Pr[Sop

Z (t1) = k] (by (1))

=
∑

X
p

−֒→〈Y,Z〉

p · Pr[Sop
Y (t0) ≤ k] Pr[Sop

Z (t1) ≤ k] (by (2))

+
∑

X
p

−֒→Y

p · Pr[Sop
Y (t0) ≤ k] +

∑

X
p

−֒→ǫ

p

− Pr[Sop
X (t) ≤ k]

=
∑

X
p

−֒→〈Y,Z〉

p · ν
(k)
Y ν

(k)
Z (ind. hyp. onk)

+
∑

X
p

−֒→Y

p · ν
(k)
Y +

∑

X
p

−֒→ǫ

p

− ν
(k)
X

= fX(ν(k))− ν
(k)
X (def. off )

For the induction step, leti ≥ 0. Then by Proposition 3.1 and the definition ofℓ

Pr[Sop
X (t) = k + 1, ℓ(t) = i+ 1]

=
∑

X
p

−֒→〈Y,Z〉

p · (Pr[Sop
Y (t0) ≤ k] Pr[Sop

Z (t1) = k + 1, ℓ(t1) = i]

+ Pr[Sop
Y (t0) = k + 1, ℓ(t0) = i] Pr[Sop

Z (t1) ≤ k])

+
∑

X
p

−֒→Y

p · Pr[Sop
Y (t0) = k + 1, ℓ(t0) = i]

=
∑

X
p

−֒→〈Y,Z〉

p ·
(
ν
(k)
Y

(
f ′(ν(k))i

(
f(ν(k))− ν(k)

))
Z
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+
(
f ′(ν(k))i

(
f(ν(k))− ν(k)

))
Y
ν
(k)
Z

)
(ind. hyp. onk, i)

+
∑

X
p

−֒→Y

p ·
(
f ′(ν(k))i

(
f(ν(k))− ν(k)

))
Y

=
∑

Y ∈Γ

f ′
XY (ν

(k))
(
f ′(ν(k))i

(
f(ν(k))− ν(k)

))
Y

(def. off )

= f ′
X(ν(k))f ′(ν(k))i

(
f(ν(k))− ν(k)

)

=
(
f ′(ν(k))i+1

(
f(ν(k))− ν(k)

))
X

.

⊓⊔

B.3 Proof of Corollary 3.5

Corollary 3.5. For any task system∆ there are real numbersc > 0 and0 < d < 1
such thatPr[Sop

X ≥ k] ≤ c · dk for all k ∈ N. If ∆ is subcritical, then there are real

numbersc > 0 and0 < d < 1 such thatPr[Sop
X ≥ k] ≤ c · d2

k

for all k ∈ N.

Proof. By Theorem 3.2 we havePr[Sop ≥ k] = 1−ν
(k−1)
X0

≤ 1−ν
(k)
X0

. So the corollary
can be understood as a statement on the convergence speed of Newton’s method for
solvingx = f(x). The fact that Newton’s method started at0 converges to1 (the least
fixed point off ) is shown in [15].

For the subcritical case, observe that the matrixI − f ′(1) is nonsingular because
otherwise1 would be an eigenvalue off ′(1) which would, together with Proposi-
tion 2.5, contradict the assumption that the task system is subcritical. For nonsingular
systems, it is a standard fact (see e.g. [24]) that Newton’s method converges quadrati-
cally. AsPr[Sop ≥ k] ≤ 1− ν

(k)
X0

, the statement follows.
For the general case (subcritical or critical) Newton’s method for solvingx = f (x)

has been extensively studied in [20, 12] and it follows from there that there is ac1 ∈

(0,∞) such that1− ν
(k)
X ≤ c1 · 2−k/(n2n) wheren = |Γ |, implying the statement.

C Proofs of Section 4

C.1 A Characterization of Online Schedulers

For proofs involving online schedulersσ, it is convenient to work with a functionΛσ

(defined below) which essentially characterizesσ. To define it, fix an online schedulerσ.
For every treet with σ(t) = (s1 ⇒ . . . ⇒ sk) and for everyj ≥ 0, let z(j)(t) denote
the multiset of types labelling the tasks ofsj if j ≤ k (i.e.,z(j)(t) = 〈L(w) | w ∈ sj〉),
and the empty multiset otherwise. One can show that an onlineschedulerσ induces a
partial functionΛσ : (N

Γ )∗ → Γ defined as follows:Λσ(c
(1) . . . c(i)) is defined if there

is a treet such thatσ(t) = (s1 ⇒ . . . ⇒ sk) with k ≥ i andc(1) = z(1)(t), . . . , c(i) =
z(i)(t); in this caseΛσ(c

(1) . . . c(i)) = L(σ(t)[i]). Intuitively, if Λσ gets as input the
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multisets of types of the statess1, . . . , si, then it returns the type of the task ofsi
picked up by the scheduler. LetX(i) = Λσ(z

(1), . . . , z(i)), i.e.,X(i) is the type picked
up at thei-th step. ThenX(i) is randomly replaced by new types according to the
distribution on the transition rules. More precisely, ifr(i) := z(i+1)+X(i)−z(i), then
Pr
[
r(i) = α | X(i) = X

]
=
∑

X
p

−֒→α
p.

We will show the following proposition, which allows us to identify an online sched-
ulerσ with the functionΛσ.

Proposition C.1. Letσ1, σ2 be online schedulers. IfΛσ1 = Λσ2 , thenPr[Sσ1 = k] =
Pr[Sσ2 = k] for all k ≥ 1.

Lemma C.2. Letσ be an online scheduler. For every family treet the firsti ≥ 1 states
of σ(t) are uniquely determined byz(1)(t), . . . , z(i)(t). In particular, the functionΛσ

is well-defined.

Proof. We proceed by induction oni. The casei = 1 is trivial. Let us consider
z(1)(t), . . . , z(i+1)(t), and let d = (s1 ⇒ · · · ⇒ si ⇒ si+1) be a prefix of
the derivationσ(t). By induction, s1 ⇒ · · · ⇒ si is completely determined by
z(1)(t), . . . , z(i)(t). By the definition of online scheduler,σ(t)[i] is completely deter-
mined bys1 ⇒ · · · ⇒ si andz(1)(t), . . . , z(i)(t). Finally, there is a unique transition
ruleL(σ(t)[i]) −֒→ α whereα = z(i+1)(t) − z(i)(t) + 〈L(σ(t)[i])〉. But thensi+1 is
also uniquely determined. ⊓⊔

Lemma C.3. Let c(1) · · · c(i) ∈ (NΓ )+ such that for every1 ≤ j < i

the value Λσ(c
(1) · · · c(j)) is defined. Then Pr

[∧i
j=1 z

(j) = c(j)
]

=
∏i−1

j=1 Prob(Λσ(c
(1) · · · c(j)) −֒→ αj) where for every1 ≤ j < i we have

αj = c(j+1) − c(j) + 〈Λσ(c
(1) · · · c(j))〉.

Proof. Let us denote byR the set of all family treest such thatz(j)(t) = c(j) for
1 ≤ j ≤ i. By Lemma C.2, there is a derivationd = s1 ⇒ · · · ⇒ si and a function
l :
⋃i

j=1 sj → Γ such that for everyt = (N,L) ∈ R we have thatd is a prefix ofσ(t)

andl coincides withl on the subtree
⋃i

j=1 sj . Let us denote byts the tree
⋃i

j=1 sj . Note
thatts is a subtree of every tree ofR rooted inǫ. Let us denote byI the set of all inner
nodes ofts. For everyv ∈ I, we denote bychild(v) := 〈l(va) | a ∈ {0, 1}, va ∈ ts〉
the multiset of labels of children of the nodev in ts. Let us denote byL the set of all
leaves ofts. It follows directly from the definition ofPr, that for allt ∈ R we have

Pr[t] =
∏

v∈I

Prob(L(v) −֒→ child(v)) ·
∏

v∈L

Pr[tv]

However, it follows directly from definitions that for everyv ∈ I there is precisely one
1 ≤ j < i such thatσ(t)[j] = v, and thenL(v) = Λσ(c

(1) · · · c(j)) andchild(v) = αj .
Therefore,

Pr[t] =
i−1∏

j=1

Prob(Λσ(c
(1) · · · c(j)) −֒→ αj) ·

∏

v∈L

Pr[tv]
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Finally,

∑

t∈R

Pr[t] =

i−1∏

j=1

Prob(Λσ(c
(1) · · · c(j)) −֒→ αj)·

∏

v∈L

∑

t′∈TL(v)

Pr[t′] =

i−1∏

j=1

Prob(Λσ(c
(1) · · · c(j)) −֒→ αj)

⊓⊔

Now we can prove Proposition C.1.

Proof (of Proposition C.1).We denote byz(i)
λ the variablez(i) evaluated with respect

to a given schedulerλ. Let us denote byAdef the set of allc(1) · · · c(i) ∈ (NΓ )+

such thatΛσ1(c
(1) · · · c(j)) = Λσ2(c

(1) · · · c(j)) is defined for all1 ≤ j ≤ i − 1, and
c(i) = 0. By Lemma C.3, for everyc(1) · · · c(i) ∈ Adef we have

Pr




i∧

j=1

z(j)
σ1

= c(j)


 =

i−1∏

j=1

Prob(Λσ1(c
(1) · · · c(j)) −֒→ αj)

=

i−1∏

j=1

Prob(Λσ2(c
(1) · · · c(j)) −֒→ αj)

= Pr




i∧

j=1

z(i)
σ2

= c(j)




However, thenPr[Sσ1 = k] = Pr[Sσ2 = k] because the values ofSσ1 andSσ2 are

determined by the values ofz(1)
σ1 , z

(2)
σ1 , . . . andz(1)

σ2 , z
(2)
σ2 , . . ., and for all family treest

we have that a prefix ofz(1)
σ1 (t), z

(2)
σ1 (t), . . . and a prefix ofz(1)

σ2 (t), z
(2)
σ2 (t), . . . are in

Adef . ⊓⊔

C.2 Justification for Compactness

In Section 4 we claimed that we can focus on compact task systems essentially without
loss of generality. We justify this claim now.

A non-compact task system can be compacted by iteratively removing all rules with
non-compact types on the left hand side, and all occurrencesof non-compact types on
the right hand side.

Proposition C.4. Let us denote byΓ ′ the set of all task types removed from∆ by the
above compacting procedure and let|Γ ′| = ℓ. If X0 ∈ Γ ′, then there is a schedulerσ
such thatSσ ≤ ℓ.

Assume thatX0 6∈ Γ ′. Let∆′ be the compacted version of∆ (i.e.,Γ \ Γ ′ is the set
of task types of∆′). Every schedulerσ′ for ∆′ can be transformed into a schedulerσ
for ∆ such that for allk

Pr
[
Sσ′,∆′

≥ k
]
≤ Pr

[
Sσ,∆ ≥ k

]
≤ Pr

[
Sσ′,∆′

≥ k − ℓ
]
.

(The second superscript ofS indicates the task system on which the scheduler operates.)
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Notice that computingσ from σ′ is easy:σ acts likeσ′ but gives preferences to the
types that have been (first) eliminated during the compacting procedure.

Now we prove Proposition C.4.

Proof. Let ∆1 be a non-compact task system with a non-compact typesΓnon , and let
∆0 be the (possibly non-compact) task system obtained from∆1 by removing all rules
with non-compact types on the left hand side and all occurrences of non-compact types
on the right hand side of all rules, i.e.,∆0 is obtained from∆1 by performing the
first iteration of the compacting procedure. Letσ0 be a scheduler for∆0. Construct a
schedulerσ1 for ∆1 as follows:

The schedulerσ1 acts exactly likeσ0 until one or twoΓnon -tasks are created
at which point the completion space of the derivation may be increased by
at most1. Thenσ1 picks aΓnon -task, sayτ1. Since theΓnon -types are non-
compact,σ1 can completeτ1 without further increasing the completion space.
After τ1 has been finished, there may be anotherΓnon -task left, sayτ2, that was
created at the time whenτ1 was created. If there is such aτ2, thenσ1 completes
τ2 in the same way it has completedτ1. After τ1 (and possiblyτ2) have been
completed,σ1 resumes to act likeσ0.

It follows from this construction that the incorporation ofthe non-compact typeΓnon

increases the completion space of a derivation by at most1.
A straightforward induction on this construction shows forthe statement of the

proposition:

Pr
[
Sσ′,∆′

X ≤ k
]
≤ Pr

[
Sσ,∆
X ≤ k + ℓ

]
for all X ∈ Γ \ Γ ′.

If X0 ∈ Γ ′, then the above construction also works. (It extends a scheduler op-
erating on a possibly empty task system, but this poses no problems.) So, again by
induction, we obtain a schedulerσ for ∆ with Sσ,∆

X ≤ ℓ for all X ∈ Γ ′.

It remains to show the inequalityPr
[
Sσ′,∆′

X ≥ k
]
≤ Pr

[
Sσ,∆
X ≥ k

]
, but this is

clear because∆′ is obtained from deleting rules and types from∆ andσ is obtained by
extendingσ′. ⊓⊔

C.3 Proof of Theorem 4.1

We split the proof in several lemmata. With regard to the computation of a suitable
vectorv we first prove the following lemma.

Lemma C.5. Let u ∈ [1,∞)Γ denote the vector of expected completion times, i.e.,
uY = E[TY ] for all Y ∈ Γ . Thenu exists and is the unique solution ofx = f ′(1)x+1.
LetQ(u,u) denote the “quadratic part” off(u), i.e.,(Q(u,u))X =

∑
X

p

−֒→Y Z
p·uY ·

uZ for all X,Y, Z ∈ Γ . Let s := 1/qmax > 0 whereqmax is the largest component
ofQ(u,u). Then for allr ≥ 0 we havef(1+ ru) ≤ 1+ ru iff r ≤ s.
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Using this lemma a suitablev can be found as follows: First computeu by solving
x = f ′(1)x + 1. This yieldsQ(u,u), and, consequently,s. With regard to the upper
bound of the theorem we are interested in av which is as large as possible, so pick
v := 1+ su. All steps can be performed in polynomial time.

Proof of the lemma.The fact thatu = f ′(1)u + 1 exists and is the vector of ex-
pected completion times follows from the remarks made at thebeginning of the proof
of Proposition 2.5. Recall that the pgff is a vector of polynomials of degree 2 with
positive coefficients. So it can be written as

f(x) = Q(x,x) + Lx+ c

whereQ(x,x) is the quadratic part off(x). A straightforward calculation shows for
all r ∈ R andx ∈ R

Γ

f (1+ rx) = f(1) + rf ′(1)x+ r2Q(x,x) (Taylor expansion)

= 1+ rf ′(1)x+ r2Q(x,x) (asf(1) = 1) .

Foru = f ′(1)u+ 1 it follows

f(1+ ru) = 1+ r(u − 1) + r2Q(u,u) ,

so we havef(1+ ru) ≤ 1+ ru iff rQ(u,u) ≤ 1. The statement follows. ⊓⊔

Next we show how a suitablew can be found.

Lemma C.6. One can compute in polynomial time a vectorw ∈ (1,∞)Γ with
f(w) ≥ w.

Proof. Using the Taylor expansion off (1 + rx) as in the previous lemma, we obtain
f(1+ rx) ≥ 1+ rx iff

rQ(x,x) ≥ (I − f ′(1))x . (3)

We will choosew := 1+ rx, so we need to find suitabler andx such that (3) holds.
Definey ∈ {0, 1}Γ such thatyX = 1 if the X-component ofQ(x,x) is not constant

zero (or, equivalently, if there is a ruleX
p
−֒→ 〈Y, Z〉 for someY, Z ∈ Γ ). Otherwise,

i.e., if fX(x) has degree1, setyX = 0. Definex := f ′(1)∗y = (I − f ′(1))−1y.
By the compactness of the task system, all types can reach a typeX with yX = 1. It
follows thatf ′(1)∗y is positive in all components. Hence,xmin > 0 wherexmin is the
smallest component ofx.

Observe that(I − f ′(1))x = y, so (3) holds at least for the componentsX with
yX = 0. Let c denote the smallest nonzero coefficient off . Equation (3) holds also for
the componentsX with yX = 1 if we setr > 1/(c ·xmin). The statement follows.⊓⊔

To complete the proof of Theorem 4.1 it remains to show the claimed bounds
onPr[Sσ ≥ k].

Theorem 4.1. Let∆ be subcritical.
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– Let v,w ∈ (1,∞)Γ be vectors withf(v) ≤ v andf (w) ≥ w. Denote byvmin

andwmax the least component ofv and the greatest component ofw, respectively.
Then

wX0 − 1

wk+2
max − 1

≤ Pr[Sσ ≥ k] ≤
vX0 − 1

vk
min − 1

for all online schedulersσ.

– Vectorsv,w ∈ (1,∞)Γ withf (v) ≤ v andf (w) ≥ w exist and can be computed
in polynomial time.

Proof. The second assertion follows from Lemmas C.5 and C.6. It remains to show the
first assertion.

Let h > 1 andu ∈ (0,∞)Γ such thathuY = vY for all Y ∈ Γ . Definem(i) :=
z(i) u where “” denotes the scalar product. Not thatm(1) = uX0 .

Let us consideri ≥ 1. Lety = c(1), · · · , c(i) be a sequence of elements ofN
Γ with

c(i) 6= 0, and letTy be the set of all family treest satisfyingz(j)(t) = c(j) for every
1 ≤ j ≤ i. Note thatm(i)(t) 6= 0. Observe thatm(i) is constant overTy, we denote by
m(i)(Ty) its value overTy.

An easy computation reveals that forY := Λσ(y) we have

E

[
hr

(i)
u

∣∣∣ Ty

]
= E

[
∏

Z∈Γ

huZ ·r
(i)
Z

∣∣∣∣∣ Ty

]
= E

[
∏

Z∈Γ

v
r
(i)
Z

Z

∣∣∣∣∣ Ty

]
= fY (v) ≤ vY = huY ,

(4)

asf(v) ≤ v. Consequently, we have

E

[
hm(i+1)

| Ty

]
= E

[
hz

(i+1)
u | Ty

]
(def. ofm(i+1))

= E

[
h(z(i)+r

(i)−〈Λσ(y)〉) u | Ty

]
(def. ofr(i))

= E

[
hz

(i)
u | Ty

]
· E
[
hr

(i)

| Ty

]
· E
[
h−〈Λσ(y)〉 u | Ty

] (
hz

(i)
u, h−〈Λσ(y)〉 u

const. onTy

)

= hm(i)(Ty) · E
[
hr

(i)
u | Ty

]
· h−uY (def. ofm(i)) .

≤ hm(i)(Ty) (Equation (4))

As this is true for all online schedulersσ and alsoE
[
m(i+1) | m(i) = 0

]
= 0 we have

E

[
hm(i+1)

∣∣∣ hm(1)

, . . . , hm(i)
]
≤ hm(i)

,

i.e., the sequencehm(1)

, hm(2)

, . . . is a supermartingale.
Define the stopping timeτk := inf{i ≥ 1 | m(i) ∈ {0} ∪ [k,∞)}. Note that

m(τk) ≤ k + 2umax, and hence thatm(τk) ∈ {0} ∪ [k, k + 2umax]. We wish to
apply Doob’s Optional-Stopping Theorem [28] (sometimes called Optional-Sampling

Theorem) to infer thatE
[
hm(τk)

]
≤ E

[
hm(1)

]
= vX0 . To this end we define the

sequencêm(1), m̂(2), . . . by settingm̂(i) := m(i) for i ≤ τk andm̂(i) := m(τk) for i ≥
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τk. The sequencehm̂(1)

, hm̂(2)

, . . . is a martingale ashm(1)

, hm(2)

, . . . is a martingale.
To apply the Optional-Stopping Theorem we also need to make sure that|hm̂(i+1)

−

hm̂(i)

| is bounded by a constant, which is the case asm̂(i) ∈ [0, k + 2umax] for all i.
Define the stopping timeτk := inf{i ≥ 1 | m(i) ∈ {0} ∪ [k,∞)}. Doob’s Optional-
Stopping Theorem now yields

E

[
hm(τk)

]
= E

[
hm̂(τk)

]
≤ E

[
hm̂(1)

]
= E

[
hm(1)

]
= huX0 = vX0 .

Let, as an abbreviation,pk := Pr
[
m(τk) ≥ k

]
. Then we have

vX0 ≥ E

[
hm(τk)

]
≥ h0 · (1− pk) + hk · pk = 1− pk + hk · pk

which gives

pk ≤
vX0 − 1

hk − 1
.

Letting |z(i)| denote the sum of the components ofz(i), andumin the smallest compo-
nent ofu, we have

Pr[Sσ ≥ k] = Pr

[
sup
i

|z(i)| ≥ k

]
≤ Pr

[
sup
i

m(i) ≥ kumin

]
= pkumin

≤
vX0 − 1

vmin − 1
.

(5)
So we have shown the upper bound.

For the lower bound we redefineh andu such thathuY = wY for all Y ∈ Γ which
allows to show in an analogous way that

E

[
hm(i+1)

| hm(1)

, . . . , hm(i)
]
≥ hm(i)

,

i.e., the sequencehm(1)

, hm(2)

, . . . is now a submartingale. The Optional-Stopping The-

orem now yieldsE
[
hm(τk)

]
≥ wX0 . Further we now have

wX0 ≤ E

[
hm(τk)

]
≤ h0 · (1 − pk) + hk+2umax · pk = 1− pk + hk+2umax · pk

which gives

pk ≥
wX0 − 1

hk+2umax − 1

and thus

Pr[Sσ ≥ k] = Pr

[
sup
i

|z(i)| ≥ k

]
≥ Pr

[
sup
i

m(i) ≥ kumax

]
= pkumax

≥
wX0 − 1

wk+2
max − 1

.

⊓⊔
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C.4 Proof of Theorem 4.3

We first prove the following proposition.

Proposition C.7. The set ofv-accumulating types can be computed in polynomial time.

Proof. We start with some notations. By⇒∗ we denote the reflexive and transitive
closure of⇒. We use “+” for multiset union. We say thatX can generatea multiset
α, denoted byX •

=⇒ α, if some multiset containingα can be derived fromX , i.e., if
X ⇒∗ α + β for some multisetβ. We writeY •

=⇒X α if Y can generateα using only
X-bounded rules, i.e., rulesZ →֒ β such thatZ ≤ X , andY •=⇒lf α to denote that the
light-first scheduler can generateα. Finally, we denote byα≥X (α>X) the restriction
of α to typesY ≥ X (Y > X).

We prove the following characterization:X is v-accumulating iff there isY such
thatX0

•
=⇒ Y andY •

=⇒Y X + Y . This immediately leads to a polynomial algorithm.
(⇒): AssumeX is v-accumulating. ThenX0

•=⇒lf n ·X holds for infinitely many
n ≥ 1. We claim that there exists a typeW such thatW •

=⇒X n ·X for infinitely many
n ≥ 1. For the claim, take the longest suffixes of the witnesses forX0

•
=⇒lf n · X

that only use rulesX-bounded rules, and letαn be their corresponding initial multisets.
These suffixes are then witnesses forαn

•
=⇒X n ·X . By the maximality of the suffixes,

eitherαn = X0 holds for infinitely manyn ≥ 1, orαn = α≥X
n does. In the first case,

we takeW := X0. In the second case, letZn →֒ βn be the rule applied to obtainαn.
Then

X0 ⇒∗
lf (αn − βn) + Zn ⇒lf (αn − βn) + βn

•=⇒X n ·X

whereX < Zn. Since the step(αn − βn) + Zn ⇒lf (αn − βn) + βn is light-first and
X < Zn, we have(αn − βn) = (αn − βn)

>X , and so there are infinitely manyn ≥ 1
such thatβn

•=⇒X n ·X . Since|βn| ≤ 2 for all n, the typeW exists, and the claim is
proved.

Consider now a witness ofW •=⇒X n · X for somen ≥ 2k + 1, wherek is the
number of types. The corresponding tree has depth at leastk + 1, and so it contains a
path in which some typeY appears twice. This easily leads toY •

=⇒X X+Y for some
typeY such thatX0

•=⇒ Y .
(⇐): We start with some simple properties of the relations⇒∗

X and⇒∗
lf .

(1) If Y •=⇒X α andα = α≥X , thenY •=⇒lf α.
Consider a family tree having a (prefix of a) derivation that witnessesY •

=⇒X α.
So all ancestors of the nodes corresponding toα are labeled by symbols that are
≤ X . It follows that a light-first scheduler may select all ancestors of theα-nodes
before selecting anyα-node. HenceY •

=⇒lf α.
(2) If X •=⇒ Y andY •=⇒lf β, thenX •=⇒lf β.

X •=⇒ Y impliesX ⇒∗
lf Y +α for someα, andY •=⇒lf β impliesY ⇒∗

lf β + β1

for someβ1. AsX ⇒∗
lf Y +α, it suffices to find a derivation witnessingY +α ⇒∗

lf

∅ that reaches a multiset of the formβ+γ for someγ. Such a derivation is obtained
by interleaving the witnesses forY ⇒∗

lf β + β1 ⇒∗
lf ∅ andα ⇒∗

lf ∅.

Assume now thatX0
•=⇒ Y andY •=⇒X X + Y hold. ThenY •=⇒X n · X for

everyn ≥ 1. Now (1) yieldsY •
=⇒lf n · X , and (2) leads toX0

•
=⇒lf n · X , also for

everyn ≥ 1. SoX is v-accumulating. ⊓⊔
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Now we complete the proof of Theorem 4.3.

Theorem 4.3.Let∆ be subcritical andv ∈ (1,∞)Γ withf(v) ≤ v. Letσ be av-light-
first scheduler. Letvminmax := minX −֒→〈Y,Z〉max{vY ,vZ} (here the minimum is
taken over all transition rules with two types on the right hand side). Thenvminmax ≥
vmin and for allk ≥ 1

Pr[Sσ ≥ k] ≤
vX0 − 1

vminv
k−1
minmax − 1

.

Moreover, letvminacc := min{vX | X ∈ Γ, X is v-accumulating}. Then
vminacc ≥ vminmax, vminacc can be computed in polynomial time, and there is an
integerℓ such that for allk ≥ ℓ

Pr[Sσ ≥ k] ≤
vX0 − 1

vℓ
minv

k−ℓ
minacc − 1

.

Proof. The inequalityvminmax ≥ vmin is trivial. For the inequalityvminacc ≥
vminmax, let Li := {Y ∈ Γ | vY < vminmax} be the set of types that are strictly
lighter thanvminmax. We claim that, in each stepi, there is at most one task ofLi -type.
More formally, if e(Li) denotes the vector withe(Li)Y = 1 for Y ∈ Li ande(Li)Y = 0
for Y 6∈ Li , then we havez(i) e(Li) ≤ 1 for all i. This can be shown by a straight-
forward induction on the derivation length: at each step thetask ofLi -type (if present)
is selected and replaced by at most two tasks. By definition ofvminmax, at most one
of the new tasks hasLi -type. Hence, the types inLi are not accumulating. It follows
vminacc ≥ vminmax.

The rest of the proof is obtained by a small modification of theproof of The-
orem 4.1: it suffices to show that, in Equation (5), we can replace kumin by
umin + (k − 1)uminmax and byℓumin + (k − ℓ)uminacc for some integerℓ. (The
valuesuminmax anduminacc are defined in the obvious way, i.e., using theh from
the proof of Theorem 4.1 we havehuminmax = vminmax andhuminacc = vminacc.)
So we need to show for the light-first schedulerσ that |z(i)| ≥ k implies both
m(i) ≥ umin + (k − 1)uminmax andm(i) ≥ ℓumin + (k − ℓ)uminacc.

For the first implication, recall thatm(i) = z(i) u. We have argued above that
z(i) e(Li) ≤ 1. This impliesm(i) ≥ umin + (k − 1)uminmax.

For the second implication, letℓ′ be an integer such thatz(i)
Y ≤ ℓ′ for all i and for

all non-accumulating typesY . Let ℓ := |Γ | · ℓ′. Then in each step, there are at mostℓ
tasks of non-accumulating type. This impliesm(i) ≥ ℓumin + (k − ℓ)uminacc. ⊓⊔

C.5 Proof of Theorem 4.5

In the following we letM∗ := I +M +MM + · · · for any square matrixM . If M∗

converges, then, by basic matrix facts, it equals(I −M)−1. Also by basic matrix facts
(see e.g. [18]),M∗ converges iff the spectral radius ofM is less than one.

Define for all vectorsu,v the vectorsL(u) andQ(u,v) such that for allX ∈ Γ

L(u)X :=
∑

X
p

−֒→Y

puY and Q(u,v)X :=
∑

X
p

−֒→Y Z

puY uZ .

25



Note that the sums extend over the rules after applyingλ. Also note thatL is a linear
vector function and we view it as a matrix whose rows and columns are indexed withΓ .
Furthermore, we writeQ(·,v) andQ(u, ·) for the matrices withQ(·,v)u = Q(u,v) =
Q(u, ·)v.
Here is a restatement of Theorem 4.5:

Theorem 4.5. Let ∆ be subcritical andσ be any depth-first scheduler. Then
Pr[Sσ = k] can be computed in timeO(k · |Γ |3) in the unit-cost model. Moreover,
there is0 < ρ < 1 such thatPr[Sσ ≥ k] ∈ Θ(ρk), i.e, there arec, C > 0 such
that cρk ≤ Pr[Sσ ≥ k] ≤ Cρk for all k. Furthermore,ρ is the spectral radius of a
nonnegative matrixB ∈ R

Γ×Γ , whereB can be computed in polynomial time.

We first prove the first part of Theorem 4.5. In fact, the following proposition allows
to computePr[Sσ

X ≥ k] for all X ∈ Γ at the same time. We define, for allk ≥ 1, the
vectors[k] ∈ [0, 1]Γ such thats[k]X = Pr[Sσ

X ≥ k] for all X .

Proposition C.8. LetA[k] := L+Q(1− s[k], ·). Then(I −A[k])−1 exists and for all
k ≥ 1

s[k + 1] = A[k]s[k + 1] +Q(·,1)s[k] = (I −A[k])−1Q(·,1)s[k] .

Proof. The following equation follows from the definition of a depth-first schedulerσ.

Pr[Sσ
X ≥ k + 1] =

∑

X
p

−֒→Y

pPr[Sσ
Y ≥ k + 1]

+
∑

X
p

−֒→Y Z

p (Pr[Sσ
Y ≥ k] + Pr[Sσ

Y < k] · Pr[Sσ
Z ≥ k + 1])

Using the definitions this immediately implies the equality

s[k + 1] = A[k]s[k + 1] +Q(·,1)s[k] .

For the second equality of the proposition, note thatf ′(1) = L + Q(1, ·) + Q(·,1).
As the task system is subcritical, the spectral radius off ′(1) is, by Proposition 2.5, less
than one. So the spectral radius ofA[k] ≤ L+Q(1, ·) ≤ f ′(1) is less than one as well.
Hence, by standard matrix facts [18] the sumA[k]∗ converges and equals(I−A[k])−1.
The second equality follows. ⊓⊔

Notice that Proposition C.8 in fact implies the first statement of Theorem 4.5, because
Pr[Sσ = k] = s[k]X0 −s[k− 1]X0 and a matrix can be inverted in timeO(|Γ |3) in the
unit-cost model.

For the rest of the proof of Theorem 4.5 we need the following two auxiliary lem-
mata.

Lemma C.9. LetA be a nonnegative square matrix with spectral radius less than one.
Let (ǫn)n∈N be a sequence withǫn ≥ ǫn+1 ≥ 0 converging to0. Then there exists an
n1 and a nonnegative matrixK such that for alln ≥ n1

(
(1− ǫn)A

)∗
≥ (I − ǫnK)A∗ .

26



Proof. We can assumeǫn ≤ 1. LetM = (I −A)−1A. Then by a simple computation

(
(1− ǫn)A

)∗
=
(
I + ǫnM

)−1
A∗ .

Choosen1 large enough so thatρ(ǫnM) < 1. Then(ǫnM)∗ exists and so

(
I + ǫnM

)−1
= I − (ǫnM) + (ǫnM)2 − (ǫnM)3 +− · · ·

≥ I − (ǫnM)(ǫnM)∗

≥ I − ǫnM(ǫn1M)∗

ChooseK = M(ǫn1M)∗ and the claim follows. ⊓⊔

Lemma C.10. LetB := (I − L−Q(1, ·))−1Q(·,1). Then the spectral radius ofB is
less than 1.

Proof. Observe thatf ′(1) = L + Q(1, ·) + Q(·,1). As (∆,X) is subcritical, Propo-
sition 2.5 implies that the spectral radius off ′(1) is less than one. Then it follows that
the spectral radius ofB is less than one as well, using the theory of M-matrices and
regular splittings, see [5], Theorem 6.2.3 part P48. ⊓⊔

To complete the proof of Theorem 4.5 it suffices to show the following proposition.

Proposition C.11. Let∆ be subcritical andσ be any depth-first scheduler. LetB :=
(L+Q(1, ·))∗ Q(·,1) and ρ the spectral radius ofB. Then 0 < ρ < 1 and
Pr[Sσ ≥ k] ∈ Θ(ρk), i.e, there arec, C > 0 such thatcρk ≤ Pr[Sσ ≥ k] ≤ Cρk

for all k.

Proof. We haveρ < 1 by Lemma C.10. To showρ > 0, it suffices (by Perron-Frobenius
theory [5]) to show that all row sums ofB are (strictly) positive. For this, letY ∈ Γ be
the index of an arbitrary row. Then, by compactness of the task system, there are types

X0, . . . , Xi (0 ≤ i ≤ n − 1) such thatY = Xi andXi
pi

−֒→ Xi−1, . . . , X1
p1
−֒→ X0

andX0
p0
−֒→ ZW for someZ,W ∈ Γ . It is straightforward to show by induction oni

that the(Y, Z)-entry ofLiQ(·,1) is positive. It follows that the(Y, Z)-entry ofB is
positive, soρ > 1.

For the upper bound, observe that with Proposition C.8 we have

s[k + 1] = (L+Q(1− s[k], ·))∗ Q(·,1)s[k] ≤ Bs[k] . (6)

By a simple induction it followss[k + i] ≤ Bis[k]. As the absolute values of the
eigenvalues ofB are bounded byρ we get‖s[k + i]‖ ≤ C1ρ

i for someC1 > 0, which
implies the claimed upper bound.

For the lower bound, observe that there is a real number0 < r ≤ 1 such that for all
typesY ∈ Γ , the probability thatX reachesY is at leastr. So it suffices to find any
Y ∈ Γ such that there is ac1 > 0 with Pr[Sσ

Y ≥ k] ≥ c1ρ
k for all k.

Recall thatρ is the spectral radius ofB. It is a corollary (Corollary 2.1.6 of [5]) of
Perron-Frobenius theory thatB has a principal submatrixB′ which is irreducible and
also has spectral radiusρ. We writeΓ↑ for the subset ofΓ such thatB′ is obtained
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from B by deleting all rows and columns that are not indexed byΓ↑. Also by Perron-
Frobenius theory,B′ has an eigenvectoru′ ∈ (0,∞)Γ↑ with B′u′ = ρu′ so thatu′ is
positive in all components. Defineu ∈ [0,∞)Γ as the vector withuY = u′

Y > 0 for
Y ∈ Γ↑ anduY = 0 for Y 6∈ Γ↑. Hence we haveBu ≥ ρu. By the already proven
upper bound there is at > 0 such thats[k] ≤ tρk for all k. We abbreviateǫk := tρk so
thats[k] ≤ ǫk1.

Now we show that there is a natural numberk and a real numberd > 0 with ǫkd < 1
such that for alli ≥ 0

s[k + i] ≥ ρi




i∏

j=1

(1 − ǫk+j−1d)


u . (7)

As uY = 0 for Y 6∈ Γ↑ it suffices to shows[k + i] ≥↑ ρi
(∏i

j=1(1− ǫk+j−1d)
)
u

where by the notationv ≥↑ w we meanvY ≥ wY for all Y ∈ Γ↑. We proceed by
induction oni and determine the constants on the fly. For the induction base(i = 0)
observe that, ass[k] is positive by compactness of the task system, we can enforce
s[k] ≥ u by scaling downu by multiplying it with a small constant. This does not
affect the stated properties ofu. For the step, leti ≥ 0. We have

s[k + i+ 1] = (L+Q(1− s[k + i], ·))∗ Q(·,1)s[k + i] (by (6))

≥ ((1− ǫk+i)(L +Q(1, ·)))∗ Q(·,1)s[k + i] (ass[k + i] ≤ ǫk+i1)

≥ ((1− ǫk+i)(L +Q(1, ·)))∗ Q(·,1)ρi




i∏

j=1

(1 − ǫk+j−1d)


u (ind. hypothesis)

≥ (I − ǫk+iK)Bρi




i∏

j=1

(1 − ǫk+j−1d)


u

(
for a large k and
some matrixK by
Lemma C.9

)

≥ ρi




i∏

j=1

(1− ǫk+j−1d)


 (ρu − ǫk+iKBu) (asBu ≥ ρu)

≥↑ ρi




i∏

j=1

(1− ǫk+j−1d)


 (ρu− ǫk+iρdu)

(for a large d with
KBu ≤↑ ρdu

)

= ρi+1




i+1∏

j=1

(1− ǫk+j−1d)


u

This proves (7). So, denoting byumin > 0 the smallest nonzero component ofu, we
have

s[k + i]Y ≥ ρi




i+1∏

j=1

(1− ǫk+j−1d)


umin for all Y ∈ Γ↑ and alli ≥ 0.
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Thus the proof is completed if
∏∞

j=k(1 − ǫjd) > 0. To see that this inequality holds,
observe that1−ǫjd = 1−tρjd ≥ 1− 1

j2 is true for almost allj and that
∏∞

j=2(1−
1
j2 ) =

1
2 > 0. This completes the proof. ⊓⊔

D Proofs of Section 5

D.1 Proof of Theorem 5.1

Theorem 5.1. The expectationE[Sop ] is finite (no matter whether∆ is critical or
subcritical). Moreover,O(b) terms computeb bits ofE[Sop ]. If the task system∆ is
subcritical, thenlog2 b + O(1) terms computeb bits ofE[Sop ]. Finally, computingk
terms takes timeO(k · |Γ |3) in the unit cost model.

Proof. Note that the second statement implies the first one. Lete(i) := 1 − ν
(i)
X0

. Then

we haveE[Sop ] −
∑k−1

i=0 (1 − ν
(i)
X0

) =
∑∞

i=k e
(i). It follows from [12] that there is a

c1 ∈ (0,∞) such that for alli ∈ N we havee(i) ≤ c1 · 2−i/(n2n) wheren = |Γ |. Using
this inequality we get

∞∑

i=k

e(i) ≤ c1

∞∑

i=k

2−i/(n2n) ≤ c2 · 2
−k/(n2n)

with c2 = c1/(1−2−1/(n2n)). Choosingk = ⌈(b+log2 c2)n2
n⌉we obtain

∑∞
i=k e

(i) ≤
2−b which proves the second statement.

For the third statement (about subcritical systems) recallfrom Corollary 3.5 that
there arec > 0 and0 < d < 1 such thate(i) ≤ c · d2

i

for all i ∈ N. So

∞∑

i=k

e(i) ≤
∞∑

i=k

c · d2
i

≤ c ·
∞∑

i=0

d2
k+i =

c

1− d
· d2

k

.

By choosing a natural numberk with k ≥ − log2(− log2 d) + log2 b+ 1 we obtain for
all b ≥ log c

1−d that c
1−d · d2

k

≤ 2−b which proves the third statement.
The final statement follows from Corollary 3.4. ⊓⊔

D.2 Proof of Theorem 5.2

Theorem 5.2. If ∆ is subcritical, thenE[Sσ] is finite for every online schedulerσ. If
∆ is critical, thenE[Sσ] is infinite for every online schedulerσ.

Proof. Let ∆ be subcritical. By Theorem 4.1 we have for every online schedulerσ

E[Sσ] =

∞∑

k=1

Pr[Sσ ≥ k] ≤
∞∑

k=1

vX0 − 1

vk
min − 1

< ∞ ,
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because it is a geometric series.
Let now∆ be critical. The proof follows the lines of the proof of Theorem 4.1. By

Proposition 2.5 we haveρ(f ′(1)) = 1 for the spectral radius off ′(1).
Let us fix an online schedulerσ. First we proveE[Sσ] = ∞ for the case in whichX0

is reachable from every typeX ∈ Γ . Later we will show how to drop this assumption.
If X0 is reachable from everyX , it follows thatf ′(1) is an irreducible matrix. Then
Perron-Frobenius theory [5] guarantees the existence of aneigenvectoru ∈ R

Γ of
f ′(1) which is positive in all components, i.e.,f ′(1)u = u anduX > 0 for all X ∈ Γ .
W.l.o.g. we can chooseu such that its largest component is1. Let againm(i) := z(i) u.
Note thatm(1) = uX0 > 0 andm(i) ≤ |z(i)| where|z(i)| denotes the sum of the
components ofz(i). Also note thatm(i) returns a weighted sum of the components
of z(i). Loosely speaking, we will show that its expectation remains constant.

Let us consideri ≥ 1. Lety = c(1), · · · , c(i) be a sequence of elements ofN
Γ with

c(i) 6= 0, and letTy be the set of all family treest satisfyingz(j)(t) = c(j) for every
1 ≤ j ≤ i. Note thatm(i)(t) 6= 0. Observe thatm(i) is constant overTy, we denote by
m(i)(Ty) its value overTy.

An easy computation reveals that for everyX ∈ Γ we have

E

[
r
(i)
X | Ty

]
=

∑

Λσ(y)
p

−֒→α

p ·#X(α) = f ′
Λσ(y),X(1)

which gives

E

[
r(i) | Ty

]
= f ′

Λσ(y)(1) (8)

(wheref ′
Λσ(y)(1) denotes the row vector indexed byΛσ(y)). Consequently, we have:

E

[
m(i+1) | Ty

]
= E

[
z(i+1) | Ty

]
u (def. ofm(i+1))

=
(
E

[
z(i) | Ty

]
+ E

[
r(i) | Ty

]
− E

[
〈X(i)〉 | Ty

])
u (def. ofr(i))

=
(
E

[
z(i) | Ty

]
+ f ′

Λσ(y)(1)− 〈Λσ(y)〉
)

u (by (8))

= m(i)(Ty) + f ′
Λσ(y)(1)u − 〈Λσ(y)〉 u (def. ofm(i)(Ty))

= m(i)(Ty) (asf ′(1)u = u)

Also clearlyE
[
m(i+1) | m(i) = 0

]
= 0, and hence we have

E

[
m(i+1) | m(1), . . . ,m(i)

]
= m(i) ,

i.e., the sequencem(1),m(2), . . . is a martingale.
Define the stopping timeτk := inf{i ≥ 1 | m(i) ∈ {0} ∪ [k,∞)}. Note that

m(τk) ≤ k + 2 asu ≤ 1, and hence thatm(τk) ∈ {0} ∪ [k, k + 2]. We wish to
apply Doob’s Optional-Stopping Theorem [28] (sometimes called Optional-Sampling
Theorem) to infer thatE

[
m(τk)

]
= E

[
m(1)

]
= uX0 . To this end we define the sequence

m̂(1), m̂(2), . . . by settingm̂(i) := m(i) for i ≤ τk andm̂(i) := m(τk) for i ≥ τk. The
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sequencêm(1), m̂(2), . . . is a martingale asm(1),m(2), . . . is a martingale. To apply the
Optional-Stopping Theorem we also need to make sure that|m̂(i+1)− m̂(i)| is bounded
by a constant, which is the case asm̂(i) ∈ [0, k+2] for all i. Doob’s Optional-Stopping
Theorem now yields

E

[
m(τk)

]
= E

[
m̂(τk)

]
= E

[
m̂(1)

]
= uX0 .

Recall that this is> 0. Sincem(τk) ∈ {0} ∪ [k, k + 2],

uX0 = E

[
m(τk)

]
≤ 0·Pr

[
m(τk) = 0

]
+(k+2)·Pr

[
m(τk) ≥ k

]
= (k+2)·Pr

[
m(τk) ≥ k

]

which gives

Pr
[
m(τk) ≥ k

]
≥

uX0

k + 2
.

So we have

Pr[Sσ ≥ k] = Pr

[
sup
i

|z(i)| ≥ k

]
≥ Pr

[
sup
i

m(i) ≥ k

]
= Pr

[
m(τk) ≥ k

]
≥

uX0

k + 2
.

Hence,

E[Sσ] =
∞∑

k=1

Pr[Sσ ≥ k] ≥
∞∑

k=1

uX0

k + 2
= ∞

which completes the proof for the case whereX0 is reachable from all types.
Now we show thatE[Sσ] = ∞ also holds whenX0 is not reachable from all types.

Recall thatρ(f ′(1)) = 1. It is a corollary (Corollary 2.1.6 of [5]) of Perron-Frobenius
theory thatf ′(1) has a principal submatrixB which is irreducible and has spectral
radiusρ(B) = 1. Let Γ ′ ⊆ Γ denote the set of types such thatB is obtained from
f ′(1) by deleting all rows and columns not indexed byΓ ′. Consider the task system
∆′ which is the original task system restricted toΓ ′. More concretely,∆′ has typesΓ ′

and transition rules as follows: A ruleX
p
−֒→ α′ is in ∆′ iff X ∈ Γ ′ and there is an

α ∈ M≤2
Γ such thatX

p
−֒→ α is in the original task system andα′ is obtained fromα by

deleting the types that are not inΓ ′. Let g : RΓ ′

→ R
Γ ′

denote the pgf for∆′. From
the construction of∆′ it is straightforward to see thatB = g′(1). Pick an arbitrary
X ∈ Γ ′ as the initial type of∆′. AsB = g′(1) is irreducible,X is reachable from all
types inΓ ′. Hence, the first part of the proof applies and we obtain that,in ∆′, we have
E[Sσ

X ] = ∞ for all online schedulersσ. As∆′ was obtained by erasing types and rules
from the original task system, it is easy to see that, also in the original task system, we
haveE[Sσ

X ] = ∞ for all online schedulersσ. As X is reachable fromX0, it follows
E[Sσ] = ∞ for all online schedulersσ. ⊓⊔
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