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Abstract

In two-prover one-round interactive proof systems, no-signaling provers are those who are allowed to use
arbitrary strategies, not limited to local operations, as long as their strategies cannot be used for communica-
tion between them. Study of multi-prover interactive proofsystems with no-signaling provers is motivated by
study of those with provers sharing quantum states. The relation between them is that no-signaling strategies
include all the strategies realizable by provers sharing arbitrary entangled quantum states, and more.

This paper shows that two-prover one-round interactive proof systems with no-signaling provers only
accept languages inPSPACE. Combined with the protocol forPSPACE by Ito, Kobayashi and Matsumoto
(CCC 2009), this impliesMIPns(2, 1) = PSPACE, whereMIPns(2, 1) is the class of languages having a
two-prover one-round interactive proof system with no-signaling provers. This is proved by constructing a
fast parallel algorithm which approximates within an additive error the maximum value of a two-player one-
round game achievable by cooperative no-signaling players. The algorithm uses the fast parallel algorithm
for the mixed packing and covering problem by Young (FOCS 2001).

1 Introduction

1.1 Background

Nonlocality [Bel64] is a peculiar property of quantum mechanics and has applications to quantum information
processing. Following Cleve, Høyer, Toner and Watrous [CHTW04], quantum nonlocality can be naturally
expressed in terms of cooperative two-player one-round game with imperfect information, which is a game
played by two players and a referee as follows. The players are kept in separate rooms so that they cannot
communicate with each other. The referee chooses a pair of questions according to some probability distribution,
and sends one question to each player. Each player replies with an answer to the referee, and the referee declares
whether the two players jointly win or jointly lose according to the questions and the answers. The players
know the protocol used by the referee including the probability distribution of the pair of questions and how the
referee determines the final outcome of the game, but none of the players knows the question sent to the other
player. The aim of the players is to win the game with as high probability as possible, and the maximum winning
probability is called thevalueof the game. In this framework, a Bell inequality is an inequality stating an upper
bound of the value of a game of this kind when provers are not allowed to perform any quantum operations,
and the violation of a Bell inequality means that the game value increases when provers are allowed to share a
quantum state before the game starts.

The complexity of finding or approximating the value of a gamehas been one of the most fundamental
problems in computational complexity theory. The computational model based on cooperative multi-player
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games is called multi-prover interactive proof systems andwere introduced by Ben-Or, Goldwasser, Kilian and
Wigderson [BGKW88] for a cryptographic purpose.1 It turned out that this computational model is extremely
powerful: multi-prover interactive proof systems exactlycharacterizeNEXP [FRS94, BFL91], even in the most
restricted settings with two provers, one round and an exponentially small one-sided error [FL92]. In other
words, given the description of a cooperative game, approximating the best strategy even in a very weak sense
is notoriously difficult. These results were built on top of techniques developed in studies on (single-prover)
interactive proof systems [Bab85, GMR89, LFKN92, Sha92] aswell as multi-prover interactive proof systems
with weaker properties [CCL94, Fei91, LS97]. It is noteworthy that the powerfulness of multi-prover one-round
interactive proof systems has led to a successful study of probabilistically checkable proof systems [BFLS91,
FGLSS96], which play a central role in provingNP-hardness of many approximation problems via the celebrated
PCP theorem [AS98, ALMSS98].

Cleve, Høyer, Toner and Watrous [CHTW04] connected the computational complexity theory and the quan-
tum nonlocality and raised the question on the complexity ofapproximating the value of a cooperative game
with imperfect information in the case where the players areallowed to share quantum states or, in terms of
interactive proof systems, the computational power of multi-prover interactive proof systems with entangled
provers. Kobayashi and Matsumoto [KM03] considered another quantum variation of multi-prover interactive
proof systems where the verifier can also use quantum information and can exchange quantum messages with
provers, which is a multi-prover analogue of quantum interactive proof systems [Wat03]. In [KM03], it was
shown that allowing the provers to share at most polynomially many qubits does not increase the power of
multi-prover interactive proof systems beyondNEXP (even if the verifier is quantum). Although studied in-
tensively [KKMTV08, CGJ09, IKPSY08, KRT08, KKMV09, Gut09,DLTW08, NPA08, BHP08, IKM09], the
power of multi-prover interactive proof systems with provers allowed to share arbitrary quantum states has been
still largely unknown.

The notion of no-signaling strategies was first studied in physics in the context of Bell inequalities by Khalfin
and Tsirelson [KT85] and Rastall [Ras85], and it has gained much attention after reintroduced by Popescu
and Rohrlich [PR94]. The acceptance probability of the optimal no-signaling provers is often useful as an
upper bound of the acceptance probability of entangled provers (and even commuting-operator provers based on
the notion of commuting-operator behaviors; see [Tsi06, NPA08, DLTW08, IKPSY08]) because no-signaling
strategies have a simple mathematical characterization. Toner [Ton09] uses no-signaling provers to give the
maximum acceptance probability of entangled provers in a certain game. Extreme points of the set of no-
signaling strategies are also studied [BLMPPR05, AII06].

Kempe, Kobayashi, Matsumoto, Toner and Vidick [KKMTV08] prove, among other results, that every lan-
guage inPSPACE has a two-prover one-round interactive proof system which has one-sided error1 − 1/poly
even if honest provers are unentangled and dishonest provers are allowed to have prior entanglement of any size
(the proof is in [KKMTV07]). Ito, Kobayashi and Matsumoto [IKM09] improve their result to an exponentially
small one-sided error by considering no-signaling provers; more specifically, they prove that the soundness of
the protocol in [KKMTV08] actually holds against arbitraryno-signaling provers, then use the parallel repetition
theorem for no-signaling provers [Hol09]. We note that the soundness analysis of [IKM09] is somewhat simpler
than that of [KKMTV08].

Repeating the protocol of [KKMTV08] parallelly as is done in[IKM09] results in the protocol identical to
the one used by Cai, Condon and Lipton [CCL94] to prove that every language inPSPACE has a two-prover
one-round interactive proof system with an exponentially small one-sided error in the classical world. Therefore,
an implication of [IKM09] is that the protocol in [CCL94] hasan unexpected strong soundness property: the
protocol remains to have an exponentially small error even if we allow the two provers to behave arbitrarily as
long as they are no-signaling.

1Because of this connection, we use “player” and “prover” synonymously in this paper.
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Given that the soundness analysis of protocols against no-signaling provers is perhaps easier than that against
entangled provers, it is tempting to try to extend the resultof [IKM09] to a class of languages larger than
PSPACE. For example, is it possible to construct a two-prover one-round interactive proof system forNEXP
which is sound against no-signaling provers? The answer is no unlessEXP = NEXP because two-prover
one-round interactive proof systems with no-signaling provers can recognize at mostEXP as pointed out by
Preda [Pre]. Then what aboutEXP?

1.2 Our results

Let MIPns(2, 1) be the class of languages having a two-prover one-round interactive proof system with no-
signaling provers with bounded two-sided error. The abovementioned result in [IKM09] impliesMIPns(2, 1) ⊇
PSPACE. Preda [Pre] showsMIPns(2, 1) ⊆ EXP.

Our main result is:

Theorem 1. MIPns(2, 1) ⊆ PSPACE.

An immediate corollary obtained by combining Theorem 1 withthe abovementioned result in [IKM09] is
the following exact characterization of the classMIPns(2, 1):

Corollary 2. MIPns(2, 1) = PSPACE, and this is achievable with exponentially small one-sidederror, even if
honest provers are restricted to be unentangled.

This puts the proof system of [CCL94] in a rather special position: while other two-prover one-round in-
teractive proof systems [BFL91, Fei91, FL92] work with the whole NEXP, the one in [CCL94] attains the
best achievable by two-prover one-round interactive proofsystems with two-sided bounded error that are sound
against no-signaling provers, and at the same time, it achieves an exponentially small one-sided error.

At a lower level, our result is actually a parallel algorithmto approximately decide2 the value of a two-player
one-round game for no-signaling players as follows. For a two-player one-round gameG, wns(G) is the value
of G for no-signaling provers and|G| is the size ofG, both of which will be defined in Section 2.1.

Theorem 3. There exists a parallel algorithm which, given a two-playerone-round gameG and numbers0 ≤
s < c ≤ 1 such that eitherwns(G) ≤ s or wns(G) ≥ c, decides which is the case. The parallel time of the
algorithm is polynomial inlog|G| and1/(c − s). The total work is polynomial in|G| and1/(c − s).

Theorem 1 follows by applying the algorithm of Theorem 3 to the exponential-size game naturally arising
from a two-prover one-round interactive proof system. Thisapproach is similar to that of the recent striking
result on thePSPACE upper bound onQIP [JJUW09] as well as other complexity classes related to quantum
interactive proof systems, i.e.QRG(1) [JW09] andQIP(2) [JUW09].3

The construction of the parallel algorithm in Theorem 3 is much simpler than those used in [JW09, JUW09,
JJUW09] because our task can be formulated as solving alinear program of a certain special form approximately
instead of asemidefiniteprogram. This allows us to use the fast parallel algorithm for the mixed packing and
covering problem by Young [You01].

2The algorithm stated in Theorem 3 can be converted to an algorithm to approximatewns(G) within an additive error in a standard
way. See Remark 2 in Section 4.

3Do not be confused by an unfortunate inconsistency as for whether the number in the parenthesis represents the number ofrounds
or turns, where one round consists of two turns. The “1” in QRG(1) and the “2” in QIP(2) represent the number of turns whereas the
“1” in MIPns(2, 1) represents the number of rounds just in the same way as the “1” in MIP(2, 1).
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1.3 Organization of the paper

The rest of this paper is organized as follows. Section 2 gives the definitions used later and states the result
by Young [You01] about a fast parallel approximation algorithm for the mixed packing and covering problem.
Section 3 proves Theorem 1 assuming Theorem 3. Section 4 proves Theorem 3 by using Young’s fast parallel
algorithm. Section 5 concludes the paper by discussing somenatural open problems.

2 Preliminaries

We assume the familiarity with the notion of multi-prover interactive proof systems. Readers are referred to the
textbook by Goldreich [Gol08].

2.1 Definitions on games

A protocol of a two-prover one-round interactive proof system defines an exponential-size game for each in-
stance. Here we give a formal definition ofgames.

A two-prover one-round game, or simply agamein this paper, is played by two cooperative provers called
the prover 1 and the prover 2 with help of a verifier who enforces the rule of the game. A game is formulated
asG = (Q1, Q2, A1, A2, π,R) by nonempty finite setsQ1, Q2, A1 andA2, a probability distributionπ over
Q1 × Q2, and a functionR : Q1 × Q2 × A1 × A2 → [0, 1]. As is customary, we writeR(q1, q2, a1, a2) as
R(a1, a2 | q1, q2).

In this game, the verifier generates a pair of questions(q1, q2) ∈ Q1 × Q2 according to the probability
distribution π, and sendsq1 to the prover 1 andq2 to the prover 2. Each proverν (ν ∈ {1, 2}) sends an
answeraν ∈ Aν to the verifier without knowing the question sent to the otherprover. Finally, the verifier accepts
with probabilityR(a1, a2 | q1, q2) and rejects with probability1 − R(a1, a2 | q1, q2). The provers try to make
the verifier accept with as high probability as possible.

Thesize|G| of the gameG is defined as|G| = |Q1||Q2||A1||A2|.
A strategyin a two-prover one-round gameG is a familyp = (pq1q2) of probability distributions onA1×A2

indexed by(q1, q2) ∈ Q1 ×Q2. As is customary, the probabilitypq1q2(a1, a2) is written asp(a1, a2 | q1, q2). A
strategyp is said to beno-signalingif it satisfies the followingno-signaling conditions:

• The marginal probabilityp1(a1 | q1) =
∑

a2
p(a1, a2 | q1, q2) does not depend onq2.

• The marginal probabilityp2(a2 | q2) =
∑

a1
p(a1, a2 | q1, q2) does not depend onq1.

Theacceptance probabilityof a strategyp is given by

∑

q1∈Q1,q2∈Q2

π(q1, q2)
∑

a1∈A1,a2∈A2

R(a1, a2 | q1, q2)p(a1, a2 | q1, q2).

Theno-signaling valuewns(G) of G is the maximum of the acceptance probability over all no-signaling strate-
gies.

2.2 Definitions on interactive proof systems

Let Σ = {0, 1}. A two-prover one-round interactive proof systemis defined by a polynomiall : Z≥0 → Z≥0,
a polynomial-time computable mappingMπ : Σ

∗ × Σ∗ → Σ∗ × Σ∗ such thatx ∈ Σn andr ∈ Σl(n) imply
Mπ(x, r) ∈ Σl(n) × Σl(n), and a polynomial-time decidable predicateMR : Σ∗ × Σ∗ × Σ∗ × Σ∗ → {0, 1}. On
receiving an input stringx ∈ Σ∗, the verifier prepares anl(|x|)-bit string r uniformly at random and computes
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(q1, q2) = Mπ(x, r). Then he sends each stringqν (ν ∈ {1, 2}) to the proverν and receives anl(|x|)-bit stringaν
from each proverν. Finally he accepts if and only ifMR(x, r, a1, a2) = 1. This naturally defines a gameG(x) =

(Q
(x)
1 , Q

(x)
2 , A

(x)
1 , A

(x)
2 , π(x), R(x)) for each input stringx, whereQ(x)

1 = Q
(x)
2 = A

(x)
1 = A

(x)
2 = Σl(|x|),

π(x)(q1, q2) = 2−l(|x|) ·#{r ∈ Σl(|x|) | Mπ(x, r) = (q1, q2)},

R(x)(a1, a2 | q1, q2) =
#{r ∈ Σl(|x|) | Mπ(x, r) = (q1, q2) ∧MR(x, r, a1, a2) = 1}

#{r ∈ Σl(|x|) | Mπ(x, r) = (q1, q2)}
.

Let c, s : Z≥0 → [0, 1] be functions such thatc(n) > s(n) for everyn. The two-prover one-round interactive
proof system is said torecognize a language4 L with completeness acceptance probability at leastc(n) and
soundness error at mosts(n) with no-signaling proverswhen the following conditions are satisfied.

Completenessx ∈ L =⇒ wns(G
(x)) ≥ c(|x|).

Soundnessx /∈ L =⇒ wns(G
(x)) ≤ s(|x|).

In particular, the proof system is said torecognizeL with bounded errors with no-signaling proversif the
binary representations ofc(n) and s(n) are computable in time polynomial inn and there exists a polyno-
mial f : Z≥0 → Z≥1 such that for everyn, it holdsc(n)− s(n) > 1/f(n). We denote byMIPns(2, 1) the class
of languagesL which are recognized by a two-prover one-round interactiveproof system with bounded errors
with no-signaling provers.

2.3 Mixed packing and covering problem

Themixed packing and covering problemis the linear feasibility problem of the form

Find x ∈ R
N ,

Such that Ax ≤ b,

Cx ≥ d,

x ≥ 0,

where matricesA,C and vectorsb, d are given and the entries ofA, b,C, d are all nonnegative. Forr ≥ 1, an
r-approximate solutionis a vectorx ≥ 0 such thatAx ≤ rb andCx ≥ d.

Theorem 4 (Young [You01]). There exists a parallel algorithm which, given an instance(A, b,C, d) of the
mixed packing and covering problem and a numberε > 0, either:

• claims that the given instance does not have a feasible solution, or

• finds a(1 + ε)-approximate solution.

If the size ofA andC areM1×N andM2×N , respectively, then the algorithm runs in parallel time polynomial
in logM1, logM2, logN and1/ε and total work polynomial inM1, M2, N and1/ε.

4Although we defineMIPns(2, 1) as a class of languages in this paper to keep the notations simple, we could alternatively define
MIPns(2, 1) as the class ofpromise problems[ESY84, Gol05] recognized by a two-prover one-round interactive proof system with
no-signaling provers. A generalization of Theorem 1 to the case of promise problems is straightforward.
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3 Proof of Theorem 1

Theorem 1 follows from Theorem 3 by a standard argument usingthe polynomial equivalence between space
and parallel time [Bor77].

Let L ∈ MIPns(2, 1), and fix an two-prover one-round interactive proof system which recognizesL with
bounded errors with no-signaling provers. Letc(n) ands(n) be the completeness acceptance probability and the
soundness error of this proof system, respectively. We construct a polynomial-space algorithm which recognizes
L.

Let x be an input string andn = |x|. LetG(x) = (Q
(x)
1 , Q

(x)
2 , A

(x)
1 , A

(x)
2 , π(x), R(x)) be the game naturally

arising from the proof system on inputx. The size ofQ(x)
1 , Q

(x)
2 , A

(x)
1 , A

(x)
2 is at most exponential inn. For

eachq1, q2, a1, a2, it is possible to computeπ(x)(q1, q2) andR(x)(a1, a2 | q1, q2) in space polynomial inn by
simulating every choice of randomness of the verifier. By Theorem 4 of Borodin [Bor77], the parallel algorithm
of Theorem 3 can be converted to a sequential algorithm whichruns in space polynomial inlog|G| and1/(c−s).
By applying this algorithm to the gameG(x) and the threshold valuesc(|x|) and s(|x|), we decide whether
wns(G

(x)) ≥ c(|x|) or wns(G
(x)) ≤ s(|x|), or equivalently whetherx ∈ L or x /∈ L, in space polynomial

in log|G(x)| = poly(n) and1/(c(|x|)− s(|x|)) = poly(n).
Note that the composition of two functions computable in space polynomial in|x| is also computable in

space polynomial in|x|, which can be proved in the same way as Proposition 8.2 of [Pap94].

4 Formulating no-signaling value by mixed packing and covering problem

This section proves Theorem 3.
LetG = (Q1, Q2, A1, A2, π,R) be a game. Letπ1(q1) =

∑

q2∈Q2
π(q1, q2) andπ2(q2) =

∑

q1∈Q1
π(q1, q2)

be the marginal distributions. Without loss of generality,we assume that every question inQ1 andQ2 is used
with nonzero probability, i.e.π1(q1) > 0 for everyq1 ∈ Q1 andπ2(q2) > 0 for everyq2 ∈ Q2.

By definition, the no-signaling valuewns(G) of G is equal to the optimal value of the following linear
program:

Maximize
∑

q1,q2

π(q1, q2)
∑

a1,a2

R(a1, a2 | q1, q2)p(a1, a2 | q1, q2), (1a)

Subject to
∑

a2

p(a1, a2 | q1, q2) = p1(a1 | q1), ∀q1 ∈ Q1, q2 ∈ Q2, a1 ∈ A1, (1b)

∑

a1

p(a1, a2 | q1, q2) = p2(a2 | q2), ∀q1 ∈ Q2, q2 ∈ Q2, a2 ∈ A2, (1c)

∑

a1,a2

p(a1, a2 | q1, q2) = 1, ∀q1 ∈ Q1, q2 ∈ Q2, (1d)

p(a1, a2 | q1, q2) ≥ 0, ∀q1 ∈ Q1, q2 ∈ Q2, a1 ∈ A1, a2 ∈ A2. (1e)

We transform this linear program (1) successively without changing the optimal value. First, we replace the
constraint (1d) by two constraints:

∑

a1

p1(a1 | q1) = 1, ∀q1 ∈ Q1, (2a)

∑

a2

p2(a2 | q2) = 1, ∀q2 ∈ Q2. (2b)

It is clear that this rewriting does not change the optimal value.
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Next, we relax the constraints (1b) and (1c) to inequalities:
∑

a2

p(a1, a2 | q1, q2) ≤ p1(a1 | q1), ∀q1 ∈ Q1, q2 ∈ Q2, a1 ∈ A1, (3a)

∑

a1

p(a1, a2 | q1, q2) ≤ p2(a2 | q2), ∀q1 ∈ Q1, q2 ∈ Q2, a2 ∈ A2. (3b)

Claim 1. The optimal valuew of the linear program (1) is equal to the maximum valuew′ of (1a) subject to the
constraints (1e), (2a), (2b), (3a) and (3b).

Proof. Since we only relaxed the constraints,w ≤ w′ is obvious. To provew ≥ w′, let (p̃, p1, p2) be a solution
satisfying the constraints (1e), (2a), (2b), (3a) and (3b).We will constructp such that(p, p1, p2) is a feasible
solution of the linear program (1) andp(a1, a2 | q1, q2) ≥ p̃(a1, a2 | q1, q2) for everyq1, q2, a1, a2.

Fix anyq1, q2 ∈ Q. Let

sq1q2(a1) = p1(a1 | q1)−
∑

a2∈A2

p̃(a1, a2 | q1, q2), ∀a1 ∈ A1,

tq1q2(a2) = p2(a2 | q2)−
∑

a1∈A1

p̃(a1, a2 | q1, q2), ∀a2 ∈ A2.

The following relations are easy to verify:

sq1q2(a1) ≥ 0, ∀a1 ∈ A1, (4a)

tq1q2(a2) ≥ 0, ∀a2 ∈ A2, (4b)
∑

a1∈A1

sq1q2(a1) =
∑

a2∈A2

tq1q2(a2) (=: Fq1q2). (4c)

We definep(a1, a2 | q1, q2) by

p(a1, a2 | q1, q2) =

{

p̃(a1, a2 | q1, q2) +
1

Fq1q2

sq1q2(a1)tq1q2(a2), if Fq1q2 > 0,

p̃(a1, a2 | q1, q2), if Fq1q2 = 0.

Then it is clear from Eqs. (4a) and (4b) thatp(a1, a2 | q1, q2) ≥ p̃(a1, a2 | q1, q2) for every q1, q2, a1, a2.
Eqs. (1b) and (1c) follow from Eq. (4c).

Replace the variablesp(a1, a2 | q1, q2) by x(a1, a2 | q1, q2) = π(q1, q2)p(a1, a2 | q1, q2). The resulting
linear program is as follows.

Maximize
∑

a1,a2,q1,q2

R(a1, a2 | q1, q2)x(a1, a2 | q1, q2), (5a)

Subject to
∑

a2

x(a1, a2 | q1, q2) ≤ π(q1, q2)p1(a1 | q1), ∀q1 ∈ Q1, q2 ∈ Q2, a1 ∈ A1, (5b)

∑

a1

x(a1, a2 | q1, q2) ≤ π(q1, q2)p2(a2 | q2), ∀q1 ∈ Q1, q2 ∈ Q2, a2 ∈ A2, (5c)

∑

a1

p1(a1 | q1) = 1, ∀q1 ∈ Q1, (5d)

∑

a2

p2(a2 | q2) = 1, ∀q2 ∈ Q2, (5e)

x(a1, a2 | q1, q2) ≥ 0, ∀q1 ∈ Q1, q2 ∈ Q2, a1 ∈ A1, a2 ∈ A2. (5f)
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By the strong duality theorem of linear programming, the linear program (5) has the same objective value as
the following:

Minimize
∑

q1

z1(q1) +
∑

q2

z2(q2), (6a)

Subject to y1(q1, q2, a1) + y2(q1, q2, a2) ≥ R(a1, a2 | q1, q2),

∀q1 ∈ Q1, q2 ∈ Q2, a1 ∈ A1, a2 ∈ A2, (6b)

z1(q1) ≥
∑

q2

π(q1, q2)y1(q1, q2, a1), ∀q1 ∈ Q1, a1 ∈ A1, (6c)

z2(q2) ≥
∑

q1

π(q1, q2)y2(q1, q2, a2), ∀q2 ∈ Q2, a2 ∈ A2, (6d)

y1(q1, q2, a1) ≥ 0, ∀q1 ∈ Q1, q2 ∈ Q2, a1 ∈ A1, (6e)

y2(q1, q2, a2) ≥ 0, ∀q1 ∈ Q1, q2 ∈ Q2, a2 ∈ A2. (6f)

Note that the constraints (6c)–(6f) implyz1(q1) ≥ 0 andz2(q2) ≥ 0.
Let (z1, z2, y1, y2) be a feasible solution of the linear program (6). Ify1(q1, q2, a1) > 1 for someq1, q2, a1,

we can replacey1(q1, q2, a1) by 1 without violating any constraints or increasing the objective value. The same
holds fory2(q1, q2, a2). Therefore, adding the constraints

y1(q1, q2, a1) ≤ 1, ∀q1 ∈ Q1, q2 ∈ Q2, a1 ∈ A1,

y2(q1, q2, a2) ≤ 1, ∀q1 ∈ Q1, q2 ∈ Q2, a2 ∈ A2

does not change the optimal value.
Replacing the variablesy1(q1, q2, a1) by 1 − ȳ1(q1, q2, a1) andy2(q1, q2, a2) by 1 − ȳ2(q1, q2, a2), the fol-

lowing claim is immediate.

Claim 2. The no-signaling valuewns(G) is equal to the optimal value of the following linear program.

Minimize
∑

q1

z1(q1) +
∑

q2

z2(q2), (7a)

Subject to ȳ1(q1, q2, a1) + ȳ2(q1, q2, a2) ≤ 2−R(a1, a2 | q1, q2),

∀q1 ∈ Q1, q2 ∈ Q2, a1 ∈ A1, a2 ∈ A2, (7b)

z1(q1) +
∑

q2

π(q1, q2)ȳ1(q1, q2, a1) ≥ π1(q1), ∀q1 ∈ Q1, a1 ∈ A1, (7c)

z2(q2) +
∑

q1

π(q1, q2)ȳ2(q1, q2, a2) ≥ π2(q2), ∀q2 ∈ Q2, a2 ∈ A2, (7d)

ȳ1(q1, q2, a1) ≤ 1, ∀q1 ∈ Q1, q2 ∈ Q2, a1 ∈ A1, (7e)

ȳ2(q1, q2, a2) ≤ 1, ∀q1 ∈ Q1, q2 ∈ Q2, a2 ∈ A2, (7f)

ȳ1(q1, q2, a1) ≥ 0, ∀q1 ∈ Q1, q2 ∈ Q2, a1 ∈ A1, (7g)

ȳ2(q1, q2, a2) ≥ 0, ∀q1 ∈ Q1, q2 ∈ Q2, a2 ∈ A2, (7h)

z1(q1) ≥ 0, ∀q1 ∈ Q1, (7i)

z2(q2) ≥ 0, ∀q2 ∈ Q2. (7j)

Lemma 5. LetG = (Q1, Q2, A1, A2, π,R) be a game and0 ≤ s < c ≤ 1. Consider the instance of the mixed
packing and covering problem consisting of a constraint

∑

q1
z1(q1)+

∑

q2
z2(q2) ≤ s and the constraints (7b)–

(7j). Letε = (c− s)/4. Then,
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(i) If wns(G) ≤ s, this instance has a feasible solution.

(ii) If wns(G) ≥ c, this instance does not have a(1 + ε)-approximate solution.

Proof. (i) Clear from Claim 2.

(ii) We prove the contrapositive. Assume that(ȳ1, ȳ2, z1, z2) is a(1 + ε)-approximate solution, and let

ȳ′1(q1, q2, a1) =
1

1 + ε
ȳ1(q1, q2, a1),

ȳ′2(q1, q2, a2) =
1

1 + ε
ȳ2(q1, q2, a2),

z′1(q1) = z1(q1) + επ1(q1),

z′2(q2) = z2(q2) + επ2(q2).

Then(ȳ′1, ȳ
′
2, z

′
1, z

′
2) satisfies (7b)–(7j), and

∑

q1

z′1(q1) +
∑

q2

z′2(q2) =
∑

q1

z1(q1) + ε
∑

q1

π1(q1) +
∑

q2

z2(q2) + ε
∑

q2

π2(q2) ≤ s+ 3ε < c.

Therefore,wns(G), or the optimal value of the linear program (7), is less thanc.

Proof of Theorem 3.Apply Theorem 4 to the instance of the mixed packing and covering problem in Lemma 5.

Remark1. It is easy to see that adding the constraintsz1(q1) ≤ π1(q1) for q1 ∈ Q1 and z2(q2) ≤ π2(q2)
for q2 ∈ Q2 to the instance of the mixed packing and covering problem in Lemma 5 does not change the
feasibility or approximate feasibility. The resulting linear program has a constant “width” in the sense stated in
Theorem 2.12 of Plotkin, Shmoys and Tardos [PST95] with a suitable tolerance vector. See [PST95] for relevant
definitions. This gives an alternative proof of Theorem 3 which uses the algorithm of [PST95] instead of the
algorithm of [You01].

Remark2. Given Theorem 3, it is easy to approximatewns(G) within additive errorε (rather than deciding
whetherwns(G) ≤ s or wns(G) ≥ c) in parallel time polynomial inlog|G| and1/ε and total work polynomial
in |G| and1/ε. This can be done by trying all the possibilities ofs = kε andc = (k + 1)ε for integersk in the
range0 ≤ k ≤ 1/ε in parallel, or by using the binary search.

5 Concluding remarks

This paper gave the exact characterization of the simplest case of multi-prover interactive proof systems with
no-signaling provers:MIPns(2, 1) = PSPACE. A natural direction seems to be to extend this result to showa
PSPACE upper bound on a class containingMIPns(2, 1). Below we discuss some hurdles in doing so.

• More than two provers.In the completely classical case, a many-prover one-round interactive proof sys-
tem can be transformed to a two-prover one-round interactive proof system by using the oracularization
technique, and thereforeMIP(poly, 1) ⊆ MIP(2, 1). The same transformation is not known to preserve
soundness in the case of no-signaling provers even when the original proof system uses three provers.5

5The Magic Square game in [CHTW04] is a counterexample which shows that this transformation cannot be used alone to reduce
the number of provers from three to two in the case ofentangledprovers because it sometimes transforms a three-prover game whose
entangled value is less than1 to a two-prover game whose entangled value is equal to1 [IKPSY08]. The situation might be different in
the case of no-signaling provers.
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As a result, whether or notMIPns(3, 1) ⊆ MIPns(2, 1) is unknown, and our result does not imply
MIPns(3, 1) ⊆ PSPACE.

To extend the current proof toMIPns(3, 1), the main obstacle is to extend Claim 1, which replaces equa-
tions by inequalities. It does not seem that an analogous claim can be proved for three provers by a
straightforward extension of the current proof of Claim 1.

• More than one round.The proof of Claim 1 seems to work in the case of two-prover systems with polyno-
mially many rounds. However, in a linear program corresponding to (6), an upper bound on the variables
y1 andy2 becomes exponentially large and the current proof does not work even in the case of two-prover
two-round systems with adaptive questions or two-proverω(log n)-round systems with non-adaptive ques-
tions.

• Quantum verifier and quantum messages.The notion of no-signaling strategies can be extended to thecase
of quantum messages [BGNP01, Gut09] ([BGNP01] uses the term“causal” instead of “no-signaling”).
This allows us to define e.g. the classQMIPns(2, 2) of languages having aquantumtwo-prover one-
round (two-turn) interactive proof system with no-signaling provers. The classQMIPns(2, 2) contains
bothMIPns(2, 1) andQIP(2), and it would be nice if the method of [JUW09] and ours can be unified
to giveQMIPns(2, 2) = PSPACE. One obvious obstacle is how to extend the fast parallel algorithm in
[JUW09] for the special case of semidefinite programming to the case ofQMIPns(2, 2). Another obstacle
is again Claim 1; the current proof of Claim 1 essentially constructs of a joint probability distribution
over(q1, q2, a1, a2) from its marginal distributions over(q1, q2, a1) and(q1, q2, a2), and this kind ofstate
extensionis not always possible in the quantum case [Wer89, Wer90].
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