
Scalably Scheduling Power-Heterogeneous
Processors

Anupam Gupta1?, Ravishankar Krishnaswamy?1, and Kirk Pruhs2??

1 Computer Science Dept., Carnegie Mellon University, Pittsburgh, PA 15213, USA.
2 Computer Science Dept., University of Pittsburgh, Pittsburgh, PA 15260, USA.

Abstract. We show that a natural online algorithm for scheduling jobs
on a heterogeneous multiprocessor, with arbitrary power functions, is
scalable for the objective function of weighted flow plus energy.

1 Introduction

Many prominent computer architects believe that architectures consisting of
heterogeneous processors/cores, such as the STI Cell processor, will be the dom-
inant architectural design in the future [8, 13, 12, 17, 18]. The main advantage of
a heterogeneous architecture, relative to an architecture of identical processors,
is that it allows for the inclusion of processors whose design is specialized for
particular types of jobs, and for jobs to be assigned to a processor best suited for
that job. Most notably, it is envisioned that these heterogeneous architectures
will consist of a small number of high-power high-performance processors for crit-
ical jobs, and a larger number of lower-power lower-performance processors for
less critical jobs. Naturally, the lower-power processors would be more energy
efficient in terms of the computation performed per unit of energy expended,
and would generate less heat per unit of computation. For a given area and
power budget, heterogeneous designs can give significantly better performance
for standard workloads [8, 17]; Emulations in [12] suggest a figure of 40% better
performance, and emulations in [18] suggest a figure of 67% better performance.
Moreover, even processors that were designed to be homogeneous, are increas-
ingly likely to be heterogeneous at run time [8]: the dominant underlying cause
is the increasing variability in the fabrication process as the feature size is scaled
down (although run time faults will also play a role). Since manufacturing yields
would be unacceptably low if every processor/core was required to be perfect,
and since there would be significant performance loss from derating the entire
chip to the functioning of the least functional processor (which is what would be
required in order to attain processor homogeneity), some processor heterogeneity
seems inevitable in chips with many processors/cores.

? Supported in part by NSF award CCF-0729022 and an Alfred P. Sloan Fellowship.
?? Supported in part by NSF grants CNS-0325353, IIS-0534531, and CCF-0830558, and

an IBM Faculty Award.

The position paper [8] identifies three fundamental challenges in scheduling
heterogeneous multiprocessors: (1) the OS must discover the status of each pro-
cessor, (2) the OS must discover the resource demand of each job, and (3) given
this information about processors and jobs, the OS must match jobs to processors
as well as possible. In this paper, we address this third fundamental challenge.
In particular, we assume that different jobs are of differing importance, and we
study how to assign these jobs to processors of varying power and varying en-
ergy efficiency, so as to achieve the best possible trade-off between energy and
performance.

Formally, we assume that a collection of jobs arrive in an online fashion over
time. When a job j arrives in the system, the system is able to discover a size
pj ∈ R>0, as well as a importance/weight wj ∈ R>0, for that job. The importance
wj specifies an upper bound on the amount of energy that the system is allowed
to invest in running j to reduce j’s flow by one unit of time (assuming that
this energy investment in j doesn’t decrease the flow of other jobs)—hence jobs
with high weight are more important, since higher investments of energy are
permissible to justify a fixed reduction in flow. Furthermore, we assume that
the system knows the allowable speeds for each processor, and the system also
knows the power used when each processor is run at its set of allowable speeds.
We make no real restrictions on the allowable speeds, or on the power used for
these speeds.3 The online scheduler has three component policies:

Job Selection: Determines which job to run on each processor at any time.
Speed Scaling: Determines the speed of each processor at each time.
Assignment: When a new job arrives, it determines the processor to which

this new job is assigned.

The objective we consider is that of weighted flow plus energy. The rationale
for this objective function is that the optimal schedule under this objective
gives the best possible weighted flow for the energy invested, and increasing the
energy investment will not lead to a corresponding reduction in weighted flow
(intuitively, it is not possible to speed up a collection of jobs with an investment
of energy proportional to these jobs’ importance).

We consider the following natural online algorithm that essentially adopts
the job selection and speed scaling algorithms from the uniprocessor algorithm
in [5], and then greedily assigns the jobs based on these policies.

Job Selection: Highest Density First (HDF)
Speed Scaling: The speed is set so that the power is the fractional weight of

the unfinished jobs.
Assignment: A new job is assigned to the processor that results in the least

increase in the projected future weighted flow, assuming the adopted speed
scaling and job selection policies, and ignoring the possibility of jobs arriving
in the future.

3 So the processors may or may not be speed scalable, the speeds may be continuous
or discrete or a mixture, the static power may or may not be negligible, the dynamic
power may or may not satisfy the cube root rule, etc.

Our main result is then:

Theorem 1. This online algorithm is scalable for scheduling jobs on a hetero-
geneous multiprocessor with arbitrary power functions to minimize the objective
function of weighted flow plus energy.

In this context, scalable means that if the adversary can run processor i at speed
s and power P (s), the online algorithm is allowed to run the processor at speed
(1 + ε)s and power P (s), and then for all inputs, the online cost is bounded
by O(f(ε)) times the optimal cost. Intuitively, a scalable algorithm can handle
almost the same load as optimal; for further elaboration, see [20, 19]. Theorem
1 extends theorems showing similar results for weighted flow plus energy on
a uniprocessor [5, 2], and for weighted flow on a multiprocessor without power
considerations [9]. As scheduling on identical processors with the objective of
total flow, and scheduling on a uniprocessor with the objective of weighted flow,
are special cases of our problem, constant competitiveness is not possible without
some sort of resource augmentation [16, 3].

Our analysis is an amortized local-competitiveness argument. As is usually
the case with such arguments, the main technical hurdle is to discover the “right”
potential function. The most natural strawman potential function to try is the
sum over all processors of the single processor potential function used in [5].
While one can prove constant competitiveness with this potential in some spe-
cial cases (e.g. where for each processor the allowable speeds are the non-negative
reals, and the power satisfies the cube-root rule), one can not prove constant com-
petitiveness for general power functions with this potential function. The reason
for this is that the uniprocessor potential function from [5] is not sufficiently
accurate. Specifically, one can construct configurations where the adversary has
finished all jobs, and where the potential is much higher than the remaining on-
line cost. This did not mess up the analysis in [5] because to finish all these jobs
by this time the adversary would have had to run very fast in the past, wasting a
lot of energy, which could then be used to pay for this unnecessarily high poten-
tial. But since we consider multiple processors, the adversary may have no jobs
left on a particular processor simply because it assigned these jobs to a different
processor, and there may not be a corresponding unnecessarily high adversarial
cost that can be used to pay for this unnecessarily high potential.

Thus, the main technical contribution in this paper is a seemingly more
accurate potential function expressing the additional cost required to finish one
collection of jobs compared to another collection of jobs. Our potential function
is arguably more transparent than the one used in [5], and we expect that this
potential function will find future application in the analysis of other power
management algorithms.

In section 3, we show that a similar online algorithm is O(1/ε)-competitive
with (1 + ε)-speedup for unweighted flow plus energy. We also remark that when
the power functions Pi(s) are restricted to be of the form sαi , our algorithms
give a O(α2)-competitive algorithm (with no resource augmentation needed) for
the problem of minimizing weighted flow plus energy, and an O(α)-competitive
algorithm for minimizing the unweighted flow plus energy, where α = maxi αi.

1.1 Related Results

Let us first consider previous work for the case of a single processor, with un-
bounded speed, and a polynomially bounded power function P (s) = sα. [21]
gave an efficient offline algorithm to find the schedule that minimizes average
flow subject to a constraint on the amount of energy used, in the case that jobs
have unit work. [1] introduced the objective of flow plus energy and gave a con-
stant competitive algorithm for this objective in the case of unit work jobs. [6]
gave a constant competitive algorithm for the objective of weighted flow plus en-
ergy. The competitive ratio was improved by [15] for the unweighted case using
a potential function specifically tailored to integer flow. [4] extended the results
of [6] to the bounded speed model, and [10] gave a nonclairvoyant algorithm
that is O(1)-competitive.

Still for a single processor, dropping the assumptions of unbounded speed
and polynomially-bounded power functions, [5] gave a 3-competitive algorithm
for the objective of unweighted flow plus energy, and a 2-competitive algorithm
for fractional weighted flow plus energy, both in the uniprocessor case for a large
class of power functions. The former analysis was subsequently improved by [2] to
show 2-competitiveness, along with a matching lower bound on the competitive
ratio.

Now for multiple processors: [14] considered the setting of multiple homo-
geneous processors, where the allowable speeds range between zero and some
upper bound, and the power function is polynomial in this range. They gave an
algorithm that uses a variant of round-robin for the assignment policy, and job
selection and speed scaling policies from [6], and showed that this algorithm is
scalable for the objective of (unweighted) flow plus energy. Subsequently, [11]
showed that a randomized machine selection algorithm is scalable for weighted
flow plus energy (and even more general objective functions) in the setting
of polynomial power functions. Both these algorithms provide non-migratory
schedules and compare their costs with optimal solutions which could even be
migratory. In comparison, as mentioned above, for the case of polynomial power
functions, our techniques can give a deterministic constant-competitive online
algorithm for non-migratory weighted flow time plus energy. (Details appear in
the final version.)

In non-power-aware settings, the paper most relevant to this work is that
of [9], which gives a scalable online algorithm for minimizing weighted flow on
unrelated processors. Their setting is even more demanding, since they allow the
processing requirement of the job to be processor dependent (which captures a
type of heterogeneity that is orthogonal to the performance energy-efficiency
heterogeneity that we consider in this paper). Our algorithm is based on the
same general intuition as theirs: they assign each new job to the processor that
would result in the least increment in future weighted flow (assuming HDF is
used for job selection), and show that this online algorithm is scalable using an
amortized local competitiveness argument. However, it is unclear how to directly
extend their potential function to our power-aware setting; we had success only

in the case that each processor had allowable speed-power combinations lying in
{(0, 0), (si, Pi)}.

1.2 Preliminaries

Scheduling Basics. We consider only non-migratory schedules, which means
that no job can ever run on one processor, and later run on some other processor.
In general, migration is undesirable as the overhead can be significant. We assume
that preemption is allowed, that is, that jobs may be suspended, and restarted
later from the point of suspension. It is clear that if preemption is not allowed,
bounded competitiveness is not obtainable. The speed is the rate at which work
is completed; a job j with size pj run at a constant speed s completes in pj

s
seconds. A job is completed when all of its work has been processed. The flow
of a job is the completion time of the job minus the release time of the job.
The weighted flow of a job is the weight of the job times the flow of the job.
For a t ≥ rj , let pj(t) be the remaining unprocessed work on job j at time t.
The fractional weight of job j at this time is wj

pj(t)
pj

. The fractional weighted
flow of a job is the integral over times between the job’s release time and its
completion time of its fractional weight at that time. The density of a job is its
weight divided by its size. The job selection policy Highest Density First (HDF)
always runs the job of highest density. The inverse density of a job is its size
divided by its weight.

Power Functions. The power function for processor i is denoted by Pi(s), and
specifies the power used when processor is run at speed s. We essentially allow
any reasonable power function. However, we do require the following minimal
conditions on each power function, which we adopt from [5]. We assume that the
allowable speeds are a countable collection of disjoint subintervals of [0,∞). We
assume that all the intervals, except possibly the rightmost interval, are closed
on both ends. The rightmost interval may be open on the right if the power
Pi(s) approaches infinity as the speed s approaches the rightmost endpoint of
that interval. We assume that Pi is non-negative, and Pi is continuous and
differentiable on all but countably many points. We assume that either there is a
maximum allowable speed T , or that the limit inferior of Pi(s)/s as s approaches
infinity is not zero (if this condition doesn’t hold then, then the optimal speed
scaling policy is to run at infinite speed). Using transformations specified in [5],
we may assume without loss of generality that the power functions satisfy the
following properties: P is continuous and differentiable, P (0) = 0, P is strictly
increasing, P is strictly convex, and P is unbounded. We use Qi to denote P−1

i ;
i.e., Qi(y) gives us the speed that we can run processor i at, if we specify a limit
of y.

Local Competitiveness and Potential Functions. Finally, let us quickly
review amortized local competitiveness analysis on a single processor. Consider

an objective G. Let GA(t) be the increase in the objective in the schedule for
algorithm A at time t. So when G is fractional weighted flow plus energy, GA(t)
is P tA+wtA, where P tA is the power for A at time t and wtA is the fractional weight
of the unfinished jobs for A at time t. Let OPT be the offline adversary that
optimizes G. A is locally c-competitive if for all times t, if GA(t) ≤ c·GOPT (t). To
prove A is (c+d)-competitive using an amortized local competitiveness argument,
it suffices to give a potential function Φ(t) such that the following conditions hold
(see for example [19]).

Boundary condition: Φ is zero before any job is released and Φ is non-negative
after all jobs are finished.

Completion condition: Φ does not increase due to completions by either A
or OPT.

Arrival condition: Φ does not increase more than d ·OPT due to job arrivals.
Running condition: At any time t when no job arrives or is completed,

GA(t) +
dΦ(t)
dt

≤ c ·GOPT (t) (1)

The sufficiency of these conditions for proving (c + d)-competitiveness follows
from integrating them over time.

2 Weighted Flow

Our goal in this section is to prove Theorem 1. We first show that the on-
line algorithm is (1 + ε)-speed O(1

ε)-competitive for the objective of fractional
weighted flow plus energy. Theorem 1 then follows since HDF is (1 + ε)-speed
O(1

ε)-competitive for fixed processor speeds [7] for the objective of (integer)
weighted flow.

Let OPT be some optimal schedule minimizing fractional weighted flow. Let
wta,i(q) denote the total fractional weight of jobs in processor i’s queue that have
an inverse density of at least q. Let wta,i := wta,i(0) be the total fractional weight
of unfinished jobs in the queue. Let wta :=

∑
i w

t
a,i be the total fractional weight

of unfinished jobs in all queues. Let wto,i(q), w
t
o,i, and wto be similarly defined for

OPT. When the time instant being considered is clear, we drop the superscript
of t from all variables.

We assume that once OPT has assigned a job to some processor, it runs the
BCP algorithm [5] for job selection and speed scaling—i.e., it sets the speed of
the ith processor to Qi(wo,i), and hence the ith processor uses power Wo,i, and
uses HDF for job selection. We can make such an assumption because the results
of [5] show that the fractional weighted flow plus energy of the schedule output
by this algorithm is within a factor of two of optimal. Therefore, the only real
difference between OPT and the online algorithm is the assignment policy.

2.1 The Assignment Policy

To better understand the online algorithm’s assignment policy, define the “shadow
potential” for processor i at time t to be

Φ̂a,i(t) =
∫ ∞
q=0

∫ wt
a,i(q)

x=0

x

Qi(x)
dx dq (2)

The shadow potential captures (up to a constant factor) the total fractional
weighted flow to serve the current set of jobs if no jobs arrive in the future.
Based on this, the online algorithm’s assignment policy can alternatively be
described as follows:

Assignment Policy. When a new job with size pj and weight wj arrives at
time t, the assignment policy assigns it to a processor which would cause the
smallest increase in the shadow potential; i.e. a processor minimizing∫ dj

q=0

∫ wt
a,i(q)+wj

x=0

x

Qi(x)
dx dq −

∫ dj

q=0

∫ wt
a,i(q)

x=0

x

Qi(x)
dx dq

=
∫ dj

q=0

∫ wt
a,i(q)+wj

x=wt
a,i(q)

x

Qi(x)
dx dq

2.2 Amortized Local Competitiveness Analysis

We apply a local competitiveness argument as described in subsection 1.2. Be-
cause the online algorithm is using the BCP algorithm on each processor, the
power for the online algorithm is

∑
i Pi(Qi(wa,i)) = wa. Thus GA = 2wa. Simi-

larly, since OPT is using BCP on each processor GOPT = 2wo.

Defining the potential function For processor i, define the potential

Φi(t) =
2
ε

∫ ∞
q=0

∫ (wt
a,i(q)−w

t
o,i(q))+

x=0

x

Qi(x)
dx dq (3)

Here (·)+ = max(·, 0). The global potential is then defined to be Φ(t) =
∑
i Φi(t).

Firstly, we observe that the function x/Qi(x) is increasing and subadditive.
Then, the following lemma will be useful subsequently, the proof of which will
appear in the full version of the paper.

Lemma 1. Let g be any increasing subadditive function with g(0) ≥ 0, and
wa, wo, wj ∈ R≥0. Then,∫ wa+wj

x=wa

g(x) dx−
∫ (wa−wo)+

x=(wa−wo−wj)+

g(x) dx ≤ 2
∫ wj

x=0

g(wo + x) dx

That the boundary and completion conditions are satisfied are obvious. In
Lemma 2 we prove that the arrival condition holds, and in Lemma 3 we prove
that the running condition holds.

Lemma 2. The arrival condition holds with d = 4
ε .

Proof. Consider a new job j with processing time pj , weight wj and inverse
density dj = pj/wj , which the algorithm assigns to processor 1 while the optimal
solution assigns it to processor 2. Observe that

∫ dj

q=0

∫ wo,2(q)+wj

x=wo,2(q)
x

Q2(x)
dx dq is the

increase in OPT’s fractional weighted flow due to this new job j. Thus our goal
is to prove that the increase in the potential due to job j’s arrival is at most this
amount. The change in the potential ∆Φ is:

2
ε

∫ dj

q=0

(∫ (wa,1(q)−wo,1(q)+wj)+

x=(wa,1(q)−wo,1(q))+

x

Q1(x)
dx−

∫ (wa,2(q)−wo,2(q))+

x=(wa,2(q)−wo,2(q)−wj)+

x

Q2(x)
dx

)
dq

Now, since x/Q1(x) is an increasing function we have that∫ (wa,1(q)−wo,1(q)+wj)+

x=(wa,1(q)−wo,1(q))+

x

Q1(x)
dx ≤

∫ wa,1(q)+wj

x=wa,1(q)

x

Q1(x)
dx

and hence the change of potential can be bounded by

2
ε

∫ dj

q=0

(∫ wa,1(q)+wj

x=wa,1(q)

x

Q1(x)
dx−

∫ (wa,2(q)−wo,2(q))+

x=(wa,2(q)−wo,2(q)−wj)+

x

Q2(x)
dx

)
dq

Since we assigned the job to processor 1, we know that∫ dj

q=0

∫ wa,1(q)+wj

x=wa,1(q)

x

Q1(x)
dx dq ≤

∫ dj

q=0

∫ wa,2(q)+wj

x=wa,2(q)

x

Q2(x)
dx dq

Therefore, the change in potential is at most

∆Φ ≤ 2
ε

∫ dj

q=0

(∫ wa,2(q)+wj

x=wa,2(q)

x

Q2(x)
dx−

∫ (wa,2(q)−wo,2(q))+

x=(wa,2(q)−wo,2(q)−wj)+

x

Q2(x)
dx

)
dq

Applying Lemma 1, we get:

∆Φ ≤
(
2 · 2

ε

) ∫ dj

q=0

∫ wo,2(q)+wj

x=wo,2(q)

x

Q2(x)
dx dq

Lemma 3. The running condition holds with constant c = 1 + 1
ε .

Proof. Let us consider an infinitesimally small interval [t, t+dt) during which no
jobs arrive and analyze the change in the potential Φ(t). Since Φ(t) =

∑
i Φi(t),

we can do this on a per-processor basis. Fix a single processor i, and time t. Let
wi(q) := (wa,i(q) − wo,i(q))+, and wi := (wa,i − wo,i)+. Let qa and qo denote

the inverse densities of the jobs being executed on processor i by the algorithm
and optimal solution respectively (which are the densest jobs in their respective
queues, since both run HDF). Define sa = Qi(wa,i) and so = Qi(wo,i). Since
we assumed that OPT uses the BCP algorithm on each processor, OPT runs
processor i at speed so. Since the online algorithm is also using BCP, but has
(1 + ε)-speed augmentation, the online algorithms runs the processor at speed
(1 + ε)sa. Hence the fractional weight of the job the online algorithm works on
decreases at a rate of sa(1 + ε)/qa. Therefore, the quantity wa,i(q) drops by
sa dt(1 + ε)/qa for q ∈ [0, qa]. Likewise, wo,i(q) drops by so dt/qo for q ∈ [0, qo]
due to the optimal algorithm working on its densest job. We consider several
different cases based on the values of qo, qa, wo,i, and wa,i and establish bounds
on dΦi(t)/dt; Recall the definition of Φi(t) from equation (3):

Φi(t) =
2
ε

∫ ∞
q=0

∫ (wt
a,i(q)−w

t
o,i(q))+

x=0

x

Qi(x)
dx dq

Case (1): wa,i < wo,i: The only possible increase in potential function occurs
due to the decrease in wo,i(q), which happens for values of q ∈ [0, qo]. But for
q’s in this range, wa,i(q) ≤ wa,i and wo,i(q) = wo,i. Thus the inner integral is
empty, resulting in no increase in potential. The running condition then holds
since wa,i < wo,i.

Case (2): wa,i > wo,i: To quantify the change in potential due to the online
algorithm working, observe that for any q ∈ [0, qa], the inner integral of Φi
decreases by∫ wi(q)

x=0

x

Qi(x)
dx−

∫ wi(q)−(1+ε) sa dt
qa

x=0

x

Qi(x)
dx =

wi(q)
Qi(wi(q))

(1 + ε)
sa dt

qa

Here, we have used the fact that dt is infinitisemally small to get the above
equality. Hence, the total drop in Φi due to the online algorithm’s processing is

2
ε

∫ qa

q=0

wi(q)
Qi(wi(q))

(1 + ε)
sa dt

qa
dq ≥ 2

ε

∫ qa

q=0

wi
Qi(wi)

(1 + ε)
sa dt

qa
dq

=
2
ε

wi
Qi(wi)

(1 + ε)sa dt

Here, the first inequality holds because x/Qi(x) is a non-decreasing function,
and for all q ∈ [0, qa], we have wa,i(q) = wa,i and wo,i(q) ≤ wo,i and hence
wi(q) ≥ wi.

Now to quantify the increase in the potential due to the optimal algorithm
working: observe that for q ∈ [0, qo], the inner integral of Φi increases by at most

∫ wi(q)+
so dt

qo

x=wi(q)

x

Qi(x)
dx =

wi(q)
Qi(wi(q))

so dt

qo

Again notice that we have used that fact that here dt is an infinitesimal period
of time that in the limit is zero. Hence the total increase in Φi due to the optimal
algorithm’s processing is at most

2
ε

∫ qo

q=0

wi(q)
Qi(wi(q))

so dt

qo
dq ≤ 2

ε

∫ qo

q=0

wi
Qi(wi)

so dt

qo
dq =

2
ε

wi
Qi(wi)

so dt.

Again here, the first inequality holds because x/Qi(x) is a non-decreasing func-
tion, and for all q ∈ [0, qo], we have wa,i(q) ≤ wa,i and wo,i(q) = wo,i and hence
wi(q) ≤ wi.

Putting the two together, the overall increase in Φi(t) can be bounded by

dΦi(t)
dt

≤ 2
ε

wa,i − wo,i
Qi(wa,i − wo,i)

[−(1 + ε)sa + so]

=
2
ε

(wa,i − wo,i)
[−(1 + ε)Qi(wa,i) +Qi(wo,i)]

Qi(wa,i − wo,i)

≤ −2
ε
ε(wa,i − wo,i) = −2(wa,i − wo,i)

It is now easy to verify that by plugging this bound on dΦi(t)
dt into the running

condition that one gets a valid inequality.

Case (3): wa,i = wo,i: In this case, let us just consider the increase due to OPT
working. The inner integral in the potential function starts off from zero (since
wa,i − wo,i = 0) and potentially (in the worst case) could increase to∫ so dt

qo

0

x

Qi(x)
dx

(since wo,i drops by so dt/qo and wa,i cannot increase). However, since x/Qi(x)
is a monotone non-decreasing function, this is at most∫ so dt

qo

0

wo,i
Qi(wo,i)

dx =
so dt

qo

wo,i
Qi(wo,i)

Therefore, the total increase in the potential Φi(t) can be bounded by

2
ε

∫ qo

q=0

wo,i
Qi(wo,i)

so dt

qo
dq =

2
ε
so dt

wo,i
Qi(wo,i)

=
2
ε
wo,i dt

It is now easy to verify that by plugging this bound on dΦi(t)
dt into the running

condition, and using the fact that wa,i = wo,i, one gets a valid inequality.

3 The Algorithm for Unweighted Flow

In this section, we give an immediate assignment based scheduling policy and
the potential function that can be used to show (using basically the same line

of reasoning as in the last section) that it is O(1/ε)-competitive against a non-
migratory adversary for the objective of unweighted flow plus energy, assuming
the online algorithm has resource augmentation of (1 + ε) in speed. Note that
this result has a better competitiveness than the result for weighted flow from
Section 2, but holds only for the unweighted case. Once again we can assume
that the adversary is running the BCP algorithm on each processor. Just like the
weighted case, the crux of our algorithm would be in designing a good assignment
policy.

Our algorithm works as follows: Each processor maintains a queue of jobs that
have currently been assigned to it. At some time instant t, for any processor i, let
nta,i(q) denote the number of jobs in processor i’s queue that have a remaining
processing time of at least q. Let nta,i denote the total number of unfinished jobs
in the queue. Now our algorithm is the following:

When a new job arrives, the assignment policy assigns it to a processor which
would cause the smallest increase in the “shadow potential”; i.e., a processor
minimizing

∫ p

q=0

nt
a,i(q)+1∑
j=1

j

Qi(j + 1)
dq −

∫ p

q=0

nt
a,i(q)∑
j=1

j

Qi(j + 1)
dq =

∫ p

q=0

(nta,i(q) + 1)
Qi(nta,i(q) + 2)

dq

The job selection on each processor is SRPT (Shortest Remaining Processing
Time), and we set the power of processor i at time t to nta,i + 2 if nta,i 6= 0
(and power zero otherwise). Once the job is assigned to a processor, it is never
migrated.

Note that, even without accounting for resource augmentation, the online algo-
rithm runs processor i at a speed of Qi(nta,i+2)·1(na,i>0), instead of Qi(nta,i+1)·
1(na,i>0) as in [5]; since OPT uses BCP without any changes, it runs processor
i at speed Qi(nto,i + 1) · 1(no,i>0).

We now describe our potential function Φ. For time t and processor i. Define
nto,i as the number of unfinished jobs assigned to processor i by the optimal
solution at time t, and nto,i(q) to be the number of these jobs with remaining
processing time at least q. The global potential function is Φ(t) =

∑
i Φi(t),

where Φi(t) is the potential for processor i defined as:

Φi(t) =
4
ε

∫ ∞
q=0

(nt
a,i(q)−n

t
o,i(q))+∑

j=1

j/Qi(j + 1) dq (4)

Recall that (x)+ = max(x, 0), and Qi = P−1
i .

Acknowledgments: We thank Sangyeun Cho and Bruce Childers for help-
ful discussions about heterogeneous multicore processors, and also Srivatsan
Narayanan for several useful discussions.

References

1. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization.
ACM Transactions on Algorithms 3(4) (2007)

2. Andrew, L.L., Wierman, A., Tang, A.: Optimal speed scaling under arbitrary power
functions. SIGMETRICS Performance Evaluation Review 37(2), 39–41 (2009)

3. Bansal, N., Chan, H.L.: Weighted flow time does not admit o(1)-competitive algo-
rithms. In: SODA. pp. 1238–1244 (2009)

4. Bansal, N., Chan, H.L., Lam, T.W., Lee, L.K.: Scheduling for speed bounded
processors. In: ICALP (1). pp. 409–420 (2008)

5. Bansal, N., Chan, H.L., Pruhs, K.: Speed scaling with an arbitrary power function.
In: SODA. pp. 693–701 (2009)

6. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. SIAM Jour-
nal on Computing 39(4) (2009)

7. Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Pruhs, K.: Online weighted
flow time and deadline scheduling. J. Discrete Algorithms 4(3), 339–352 (2006)

8. Bower, F.A., Sorin, D.J., Cox, L.P.: The impact of dynamically heterogeneous
multicore processors on thread scheduling. IEEE Micro 28(3), 17–25 (2008)

9. Chadha, J.S., Garg, N., Kumar, A., Muralidhara, V.N.: A competitive algorithm
for minimizing weighted flow time on unrelatedmachines with speed augmentation.
In: STOC. pp. 679–684 (2009)

10. Chan, H.L., Edmonds, J., Lam, T.W., Lee, L.K., Marchetti-Spaccamela, A., Pruhs,
K.: Nonclairvoyant speed scaling for flow and energy. In: STACS. pp. 255–264
(2009)

11. Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed-scaled multipro-
cessor scheduling. In: SPAA ’09: Proceedings of the twenty-first annual symposium
on Parallelism in algorithms and architectures. pp. 11–18. ACM, New York, NY,
USA (2009)

12. Kumar, R., Tullsen, D.M., Jouppi, N.P.: Core architecture optimization for hetero-
geneous chip multiprocessors. In: International conference on parallel architectures
and compilation techniques. pp. 23–32. ACM (2006)

13. Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P., Farkas, K.I.: Single-isa
heterogeneous multi-core architectures for multithreaded workload performance.
SIGARCH Computer Architecture News 32(2), 64 (2004)

14. Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Competitive non-migratory
scheduling for flow time and energy. In: SPAA. pp. 256–264 (2008)

15. Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Speed scaling functions for flow
time scheduling based on active job count. In: European Symposium on Algorithms.
pp. 647–659 (2008)

16. Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. Journal
of Computer and Systems Sciences 73(6), 875–891 (2007)

17. Merritt, R.: CPU designers debate multi-core future. EE Times (February 2008)
18. Morad, T.Y., Weiser, U.C., Kolodny, A., Valero, M., Ayguade, E.: Performance,

power efficiency and scalability of asymmetric cluster chip multiprocessors. IEEE
Computer Architecture Letters 5(1), 4 (2006)

19. Pruhs, K.: Competitive online scheduling for server systems. SIGMETRICS Per-
formance Evaluation Review 34(4), 52–58 (2007)

20. Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Handbook on Scheduling.
CRC Press (2004)

21. Pruhs, K., Uthaisombut, P., Woeginger, G.J.: Getting the best response for your
erg. ACM Transactions on Algorithms 4(3) (2008)

