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Dynamic Programming for Graphs on Surfaces∗

Juanjo Rué† Ignasi Sau‡ Dimitrios M. Thilikos§

Abstract

We provide a framework for the design and analysis of dynamic programming algo-

rithms for surface-embedded graphs on n vertices and branchwidth at most k. Our

technique applies to general families of problems where standard dynamic program-

ming runs in 2O(k·log k) · n steps. Our approach combines tools from topological graph

theory and analytic combinatorics. In particular, we introduce a new type of branch

decomposition called surface cut decomposition, generalizing sphere cut decomposi-

tions of planar graphs which has nice combinatorial properties. Namely, the num-

ber of partial solutions that can be arranged on a surface cut decomposition can be

upper-bounded by the number of non-crossing partitions on surfaces with boundary.

It follows that partial solutions can be represented by a single-exponential (in the

branchwidth k) number of configurations. This proves that, when applied on sur-

face cut decompositions, dynamic programming runs in 2O(k) · n steps. That way, we

considerably extend the class of problems that can be solved in running times with

a single-exponential dependence on branchwidth and unify/improve most previous re-

sults in this direction.

Keywords: analysis of algorithms; parameterized algorithms; graphs on surfaces; branch-

width; dynamic programming; polyhedral embeddings; non-crossing partitions.

1 Introduction

One of the most important parameters in the design and analysis of graph algorithms is the

branchwidth of a graph. Branchwidth, together with its twin parameter of treewidth, can
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be seen as a measure of the topological resemblance of a graph to a tree. Its algorithmic

importance dates back in the celebrated theorem of Courcelle (see e.g. [8]), stating that

graph problems expressible in Monadic Second Order Logic can be solved in f(bw)·n steps

(here bw is the branchwidth1 and n is the number of vertices of the input graph). Using

parameterized complexity terminology, this implies that a large number of graph problems

are fixed-parameter tractable when parameterized by the branchwidth of their input graph.

As the bounds for f(bw) provided by Courcelle’s theorem are huge, the design of tailor-

made dynamic programming algorithms for specific problems so that f(bw) is a simple –

preferably a single-exponential – function, became a natural (and unavoidable) ingredient

for many results on graph algorithms (see [3,5,14,37]). In this paper, we provide a general

framework for the design and analysis of dynamic programming algorithms for graphs

embedded in surfaces where f(bw) = 2O(bw).

Dynamic programming. Dynamic programming is applied in a bottom-up fashion on

a rooted branch decomposition the input graph G, that roughly is a way to decompose the

graph into a tree structure of edge bipartitions (the formal definition is in Section 2). Each

bipartition defines a separator S of the graph called middle set, of cardinality bounded by

the branchwidth of the input graph. The decomposition is routed in the sense that one of

the parts of each bipartition is the “lower part of the middle set”, i.e., the so-far processed

one. For each graph problem, dynamic programming requires the suitable definition of

tables encoding how potential (global) solutions of the problem are restricted to a middle

set and the corresponding lower part. The size of these tables reflects the dependence on

k = |S| in the running time of the dynamic programming.

Designing the tables for each middle set S is not always an easy task and may vary

considerably due to the particularities of each problem. The simplest cases are problems

such as Vertex Cover and Dominating Set, where the certificate of the solution is a

set of vertices whose choice is not restricted by some global condition. This directly yields

the desired 2O(k) upper bound on their size. For other problems, such as Longest Path,

Cycle Packing, or Hamiltonian Cycle, things are more complicated as the tables

encode pairings of vertices of S, which are 2Θ(k log k) many. However, for such problems

one can do better for planar graphs following the approach introduced in [16]. The idea

in [16] is to use a special type of branch decomposition called sphere cut decomposition that

can guarantee that the pairings are non-crossing pairings around a virtual edge-avoiding

cycle (called noose) of the plane where G is embedded. This restricts the number of tables

corresponding to a middle set S by the k-th Catalan number, which is single-exponential in

k. The same approach was extended for graphs embedded in surfaces of genus γ [13]. The

idea in [13] was to perform a planarization of the input graph by splitting the potential

solution into at most γ pieces and then applying the sphere cut decomposition technique

1The original statement of Courcelle’s theorem used the parameter of treewidth instead of branchwidth.

The two parameters are approximately equivalent, in the sense that one is a constant-factor approximation

of the other.
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of [16] to a more general version of the problem where the number of pairings is still

bounded by some Catalan number (see also [15] for the application of this technique for

more general graphs).

A wider family of problems are those where the tables of dynamic programming en-

code connected packings of S into sets, i.e., collections of subsets of S that are pairwise

disjoint and where each subset is a connected part of a partial solution (see Section 3 for

the formal definitions). Throughout this paper, we call these problems connected packing-

encodable. Typical problems of this type are Connected Vertex Cover, Connected

Dominating Set, Feedback Vertex Set (FVS), or Steiner Tree, where the con-

nected components of a potential solution can be encoded by a collection of disjoint subsets

of S, each of arbitrary cardinality. Here, the general bound on the table size is given by

the k-th Bell number, and thus it can again be 2Θ(k·log k). To exemplify the differences

between distinct types of dynamic programming encodings, we accompany this paper with

an Appendix are presented (an expert reader may safely skip these examples). Unfortu-

nately, for the latter category of problems, none of the current techniques has been able

to drop the 2Θ(k·log k) bound to a single-exponential one for graphs embedded in surfaces.

It is worth mentioning that, according to the recent lower bounds given by Lokshtanov

et al. [27], the bound 2Θ(k·log k) is best possible in general graphs for some parameterized

problems like Disjoint Paths, unless the Exponential Time Hypothesis (ETH) fails.

Our results. In this paper, we follow a different approach in order to design single-

exponential (in bw) algorithms for graphs embedded in surfaces. In particular, we deviate

significantly from the planarization technique of [13], which is not able to tackle prob-

lems whose solutions are encoded by general packings. Instead, we extend the concept

of sphere cut decomposition from planar graphs to generic surfaces, and we exploit di-

rectly the combinatorial structure of the potential solutions in the topological surface.

Our approach permits us to provide in a unified way a single-exponential (in bw) time

analysis for all aforementioned problems. Examples of other such problems are Max-

imum Leaf Spanning Tree, Maximum Full-Degree Spanning Tree, Maximum

Leaf Tree, Maximum d-Degree-Bounded Connected Subgraph, Metric TSP,

or Maximum d-Degree-Bounded Connected Induced Subgraph and all the vari-

ants studied in [35]. Our results are formally described in Section 3 and imply all the

results in [13,16], with running times whose dependence on genus is better than the ones

in [13], as discussed in Section 9.

Our techniques. For our results we enhance the current technology of dynamic pro-

gramming using, among others, tools from topological graph theory. Our goal is to define a

special type of branch decomposition of embedded graphs with nice topological properties,

which we call surface cut decomposition. Moreover, we prove that such decomposition can

be constructed in single-exponential time. Surface cut decompositions are based on the

concept of polyhedral decomposition, which can be constructed in polynomial time. In the
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middle sets of a surface cut decomposition, all vertices, except possibly a set of cardinality

O(γ), are situated along a set of O(γ) nooses of the surface with O(γ) common points.

This topological property of the middle sets is the source of the single-exponentiality of the

size of the tables in dynamic programming: they correspond to non-crossing packings of

a set where all its vertices, except possibly a set of cardinality O(γ), lie on the boundary

of a surface. Our next step is to reduce the problem of counting such packings to the

counting of non-crossing partitions of vertices on the boundary of the same surface. Then,

the single-exponential bound follows by the recent enumerative results of [33].

For performing dynamic programming, our approach resides in a common preprocess-

ing step that is to construct a surface cut decomposition. Then, what remains is just

to run a problem-specific dynamic programming algorithm on such a decomposition. The

exponential bound on the size of the tables of the dynamic programming algorithm follows

as a result of the enumeration analysis in Section 8.

Very recently, a new framework for obtaining randomized single-exponential algorithms

parameterized by treewidth in general graphs has appeared in [9]. This framework is based

on a dynamic programming technique named Cut&Count, which seems applicable to most

connected packing-encodable problems, like Connected Vertex Cover, Connected

Dominating Set, Feedback Vertex Set, or Steiner Tree. The randomization

in the algorithms of [9] comes from the usage a probabilistic result called the Isolation

Lemma [30], whose derandomization is a challenging open problem [4]. Therefore, the

existence of deterministic single-exponential algorithms parameterized by treewidth for

connected packing-encodable problems in general graphs remains wide open. Our results

for graphs on surfaces, as well as their generalization to any proper minor-free graph

family [34], can be seen as an intermediate step towards an eventual positive answer to

this question.

Organization of the paper. In Section 2, we give the definitions of the main topological

and graph theoretical concepts and tools that we use in this paper. In Section 3, we define

formally the class of connected packing-encodable problems and we formally settle the

combinatorial problem of their enumeration. In Section 4, we define the concept of a

polyhedral decomposition. In section 5, we give some results on the behavior of certain

width parameters on surfaces and in Section 6, we prove some graph-topological results.

The concept of a surface-cut decompositions, as well as the algorithm for its construction,

are given in Section 7. The enumeration results of the paper are presented in Section 8.

Finally, some conclusions and open problems are given in Section 9.

2 Preliminaries

Graphs. We use standard graph terminology, see for instance [12]. All graphs are finite

and undirected. Given a graph G and an edge e ∈ E(G), let G/e be the graph obtained

from G by contracting e, removing loops and parallel edges. If H can be obtained from
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a subgraph of G by a (possibly empty) sequence of edge contractions, we say that H is a

minor of G. Given a vertex u with degree two, by dissolving u we denote the operation

of replacing u and its two incident edges by an edge between its neighbors.

Topological surfaces. In this paper, surfaces are compact and their boundary is home-

omorphic to a finite set (possibly empty) of disjoint circles. We denote by β(Σ) the number

of connected components of the boundary of a surface Σ. The Surface Classification The-

orem [29] asserts that a compact and connected surface without boundary is determined,

up to homeomorphism, by its Euler characteristic χ(Σ) and by whether it is orientable

or not. More precisely, orientable surfaces are obtained by adding g ≥ 0 handles to the

sphere S
2, obtaining the g-torus Tg with Euler characteristic χ(Tg) = 2 − 2g, while non-

orientable surfaces are obtained by adding h > 0 cross-caps to the sphere, hence obtaining

a non-orientable surface Ph with Euler characteristic χ(Ph) = 2 − h. A subset Π of a

surface Σ is surface-separating if Σ \Π has at least two connected components.

As a conclusion, our surfaces are determined, up to homeomorphism, by their ori-

entability, their Euler characteristic, and the number of connected components of their

boundary. For computational simplicity, it is convenient to work with the Euler genus

γ(Σ) of a surface Σ, which is defined as γ(Σ) = 2− χ(Σ).

Graphs embedded in surfaces. Our main reference for graphs on surfaces is the

monograph of Mohar and Thomassen [29]. For a graph G we use the notation (G, τ) to

denote that τ is an embedding of G in Σ (that is, a drawing without edge crossings),

whenever the surface Σ is clear from the context. An embedding has vertices, edges, and

faces, which are zero-, one-, and two-dimensional open sets, and are denoted V (G), E(G),

and F (G), respectively. The degree d(v) of a vertex v is the number of edges incident with

v, counted with multiplicity (loops are counted twice).

For a graph G, the Euler genus of G, denoted γ(G), is the smallest Euler genus among

all surfaces in which G can be embedded. Determining the Euler genus of a graph is

an NP-hard problem [38], hence we assume throughout the paper that we are given an

already embedded graph. An O-arc is a subset of Σ homeomorphic to S
1. A subset

of Σ meeting the drawing only at vertices of G is called G-normal. If an O-arc is G-

normal, then we call it a noose. The length of a noose is the number of its vertices.

Many results in topological graph theory rely on the concept of representativity [32, 36],

also called face-width, which is a parameter that quantifies local planarity and density of

embeddings. The representativity rep(G, τ) of a graph embedding (G, τ) is the smallest

length of a non-contractible (i.e., non null-homotopic) noose in Σ. We call an embedding

(G, τ) polyhedral [29] if G is 3-connected and rep(G, τ) ≥ 3, or if G is a clique and

1 ≤ |V (G)| ≤ 3. With abuse of notation, we also say in that case that the graph G itself

is polyhedral.

For a given embedding (G, τ), we denote by (G∗, τ) its dual embedding. Thus G∗ is

the geometric dual of G. Each vertex v (resp. face r) in (G, τ) corresponds to some face
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v∗ (resp. vertex r∗) in (G∗, τ). Also, given a set S ⊆ E(G), we denote by S∗ the set of the

duals of the edges in S. Let (G, τ) be an embedding and let (G∗, τ) be its dual. We define

the radial graph embedding (RG, τ) of (G, τ) (also known as vertex-face graph embedding)

as follows: RG is an embedded bipartite graph with vertex set V (RG) = V (G)∪V (G∗). For

each pair e = {v, u}, e∗ = {u∗, v∗} of dual edges in G and G∗, RG contains edges {v, v∗},
{v∗, u}, {u, u∗}, and {u∗, v}. Mohar and Thomassen [29] proved that, if |V (G)| ≥ 4, the

following conditions are equivalent: (i) (G, τ) is a polyhedral embedding; (ii) (G∗, τ) is

a polyhedral embedding; and (iii) (RG, τ) has no multiple edges and every 4-cycle of RG

is the border of some face. The medial graph embedding (MG, τ) of (G, τ) is the dual

embedding of the radial embedding (RG, τ) of (G, τ). Note that (MG, τ) is a Σ-embedded

4-regular graph.

Tree-like decompositions of graphs. Let G be a graph on n vertices. A branch

decomposition (T, µ) of a graph G consists of an unrooted ternary tree T (i.e., all internal

vertices are of degree three) and a bijection µ : L → E(G) from the set L of leaves of

T to the edge set of G. We define for every edge e of T the middle set mid(e) ⊆ V (G)

as follows: Let T1 and T2 be the two connected components of T \ {e}. Then let Gi be

the graph induced by the edge set {µ(f) : f ∈ L ∩ V (Ti)} for i ∈ {1, 2}. The middle

set is the intersection of the vertex sets of G1 and G2, i.e., mid(e) := V (G1) ∩ V (G2).

The width of (T, µ) is the maximum order of the middle sets over all edges of T , i.e.,

w(T, µ) := max{|mid(e)| | e ∈ T}. An optimal branch decomposition of G is defined by

a tree T and a bijection µ which give the minimum width, the branchwidth, denoted by

bw(G).

Let G = (V,E) be a connected graph. For S ⊆ V , we denote by δ(S) the set of all

edges with an end in S and an end in V \S. Let {V1, V2} be a partition of V . If G[V \V1]

and G[V \ V2] are both non-null and connected, we call δ(V1) a bond of G [36].

A carving decomposition (T, µ) is similar to a branch decomposition, only with the

difference that µ is a bijection between the leaves of the tree and the vertex set of the

graph G. For an edge e of T , the counterpart of the middle set, called the cut set cut(e),

contains the edges of G with endvertices in the leaves of both subtrees. The counterpart of

branchwidth is carvingwidth, and is denoted by cw(G). In a bond carving decomposition,

every cut set is a bond of the graph. That is, in a bond carving decomposition, every cut

set separates the graph into two connected components.

Let G1 and G2 be graphs with disjoint vertex-sets and let k ≥ 0 be an integer. For

i = 1, 2, let Wi ⊆ V (Gi) form a clique of size k and let G′
i (i = 1, 2) be obtained from Gi

by deleting some (possibly no) edges from Gi[Wi] with both endvertices in Wi. Consider a

bijection h : W1 → W2. We define a clique sum G of G1 and G2, denoted by G = G1⊕kG2,

to be the graph obtained from the union of G′
1 and G′

2 by identifying w with h(w) for

all w ∈ W1. The integer k is called the size of the clique sum. Given a set of graphs

G and an integer ℓ ≥ 0, we define the ℓ-clique sum closure of G as the set of graphs Gℓ

recursively defined as follows: every graph in G is also in Gℓ, and if G1 ∈ G, G2 ∈ Gℓ, and
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G3 = G1 ⊕k G2 with 0 ≤ k ≤ ℓ, then G3 ∈ Gℓ.

3 Connected packing-encodable problems

The standard dynamic programming approach on branch decompositions requires the so

called rooted branch decomposition, defined as a triple (T, µ, er), where (T, µ) is a branch-

decomposition of G such that T is a tree rooted on a leaf vl of T incident with some edge

er. We slightly abuse notation by insisting that no edge of G is assigned to vl and thus

mid(er) = ∅ (for this, we arbitrarily pick some edge of a branch decomposition, subdivide

it and then connect by er the subdivision vertex with a new leaf vl). The edges of T are

oriented towards the root er and for each edge e ∈ E(T ) we denote by Ee the edges of G

that are mapped to leaves of T that are descendants of e. We also set Ge = G[Ee] and

we denote by L(T ) the edges of T that are incident with leaves of T . Given an edge e

whose tail is a non-leaf vertex v, we denote by e1, e2 ∈ E(T ) the two edges heading at v

(we call them children of e). When the tail of an edge of T is also a leaf of T then we call

it leaf-edge.

Typically, dynamic programming on a rooted branch decomposition (T, µ, er) of a

graph G associates some suitable combinatorial structure struct(e) with each edge e of T

such that the knowledge of struct(er) makes it possible to determine the solution to the

problem. Roughly speaking, struct(e) encodes all the ways that the possible certificates of

a partial solution on graph Ge may be restricted to mid(e). The computation of struct(e)

is done bottom-up by first providing struct(e) when e is a leaf-edge of T and then giving

a recursive way to construct struct(e) from struct(e1) and struct(e2), where e1 and e2 are

the children of e.

The encoding of struct is commonly referred as the “tables” of the dynamic program-

ming algorithm. It is desirable that the size of the tables, as well as the time to process

them, is bounded by f(|mid(e)|) · nO(1), where f is a function not depending on n. This

would give a polynomial-time algorithm for graphs of fixed branchwidth. In technical

terms, this means that the problem is Fixed Parameter Tractable (FPT), when parame-

terized by the branchwidth of the input graph (for more on Fixed Parameter Tractability,

see [17,20,31]). A challenge in the design of such algorithms is to reduce the contribution

of branchwidth to the size of their tables and therefore to simplify f as much as possible.

As indicated by the lower bounds in [7,25,26], for many problems like Independent Set,

Dominating Set, or q-Coloring for fixed q ≥ 3, f is not expected to be better than

single-exponential in general graphs.

Before we proceed with the description of the family of problems that we examine in

this paper, we need some definitions. Let G be a graph and let S be a set of vertices of

G. We denote by G the collection of all subgraphs of G. Each H ∈ G defines a packing

PS(H) of S such that two vertices x, y ∈ S belong to the same set of PS(H) if x, y belong

to the same connected component of H. We say that H1,H2 ∈ G are S-equivalent if

PS(H1) = PS(H2), and we denote it by H1 ≡S H2. Let GS the collection of all subgraphs
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of G modulo the equivalence relation ≡S. We define the set of all connected packings of S

with respect to G as the collection

ΨG(S) = {PS(H) | H ∈ GS}.

Notice that each member of ΨG(S) can indeed be seen as a packing of S, as its sets may

not necessarily meet all vertices of S.

In this paper we consider graph problems that can be solved by dynamic programming

algorithms on branch decompositions for which the size of struct(e) is upper-bounded by

2O(|mid(e)|) ·|ΨGe(mid(e))|·nO(1). We call these problems connected packing-encodable. We

stress that our definition of connected packing-encodable problem assumes the existence

of an algorithm with this property, but there may exist other algorithms whose tables

are much bigger. In the introduction, we gave a long list of problems that belong to

this category and, in the Appendix, we make a full description on how to do dynamic

programming for one of them. For these problems, dynamic programming has a single-

exponential dependance on branchwidth if and only if ΨGe(mid(e)) contains a single-

exponential number of packings, i.e., |ΨGe(mid(e))| = 2O(|mid(e)|).

However, in general the number of different connected packings that could be created

during the dynamic programming is not necessarily smaller than the number of the non-

connected ones. Therefore, it may linearly depend on the k-th Bell number, where k is the

branchwidth of the input graph. This implies that, in general, |ΨGe(mid(e))| = 2O(k log k)

is the best upper bound we may achieve for connected packing-encodable problems, at

least for deterministic algorithms. The purpose of this paper is to show that, for such

problems, this bound can be reduced to a single-exponential one when their input graphs

have bounded genus. In Section 7, we define the concept of a surface cut decomposition,

which is a key tool for the main result of this paper, resumed as follows.

Theorem 3.1 Every connected packing-encodable problem whose input graph G is em-

bedded in a surface of Euler genus γ, and has branchwidth at most k, can be solved by a

dynamic programming algorithm on a surface cut decomposition of G with tables of size

γO(k) · kO(γ) · γO(γ) · nO(1).

In Section 7, we prove (Theorem 7.2) that, given a graph G embedded in a surface of

Euler genus γ, a surface cut decomposition of G of width O(bw(G)+γ) can be constructed

in 2O(bw(G)) · n3 steps. Therefore, we conclude the following result.

Theorem 3.2 Every connected packing-encodable problem whose input graph G is em-

bedded in a surface of Euler genus γ, and has branchwidth at most k, can be solved in

γO(k) · kO(γ) · γO(γ) · nO(1) steps.

Given a parameterized problem with parameter k, an algorithm that solves it in time

2O(k) · nO(1) is called single-exponential FPT-algorithm. As finding an optimal embedding

of a graph of genus γ can be solved in f(γ) · n steps [28], we can restate Theorem 3.2 as

follows.
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Corollary 3.3 Every connected packing-encodable problem on graphs of fixed genus has a

single-exponential FPT-algorithm, when parameterized by the branchwidth of its input.

4 Polyhedral decompositions

We introduce in this section polyhedral decompositions of graphs embedded in surfaces.

Let G be an embedded graph, and let N be a noose in the surface. Similarly to [6], we

use the notation GSN for the graph obtained by cutting G along the noose N and gluing

a disk on the obtained boundaries.

Definition 4.1 Given a graph G = (V,E) embedded in a surface of Euler genus γ, a

polyhedral decomposition of G is a set of graphs G = {H1, . . . ,Hℓ} together with a set of

vertices A ⊆ V such that

• |A| = O(γ);

• Hi is a minor of G[V \A], for i = 1, . . . , ℓ;

• Hi has a polyhedral embedding in a surface of Euler genus at most γ, for i = 1, . . . , ℓ;

• G[V \ A] belongs to the 2-clique sum closure of G.

Observation 4.2 Note that an embedded graph H is not polyhedral if and only if there

exists a noose N of length at most two in the surface in which H is embedded, such that

either N is non-contractible or V (H)∩N separates H. Indeed, if H has representativity at

most two, then there exists a non-contractible noose N of length at most two. Otherwise,

since H is not polyhedral, H has a minimal separator S of size at most two. It is then

easy to see that there exists a noose containing only vertices of S.

Algorithm 1 provides an efficient way to construct a polyhedral decomposition, as it is

stated in Proposition 4.3. In the algorithm, the addition of an edge {u, v} represents the

existence of a path in G between u and v that is not contained in the current component.

Proposition 4.3 Given a graph G on n vertices embedded in a surface, Algorithm 1

constructs a polyhedral decomposition of G in O(n3) steps.

Proof: We first prove that the the output (G, A) of Algorithm 1 is indeed a polyhedral

decomposition of G, and then we analyze the running time.

Let us see that each component of G is a minor of G[V \ A]. Indeed, the only edges

added to G by Algorithm 1 are those between two non-adjacent vertices u, v that separate

a component H into several components H1, . . . ,Hℓ. For each component Hi, i = 1, . . . , ℓ,

there exists a path between u and v in H \Hi (provided that the separators of size 1 have

been already removed, which can we assumed without loss of generality), and therefore the

graph obtained from Hi by adding the edge {u, v} is a minor of H, which is inductively a

minor of G[V \A]. Also, each component of G is polyhedral by definition of the algorithm.
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Algorithm 1 Construction of a polyhedral decomposition of an embedded graph G
Input: A graph G embedded in a surface of Euler genus γ.

Output: A polyhedral decomposition of G.

A = ∅, G = {G} (the elements in G, which are embedded graphs, are called components).

while G contains a non-polyhedral component H do

Let N be a noose as described in Observation 4.2 in the surface in which H is embedded,

and let S = V (H) ∩N .

if N is non-surface-separating then

Add S to A, and replace in G component H with H [V (H) \ S]SN .

if N is surface-separating then

Let H1, H2 be the subgraphs of HSN corresponding to the two surfaces occurring after

splitting H

if S = {u} ∪ {v} and {u, v} /∈ E(H) then

Add the edge {u, v} to Hi, i = 1, 2.

Replace in G component H with the components of HSN containing at least one edge of

H .

return (G, A).

As a non-separating noose is necessarily non-contractible, each time some vertices are

moved to A, the Euler genus of the surfaces strictly decreases [29, Lemma 4.2.4]. Therefore,

|A| = O(γ).

By the construction of the algorithm, it is also clear that each component of G has

a polyhedral embedding in a surface of Euler genus at most γ. Finally, G[V \ A] can be

constructed by joining the graphs of G applying clique sums of size at most two.

Thus, (G, A) is a polyhedral decomposition of G according to Definition 4.1.

We now analyze the running time of the algorithm. Separators of size at most two can

be found in O(n2) steps [24]. A noose with respect to a graph H corresponds to a cycle in

the radial graph of H, hence can also be found2 in O(n2) (using that the number of edges

of a bounded-genus graph is linearly bounded by its number of vertices). Since each time

that we find a small separator we decrease the size of the components, the running time

of the algorithm is O(n3). �

5 Width parameters of graphs on surfaces

In this section we state some definitions and auxiliary results about several width param-

eters of graphs on surfaces, to be applied in Section 7 for building surface cut decomposi-

tions. In the same spirit of [23, Theorem 1] we can prove the following lemma. We omit

the proof here since the details are very similar3 to the proof in [23].

2A shortest non-contractible cycle can be found in 2O(γ log γ)n4/3 steps [6]. This running time improves

on O(n3) for a big range of values of γ.
3The improvement in the multiplicative factor of the Euler genus is obtained by applying more carefully

Euler’s formula in the proof analogous to that of [23, Lemma 2].
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Lemma 5.1 Let (G, τ) and (G∗, τ) be dual polyhedral embeddings in a surface of Euler

genus γ and let (MG, τ) be the medial graph embedding. Then max{bw(G),bw(G∗)} ≤
cw(MG)/2 ≤ 6 · bw(G) + 2γ + O(1). In addition, given a branch decomposition of G of

width at most k, a carving decomposition of MG of width at most 12k can be found in

linear time.

We would like to point out that in Lemma 5.1 we need the embeddings to be polyhedral.

Lemma 5.2 (folklore) The removal of a vertex from a non-acyclic graph decreases its

branchwidth by at most 1.

Lemma 5.3 Let G be a graph and let G be a collection of graphs such that G can be

constructed by joining graphs in G applying clique sums of size at most two. Given branch

decompositions {(TH , µH) | H ∈ G)}, we can compute in linear time a branch decompo-

sition (T, µ) of G such that w(T, µ) ≤ max{2, {w(TH , µH) | H ∈ G}}. In particular,

bw(G) ≤ max{2, {bw(H) | H ∈ G}}.

Proof: Note that if G1 and G2 are graphs with no vertex (resp. a vertex, an edge) in

common, then G1 ∪G2 = G1 ⊕0 G2 (resp. G1 ⊕1 G2, G1 ⊕2 G2). To prove Lemma 5.3, we

need the following two lemmata.

Lemma 5.4 Let G1 and G2 be graphs with at most one vertex in common. Then bw(G1∪
G2) = max{bw(G1),bw(G2)}.

Proof: Assume first that G1 and G2 share one vertex v. Clearly bw(G1 ∪ G2) ≥
max{bw(G1),bw(G2)}. Conversely, for i = 1, 2, let (Ti, µi) be a branch decomposition of

Gi such that w(Ti, µi) ≤ k. For i = 1, 2, let T v
i be the minimal subtree of Ti containing

all the leaves ui of Ti such that v is an endvertex of µi(ui). For i = 1, 2, we take an

arbitrary edge {ai, bi} of T v
i , we subdivide it by adding a new vertex wi, and then we build

a tree T from T1 and T2 by adding the edge {w1, w2}. We claim that (T, µ1 ∪ µ2) is a

branch decomposition of G1 ∪G2 of width at most k. Indeed, let us compare the middle

sets of (T, µ1 ∪ µ2) to those of (T1, µ1) and (T2, µ2). First, it is clear that the vertices of

V (G1) ∪ V (G2) − {v} appear in (T, µ1 ∪ µ2) in the same middle sets as in (T1, µ1) and

(T2, µ2). Secondly, mid({w1, w2}) = {v}, since v is a cut-vertex of G1 ∪ G2. Also, for

i = 1, 2, mid({ai, wi}) = mid({wi, bi}) = mid({ai, bi}), and the latter has size at most k

as w(Ti, µi) ≤ k. For all other edges e of Ti, i = 1, 2, mid(e) is exactly the same in T and

in Ti, since if e ∈ E(T v
i ) then v ∈ mid(e) in both T and Ti, and if e ∈ E(Ti \ T v

i ) then

v /∈ mid(e) in both T and Ti.

If G1 and G2 share no vertices, we can merge two branch decompositions (T1, µ1) and

(T2, µ2) by subdividing a pair of arbitrary edges, without increasing the width. �

Lemma 5.5 (Fomin and Thilikos [22]) Let G1 and G2 be graphs with one edge f in

common. Then bw(G1 ∪ G2) ≤ max{bw(G1),bw(G2), 2}. Moreover, if both endver-
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Figure 1: Merging branch decompositions (T1, µ1) and (T2, µ2) of two components H1 and

H2 in a polyhedral decomposition (G, A) of G = (V,E). There are three cases: (a) H1 and

H2 share two vertices v1, v2 and the edge e = {v1, v2} is in E; (b) H1 and H2 share two

vertices v1, v2 and e = {v1, v2} is not in E; (c) H1 and H2 share one vertex v.

tices of f have degree at least two in at least one of the graphs, then bw(G1 ∪ G2) =

max{bw(G1),bw(G2)}.

It remains only to show how to merge the branch decompositions (T1, µ1), (T2, µ2) of

two graphs H1, H2 in G. We distinguish four cases:

(a) H1 and H2 share two vertices v1, v2, and the edge e = {v1, v2} ∈ E(G). We take the

leaves in T1 and T2 corresponding to e, we identify them, and we add a new edge

whose leave corresponds to e (see Figure 1(a)).

(b) H1 and H2 share two vertices v1, v2, and the edge e = {v1, v2} /∈ E(G). We take

the leaves in T1 and T2 corresponding to e, we identify them, and we dissolve the

common vertex (see Figure 1(b)).

(c) H1 and H2 share one vertex v. We take two edges b, c in T1, T2 whose leaves corre-

spond to edges containing v, we subdivide them and add a new edge between the

newly created vertices (see Figure 1(c)).

(d) H1 and H2 share no vertices. We do the construction of case (c) for any two edges

of the two branch decompositions.

The above construction does not increase the branchwidth by Lemmata 5.4 and 5.5.

�

Observation 5.6 Let G = (V,E) be a graph, and let A ⊆ V . Given a branch decom-

position (T ′, µ′) of G[V \ A], we can obtain a branch decomposition (T, µ) of G with

w(T, µ) ≤ w(T ′, µ′) + |A| recursively as follows: First, for each edge {u, v} ∈ E(G) with

u ∈ V \ A and v ∈ A, we choose an edge e ∈ G[V \ A] containing u, and we replace the

12



leaf of T ′ corresponding to e with two incident pendant edges whose leaves correspond to

edges {u, v} and e, respectively. Finally, for each edge {u, v} ∈ E(G) with u, v ∈ A, we

take and arbitrary edge of T ′, subdivide it, and add a new edge whose leave corresponds

to edge {u, v}. It can be easily checked that the size of the middle sets has increased by at

most |A|.

Given an embedded graph G and a carving decomposition (T, µ) of its medial graph

MG, we define a radial decomposition (T ∗, µ∗) of the dual graph RG, where T
∗ = T and µ∗

is a bijection from the leaves of T to the set of faces of RG defined as follows: for each edge

e ∈ E(T ), µ∗(e) = f , where f is the face in RG corresponding to the vertex uf ∈ V (MG)

such that µ(e) = uf . Each edge e ∈ E(T ∗) partitions the faces of RG into two sets F1 and

F2. We define the border set of e, denoted bor(e), as the set of edges of RG that belong

to both F1 and F2. Note that F1 and F2 may intersect also in vertices, not only in edges.

If (T, µ) is a bond carving decomposition of MG, then the associated radial decom-

position (also called bond) has nice connectivity properties. Indeed, in a bond carving

decomposition, every cut set partitions the vertices of MG into two subsets V1, V2 such

that both MG[V1] and MG[V2] are non-null and connected. This property, seen in the

radial decomposition of RG, implies that each edge e ∈ E(T ∗) corresponds to a partition

of the faces of RG into two sets F1 and F2, namely black and white faces (naturally par-

titioning the edges into black, white, and grey), such that it is possible to reach any black

(resp. white) face from any black (resp. white) face by only crossing black (resp. white)

edges. In other words, the union of all black (resp. white) faces and edges is a connected

set.

Observation 5.7 Recall that all the faces of a radial graph RG are tiles, that is, each

face has exactly 4 edges. Also, each one of those tiles corresponds to a pair of dual edges

e and e∗ of G and G∗, respectively. Given a carving decomposition (T, µ) of MG (or

equivalently, a radial decomposition (T ∗, µ∗) of RG), one can obtain in a natural way

branch decompositions of G and G∗ by redefining the bijection µ from the leaves of T to

the edges of G (or G∗) that correspond to the faces of RG.

6 Some topological results

In this section we state two topological lemmata and some definitions that will be used in

Section 7. Given a collection S of sets, we denote their union by ∪∪∪∪∪∪∪∪∪S =
⋃

S∈S S.

Given a graph G embedded in a surface of Euler genus γ, its dual G∗ and a spanning

tree C∗ of G∗, we call C = {e ∈ E(G) | e∗ ∈ E(C∗)} a spanning cotree of G. We define a

tree-cotree partition (cf. [18]) of an embedded graph G to be a triple (T,C,X) where T is

a spanning tree of G, C is a spanning cotree of G, X ⊆ E(G), and the three sets E(T ),

C, and X form a partition of E(G). Eppstein proved [18, Lemma 3.1] that if T and C∗

are forests such that E(T ) and C are disjoint, we can make T become part of a spanning

tree T ′ and C become part of a spanning cotree disjoint from T ′, extending T and C to a
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tree-cotree decomposition. We can now announce the following lemma from [18, Lemma

3.2].

Lemma 6.1 (Eppstein [18]) If (T,C,X) is a tree-cotree decomposition of a graph G

embedded in a surface of Euler genus γ, then |X| = O(γ).

Let Σ be a surface and let N be a finite collection of O-arcs in Σ pairwise intersecting

at a finite zero-dimensional subsets (i.e., points) of Σ. For a point p ∈ Σ, let N (p) be the

number of O-arcs in N containing p, and let P (N ) = {p ∈ Σ : N (p) ≥ 2}; note that by

assumption P (N ) is a finite set of points of Σ. Then we define

θ(N ) =
∑

p∈P (N )

(N (p)− 1) .

Lemma 6.2 Let Σ be a surface without boundary with γ(Σ) = γ. Let N be a collection of

O(γ) O-arcs in Σ pairwise intersecting at finite zero-dimensional subsets of Σ, and such

that Σ \∪∪∪∪∪∪∪∪∪N has two connected components. Then θ(N ) = O(γ).

Proof: In order to prove the lemma, we define from N the following (multi)graph H

embedded in Σ: we first add a vertex vp in H for every point p in Σ such that N (p) ≥ 2.

We call such points repeated. We now distinguish four cases according to the number

of repeated points in an O-arc. First, for each O-arc N with at least three repeated

points, we order cyclically the repeated points in N , and the same ordering applies to the

corresponding vertices in H. Then, we add an edge in H between each two consecutive

vertices in that ordering. For each O-arc with exactly two repeated points p and q, we

add two parallel edges in H between vp and vq. For each O-arc with exactly one repeated

point p, we add in H a loop at vertex vp. Finally, for each O-arc N with no repeated

points, we add to H a new vertex vN with a loop. Visually, H is the graph embedded in

Σ corresponding to the union of the O-arcs in N .

In order to prove the result, by the construction of H it is enough to prove that
∑

v∈V (H)(dH(v) − 2) = O(γ). By assumption, H separates Σ into two connected com-

ponents Σ′ and Σ′′. Let H1,H2, . . . ,Hr be the maximal connected subgraphs of H. In

particular, r ≤ |N | = O(γ) by hypothesis. Some of these connected subgraphs may be

incident with Σ′ but not with Σ′′, or vice-versa. Additionally, there is at least one con-

nected subgraph Hi incident with both connected components. Without loss of generality

we assume that the subgraphs H1,H2, . . . ,Hp are incident only with Σ′, Hp+1, . . . ,Hq are

incident with both components, and Hq+1, . . . ,Hr are incident only with Σ′′. It is clear

that there exists a path joining a vertex in Hi with a vertex in Hi+1 if 1 ≤ i ≤ q − 1 or

p+ 1 ≤ i ≤ r − 1.

From graphs H1,H2, . . . ,Hp, . . . ,Hq (the ones which are incident with Σ′) we construct

a new graph G1 in the following inductive way: we start taking Hq and Hq−1, and a path

joining a vertex in Hq to a vertex in Hq−1. This path exists because Hq and Hq−1 are

incident with Σ′. Consider the graph obtained from Hq and Hq−1 by adding an edge that
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joins this pair of vertices. Then, we delete Hq and Hq−1 from the initial list and add

this new connected graph. This procedure is done q − 1 times. At the end, we obtain a

connected graph G′ incident with both Σ′ and Σ′′ where each vertex has degree at least

three. Finally, we apply the same procedure with G′,Hq+1, . . . ,Hr, obtaining a connected

graph G. Observe also that

∑

v∈V (H)

(dH(v)− 2) ≤
∑

v∈V (G)

(dG(v) − 2) <
∑

v∈V (G)

dG(v) = 2|E(G)| .

In what follows, we obtain upper bounds for 2|E(G)|. Observe that H defines a pair of

faces over Σ, not necessarily disks. In the previous construction of G, every time we add

an edge we either subdivide a face into two parts or not. Consequently, the number of

faces that G defines over Σ is at most 2 + |N |. The next step consists in reducing the

surface in the following way: let f be a face determined by G over Σ. If f is contractible,

we do nothing. If it is not, there is a non-contractible cycle S
1 contained on f . Let Σ1

be the connected component of ΣSS1 which contains G. Then G defines a decomposition

of Σ1, γ(Σ1) ≤ γ, and the number of faces has been increased by at most one. Observe

that for each operation S we reduce the Euler genus and we create at most one face. As

the Euler genus is finite, so is the number of S operations. This gives rise to a surface Σs

with γ(Σs) ≤ γ, and such that all faces determined by G are contractible. Additionally,

the number of faces that G determines over Σs is smaller than 2 + |N |+ γ.

G defines a map on Σs (i.e., all faces are contractible), and consequently we can apply

Euler’s formula. Then |F (G)|+|V (G)| = |E(G)|+2−γ(Σs). Then, as |F (G)| ≤ 2+|N |+γ,

we obtain that |E(G)|+2− γ(Σs) = |V (G)|+ |F (G)| ≤ |V (G)|+2+ |N |+ γ. The degree

of each vertex is at least three, and thus 3|V (G)| ≤ 2|E(G)|. Substituting this condition

in the previous equation, we obtain

|E(G)| + 2− γ(Σs) ≤ |V (G)|+ 2 + |N |+ γ ≤ 2

3
|E(G)| + 2 + |N |+ γ.

Isolating |E(G)|, we get that 2|E(G)| ≤ 6|N |+6γ(Σs)+6γ ≤ 6|N |+12γ. As by hypothesis

|N | = O(γ), the previous bound yields the desired result. �

7 Surface cut decompositions

Sphere cut decompositions have been introduced as a combinatorial concept in [36] and

were used for the first time in [16] to analyze the running time of algorithms based on

dynamic programming over branch decompositions on planar graphs (see also [14,15,35].

In this section we generalize sphere cut decompositions to graphs on surfaces; we call them

surface cut decompositions.

Definition 7.1 Given a graph G embedded in a surface Σ with γ(Σ) = γ, a surface

cut decomposition of G is a branch decomposition (T, µ) of G such that there exists a
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polyhedral decomposition (G, A) of G with the following property: for each edge e ∈ E(T ),

either |mid(e) \A| ≤ 2, or there exists a graph H ∈ G such that

• mid(e) \A ⊆ V (H);

• the vertices in mid(e) \ A are contained in a set N of O(γ) nooses of Σ pairwise

intersecting only at subsets of mid(e) \ A.

• θ(N ) = O(γ).

• Σ \ ∪∪∪∪∪∪∪∪∪N contains exactly two connected components, such that the graph Ge \ A is

embedded in the closure of one of them.

Note that a sphere cut decomposition is a particular case of a surface cut decomposition

when γ = 0, by taking A = ∅, G containing only the graph G itself, and all the vertices

of each middle set contained in a single noose. We provide now an algorithm to construct

a surface graph decomposition of an embedded graph. The proof of Theorem 7.2 uses

Proposition 4.3 and all the results of Sections 5 and 6.

Algorithm 2 Construction of a surface cut decomposition of an embedded graph G
Input: An embedded graph G.

Output: A surface cut decomposition of G.

Compute a polyhedral decomposition (G, A) of G, using Algorithm 1.

for each component H of G do

1. Compute a branch decomposition (T ′

H
, µ′

H
) of H , using [2, Theorem 3.8].

2. Transform (T ′

H
, µ′

H
) to a carving decomposition (T c

H
, µc

H
) of the medial graph MH , using

Lemma 5.1.

3. Transform (T c

H
, µc

H
) to a bond carving decomposition (T b

H
, µb

H
) of MH , using [36].

4. Transform (T b

H
, µb

H
) to a branch decomposition (TH , µH) of H , using Observation 5.7.

Construct a branch decomposition (T, µ) of G by merging, using Lemma 5.3, the branch decom-

positions {(TH , µH) | H ∈ G}, and by adding the edges of G with at least one endvertex in A,

using Observation 5.6.

return (T, µ).

Theorem 7.2 Given a graph G on n vertices embedded in a surface of Euler genus γ, with

bw(G) ≤ k, Algorithm 2 constructs, in 23k+O(log k) · n3 steps, a surface cut decomposition

(T, µ) of G of width at most 27k +O(γ).

Proof: We prove, in this order, that the output (T, µ) of Algorithm 2 is indeed a surface

cut decomposition of G, then that the width of (T, µ) is at most 27bw(G) + O(γ), and

finally the claimed running time.

(T, µ) is a surface cut decomposition of G. We shall prove that all the properties of

Definition 7.1 are fulfilled. First note that, as (G, A) is a polyhedral decomposition of G,

we have that |A| = O(γ).
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By construction, it is clear that (T, µ) is a branch decomposition of G. In (T, µ), there

are some edges that have been added in the last step of Algorithm 2, in order to merge

branch decompositions of the graphs in G, with the help of Lemma 5.3. Let e be such an

edge. Since (G, A) is a polyhedral decomposition of G, any two graphs in G share at most

two vertices, hence |mid(e) \ A| ≤ 2.

All other edges of (T, µ) correspond to an edge of a branch decomposition of some

polyhedral component H ∈ G. Let henceforth e be such an edge. Therefore, mid(e) \A ⊆
V (H). To complete this part of the proof, we prove in a sequence of three claims that the

remaining conditions of Definition 7.1 hold.

Claim 7.3 The vertices in mid(e) \ A are contained in a set N of O(γ) nooses.

Proof: The proof uses the tree-cotree partition defined in Section 6.

Recall that e is an edge that corresponds to a branch decomposition (TH , µH) of a

polyhedral component H of G. The branch decomposition (TH , µH) of H has been built

by Algorithm 2 from a bond carving decomposition of its medial graphMH , or equivalently

from a bond radial decomposition of its radial graph RH . Due to the fact that the carving

decomposition of MH is bond, edge e partitions the vertices of MH into two sets – namely,

black and white vertices – each one inducing a connected subgraph of MH . There are

three types of edges in RH : black, white, and grey, according to whether they belong to

faces of the same color (black or white) or not. Therefore, the corresponding black and

white faces also induce connected subgraphs of RH , in the sense that it is always possible

to reach any black (resp. white) face from any black (resp. white) face only crossing black

(resp. white) edges.

Let F be the set of grey edges of RH . Since each edge of RH contains a vertex from H

and another from H∗, the vertices in mid(e) are contained in RH [F ], so it suffices to prove

that RH [F ] can be partitioned into a set of O(γ) cycles (possibly sharing some vertices).

Note that each cycle in the radial graph RH corresponds to a noose in the surface.

To this end, first note that in RH [F ] all vertices have even degree. Indeed, let v ∈
V (RH [F ]), and consider a clockwise orientation of the edges incident with v in RH [F ].

Each such edge alternates from a black to a white face, or viceversa, so beginning from

an arbitrary edge and visiting all others edges in the clockwise order, we deduce that the

number of edges incident with v is necessarily even.

Therefore, RH [F ] can be partitioned into a set of cycles. Let us now bound the

number of such cycles. Since the subgraph induced by the black (resp. white) faces of RH

is connected, we can consider in MH a spanning tree T ∗
B (resp. T ∗

W ) corresponding to the

black (resp. white) faces of RH . Merge both trees by adding a new edge e∗0, and let T ∗

be the resulting tree. Let T be a spanning tree of RH disjoint from T ∗ (in the sense that

there is no pair of dual edges e and e∗ with e ∈ E(T ) and e∗ ∈ E(T ∗)); such a spanning

tree exists by [18, Lemma 3.1]. Now consider the tree-cotree partition (T, T ∗,X), where

X is the set of edges of RH that are neither in T nor in T ∗.
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Each edge of T ∗, except e∗0, corresponds to two faces of RH of the same color. Therefore,

the set F ∈ E(RH) of edges separating faces of different color is contained in T ∪{e0}∪X.

Since T is a tree, each cycle of RH [F ] uses at least one edge in {e0} ∪ X. Therefore,

RH [F ] can be partitioned into at most 1 + |X| cycles. The result follows from the fact

that (T, T ∗,X) is a tree-cotree partition, and therefore |X| = O(γ) by Lemma 6.1. �

Claim 7.4 Let N be the set of nooses constructed in the proof of Claim 7.3. Then ∪∪∪∪∪∪∪∪∪N
separates Σ into two connected components.

Proof: By Claim 7.3, the vertices in mid(e) \ A are contained in ∪∪∪∪∪∪∪∪∪N . The claim holds

from the fact that for each component H of G, (T b
H , µb

H) is a bond carving decomposition

of MH , and by taking into account the discussion before Observation 5.7. �

Note that the collection of nooses constructed in the proof of Claim 7.3 is finite and

its elements pairwise intersect only at subsets of mid(e) \ A, as required. In particular,

for this collection N of nooses, the parameter θ(N ) is well-defined (see Section 6).

Claim 7.5 Let N be the set of nooses constructed in the proof of Claim 7.3. Then θ(N ) =

O(γ).

Proof: By Claim 7.4, ∪∪∪∪∪∪∪∪∪N separates Σ into two connected components. The claim then

holds by Lemma 6.2. �

The width of (T, µ) is at most 27 · bw(G) + O(γ). For simplicity, let k = bw(G).

By Proposition 4.3, each polyhedral component H is a minor of G, hence bw(H) ≤ k

for all H ∈ G. In Step 1 of Algorithm 2, we compute a branch decomposition (T ′
H , µ′

H)

of H of width at most k′ = 9
2k, using Amir’s algorithm [2, Theorem 3.8]. In Step 2, we

transform (T ′
H , µ′

H) to a carving decomposition (T c
H , µc

H) of the medial graph MH of H

of width at most 12k′, using Lemma 5.1. In Step 3, we transform (T c
H , µc

H) to a bond

carving decomposition (T b
H , µb

H) of MH of width at most 12k′, using the algorithm of [36].

Then, using Observation 5.7, we transform in Step 4 (T b
H , µb

H) to a branch decompo-

sition (TH , µH) of H. By the proof of Claim 7.3, the discrepancy between w(TH , µH)

and w(T b
H , µb

H)/2 is at most the bound provided by Lemma 6.2, i.e., O(γ). Therefore,

w(TH , µH) ≤ 6k′ +O(γ) = 27k +O(γ), for all H ∈ G.
Then, we merge the branch decompositions of the polyhedral components, using

Lemma 5.3, and finally we add the edges of G with at least one endvertex in A, using

Observation 5.6, to obtain a branch decomposition (T, µ) of G.

Combining the discussion above with Lemmata 5.2 and 5.3 and Observation 5.6, and

using that |A| = O(γ), we get that

w(T, µ) ≤ max{2, {w(TH , µH) | H ∈ G}}+ |A|
≤ 27k +O(γ) + |A|
= 27k +O(γ).
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Algorithm 2 runs in 23k+O(log k) ·n3 time. We analyze sequentially the running time of

each step. First, we compute a polyhedral decomposition of G using Algorithm 1 in O(n3)

steps, by Proposition 4.3. Then, we run Amir’s algorithm in each component in Step 1,

which takes O(23kk3/2n2) time [2, Theorem 3.8]. We would like to stress that this step is

the only non-polynomial procedure in the construction of surface cut decompositions. Step

2 can be done in linear time by Lemma 5.1. Step 3 can be done in O(n2) time [36]. Step

4 takes linear time by Observation 5.7. Merging the branch decompositions can clearly be

done in linear time. Finally, since any two elements in G share at most two vertices, the

overall running time is the claimed one. �

8 Upper-bounding the size of the tables

In this section we show that by using surface cut decompositions in order to solve con-

nected packing-encodable problems in surface-embedded graphs, one can guarantee single-

exponential upper bounds on the size of the tables of dynamic programming algorithms.

Then Theorem 3.2 follows directly by the definition of a connected packing-encodable

problem and the following lemma.

Lemma 8.1 Let G be a graph embedded in a surface Σ without boundary and Euler genus

γ, and let (T, µ) be a surface cut decomposition of G of width at most k. Then for every

e ∈ E(T ), |ΨGe(mid(e))| = γO(γ) · kO(γ) · γO(k).

Before we give the proof of the above lemma, we first need to define formally the notion

of non-crossing partitions on surfaces with boundary and then to prove some lemmata that

combine elements from topology and combinatorics.

A non-crossing partition of a set of size k, from a combinatorial point of view, is a

partition of the set {1, 2, . . . , k} with the following property: if {a, b, c, d} ⊆ {1, 2, . . . , k}
with 1 ≤ a < b < c < d ≤ k and some subset in the partition contains a and c, then no

other subset contains both b and d. One can represent such a partition on a disk by placing

k points on the boundary of the disk, labeled consecutively, and drawing each subset as

a convex polygon (also called block) on the points belonging to the subset. Then, the

“non-crossing” condition is equivalent to the fact that the blocks are pairwise disjoint. See

Figure 2 for some examples.

The enumeration of non-crossing partitions on a disk is one of the first non-trivial

problems in enumerative combinatorics: it is well-known (see e.g. [19]) that the the number

of non-crossing partitions of {1, 2, . . . , k} on a disk is equal to the Catalan number C(k) =
1

k+1

(2k
k

)

∼ 4k

k3/2
√
π
= O(4k). This is the main combinatorial property exploited to obtain

single-exponential dynamic programming algorithms on planar graphs using sphere cut

decompositions [16,35,36].
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Figure 2: Non-crossing partitions on a disk, which enumerate the number of partial solu-

tions on planar graphs when using sphere cut decompositions.

The generalization of the notion of non-crossing partition to surfaces of higher genus is

not as straignforward as in the case of the disk, and must be defined carefully. We consider

pairs (Σ, S) where Σ is a surface whose boundary has β (Σ) connected components, each

one homeomorphic to a simple circle, and S is a set of vertices on this boundary. A partition

family for the pair (Σ, S) is a collection B of mutually non-intersecting connected subsets

of Σ, such that each vertex in S belongs to some set in B.

Actually the concept of a partition family is not enough for our purposes, as we have to

incorporate the presence of the set of vertices A arising from a polyhedral decomposition.

This set of vertices plays is some sense the role of apices in Graph Minors theory, and this

is why we also call these vertices apices. For this reason we consider pairs of the form

(Σ∪ΓA, S∪A) where Σ is a surface with boundary, S is a set of vertices on this boundary,

A is a vertex set not on the boundary (the apices), and ΓA is the closed set containing

the points of the graph CA obtained if we take a complete graph with A as vertex set

and add to it S together with all edges between the vertices of A and S. We require that

ΓA ∩Σ = S and we see the set ΓA as “flying above” the surface Σ. That way, we call the

edges of CA flying edges, and we treat them as closed subsets of ΓA by adding to them

the two endpoints of their boundary. We use the notation ΣA to denote Σ ∪ ΓA (clearly

Σ = Σ∅). To extend the definition of partition family, we take a partition family BΣ of

Σ and, on top of it, we consider a set EA of flying edges where each apex is incident with

some edge in EA. An extended partition family for (ΣA, S) is a collection BΣA of subsets

of ΣA ∪ S defined as

BΣA = {C | C is a connected component of the set ∪∪∪∪∪∪∪∪∪(BΣ ∪ EA)} ,

whereBΣ and EA are taken as before. For simplicity, we may drop the index of a collection

BΣ or BΣA when it is clear from the context whether it refers to Σ or to ΣA.

Notice that each partition family B for (ΣA, S ∪ A) defines a partition of S ∪ A as

follows.

R(B) = {(S ∪A) ∩B | B ∈ B}.

We say that two extended partition families B1 and B2 for (ΣA, S ∪A) are equivalent

if R(B1) = R(B2) and we denote it by B1 ≡ B2. The set of the non-crossing partitions

with apices of the set S ∪ A (where S and A are vertices embedded in ΣA as before),

20



denoted by ΠΣA(S ∪A), is the set of equivalence classes of the extended partition families

for (ΣA, S ∪A) with respect to the relation ≡.

We define ΠΣ(S) = ΠΣ∅(S∪∅), and note that, if Σ is the disk and |S| = k, then |ΠΣ(S)|
is the k-th Catalan number and therefore |ΠΣ(S)| = O(4k). The asymptotic enumeration

of |ΠΣ(S)| for general surfaces is quite a complicated problem. However, its behavior for

surfaces Σ where γ(Σ) and β(Σ) are bounded is not significantly different from the disk in

what concerns its exponential growth. In particular it holds that lim|S|→∞ |ΠΣ(S)|1/|S| = 4

and this is a consequence of the following enumerative result from [33].

Theorem 8.2 Let Σ be a surface with boundary. Then the number |ΠΣ(S)|, for |S| = k,

verifies

|ΠΣ(S)| ≤k→∞
C(Σ)

Γ (3/2γ(Σ) + β(Σ)− 3)
· k3/2γ(Σ)+β(Σ)−4 · 4k , (1)

where C(Σ) is a function depending only on Σ that is bounded by γ(Σ)O(γ(Σ)), and Γ is

the Gamma function: Γ(u) =
∫∞
0 tu−1e−tdt.

The above result, which is critical for our analysis, has been proved using tools from

analytic combinatorics (see [19]): singularity analysis over expressions obtained by the

symbolic method. Actually, we prefer to translate it to the following looser form that is

more convenient for our algorithmic purposes.

Corollary 8.3 Let Σ be a surface with boundary and let S be a set of k vertices in the

boundary of Σ. Let also γ be an integer such that γ(Σ), β(Σ) ≤ γ. Then |ΠΣ(S)| =

γO(γ) · kO(γ) · 4k.

For every set S we define B(S) as the collection of all its partitions. Recall that if

|S| = l, then |B(S)| is the l-th Bell number and that |B(S)| = 2O(l log l). Also, given a

collection C = {S1, . . . , Sq} of subsets of S and a subset S′ ⊆ S, we denote by C|S′ the

collection of all non-empty sets in {S1 ∩ S′, . . . , Sq ∩ S′}. Clearly, if C is a partition of S,

then C|S′ is a partition of S′.

Lemma 8.4 Let Σ be a surface with boundary, let S be a set of vertices in the boundary of

Σ, and let A be a set of apices. Let also γ and k be integers such that |A|, γ(Σ), β(Σ) ≤ γ

and |S| ≤ k. Then |ΠΣA(S ∪A)| = γO(γ) · kO(γ) · γO(k).

Proof: Let R ∈ ΠΣA(S ∪ A) and let B be an extended partition family for (ΣA, S ∪ A),

where R(B) = R. We define BΣ as the set of connected components of the set (∪∪∪∪∪∪∪∪∪B)∩Σ.

Notice that BΣ is a partition family for (Σ, S) and thus RΣ = R(BΣ) ∈ ΠΣ(S). Notice

also that R|A is a member of B(A). We conclude that each R ∈ ΠΣA(S ∪ A) uniquely

generates a pair (RΣ,R|A) ∈ ΠΣ(S)×B(A).
We define P(RΣ,R|A) as the set of all possible R’s in ΠΣA(S ∪ A) that can generate a

given pair (RΣ,R|A) ∈ ΠΣ(S)× B(A).

Claim 8.5 |P(RΣ,R|A)| ≤ (|R|A|+ 1)|RΣ|.
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Proof: We use the notation R|A = {A1, . . . , Aq}. Let R ∈ P(RΣ,R|A). By the above

definitions, for each i ∈ {1, . . . , p}, there is a unique set, say P (i), of R containing Ai

as a subset. Moreover, there is a (possibly empty) subset, say B(i), of RΣ such that

P (i) \ Ai = ∪∪∪∪∪∪∪∪∪B(i). Notice that {B(1), . . . ,B(i)} is a packing of RΣ (not necessarily a

partition of RΣ, as some sets of RΣ may appear directly as sets in R). This means that

each R ∈ P(RΣ,R|A) corresponds to some packing of RΣ and some bijection of its sets to

some of the elements of R|A. This corresponds to the partial functions from the set RΣ

to the set R|A, that is the claimed upper bound. �

The rest of the proof is based on the fact that

|ΠΣA(S ∪A)| ≤
∑

(RΣ,R|A)∈

ΠΣ(S)×B(A)

|P(RΣ,R|A)|.

Recall now that |B(A)| ≤ |A||A| ≤ γγ . Also, from Corollary 8.3, it holds that |ΠΣ(S)| =
γO(γ) · kO(γ) · 4k. The Claim above implies that P(RΣ,R|A) ≤ (γ + 1)k, as every packing in

ΠΣ(S) has at most |S| ≤ k sets and every packing in B(A) has at most |A| ≤ γ sets. The

proof of the lemma is completed by putting all these facts together. �

Let G be a graph and let S be a subset of V (G). We define ΠG(S) as the set of all

partitions in ΨG(S), formally,

ΠG(S) = {R | R ∈ ΨG(S) and ∪∪∪∪∪∪∪∪∪R = S}.

Lemma 8.6 Let G be a graph and let S′ ⊆ S ⊆ V (G). Then |ΠG(S
′)| ≤ |ΠG(S)|.

Proof: In order to prove the lemma, let us define an injective application i : ΠG(S
′) →֒

ΠG(S). Let R ∈ ΠG(S
′), which implies by definition (see Section 3) that there exists a

subgraph H ⊆ G whose connected components define the packing R of S′. We define

i(R) as the packing of S given by the same subgraph H. It is then easy to check that if

R1,R2 ∈ ΠG(S
′) with R1 6= R2, then i(R1) 6= i(R2). �

Lemma 8.7 Let G′ be a graph with a set S′ ⊆ V (G′) and an edge e = {x, y} whose

endvertices are both vertices of S′. Let also G be the graph obtained from G′ after the

contraction of e to a vertex ve, and let S = S′ \ {x, y} ∪ {ve}. Then |ΠG(S)| ≤ |ΠG′(S′)|.

Proof: Similarly to the proof of Lemma 8.7, let us define an injection i : ΠG(S) →֒
ΠG′(S′). Let R ∈ ΠG(S), and let H be a subgraph of G whose connected components

define the packing R of S. We distinguish two cases. First, if ve /∈ V (H), we define i(R)

to be the packing of S′ given by the connected components of H. Otherwise, if ve ∈ V (H),

let H ′ ⊆ G′ be the graph obtained from H by removing ve and adding x, y, the edge {x, y},
and all the edges in G′ between x, y and the neighbors of ve in H. In this case we define

i(R) to be the packing of S′ given by the connected components of H ′. It is again easy to

check that if R1,R2 ∈ ΠG(S) with R1 6= R2, then i(R1) 6= i(R2). �

The following observation gives the obvious way to enumerate packings from partitions.
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Observation 8.8 Let G be a graph and let S ⊆ V (G). Then ΨG(S) =
⋃

S′⊆S ΠG(S
′).

Combining Lemma 8.6 and Observation 8.8 we obtain the following.

Observation 8.9 Let G be a graph and let S′ ⊆ S ⊆ V (G). Then |ΨG(S
′)| ≤ |ΨG(S)|.

Let H be a graph embedded in a surface Σ with boundary. We denote by BH the

collection of connected subsets of Σ corresponding to the connected components of H.

Lemma 8.10 Let G be a graph containing a set A of vertices such that G\A is embedded

in a surface Σ. Let also S be the set of vertices of G that lie on the boundary of Σ. Then

|ΠG(S ∪A)| ≤ |ΠΣA(S ∪A)|.

Proof: It is enough to prove that for every partition R in ΠG(S ∪A) there is an extended

partition family B for (ΣA, S ∪A) such that R(B) = R. For this, consider a subgraph H

of G where PS∪A(H) = R. As R ∈ ΠG(S ∪ A), it holds that ∪∪∪∪∪∪∪∪∪R = S ∪ A and therefore

∪∪∪∪∪∪∪∪∪R ⊆ V (H). As H \ A can be embedded in Σ, the set BH\A is a partition family for

(Σ, S). Let now HA be the subgraph of H formed by its edges that are not embedded in

Σ. Observe that HA is isomorphic to a subgraph of CA and therefore its edges can be seen

as a collection EA of flying edges where each apex vertex is contained in some edge of EA.

Let B be the connected components of the set ∪∪∪∪∪∪∪∪∪(BH\A ∪ EA). Clearly, B is an extended

partition family for (ΣA, S ∪ A). It is now easy to verify that R(B) = R and the lemma

follows. �

Lemma 8.11 Let G be a graph containing a set A of vertices such that G\A is embedded

in a surface Σ with boundary. Let also S be the set of vertices of G that lie on the

boundary of Σ and A′ ⊆ A. Then, if |S| ≤ k and |A|, γ(Σ), β(Σ) ≤ γ, then |ΨG(S ∪A′)| =
γO(γ) · kO(γ) · γO(k).

Proof: From Observation 8.9, it is enough to prove the lemma for the case where A′ = A.

From Lemmata 8.4 and 8.10, it follows that |ΠG(S ∪ A)| = γO(γ) · kO(γ) · γO(k). From

Lemma 8.6, we obtain that |ΠG(W )| ≤ |ΠG(S ∪ A)| = γO(γ) · kO(γ) · γO(k) for every

W ⊆ S∪A. Therefore, from Observation 8.8, |ΨG(S∪A)| ≤ 2|S|+|A| ·γO(γ) ·kO(γ) ·γO(k) =

γO(γ) · kO(γ) · γO(k) and the lemma follows. �

Let Σ be a surface without boundary, and let N be a set of O-arcs in Σ pairwise inter-

secting at zero-dimensional subsets of Σ. Then the closure of each connected component

of Σ \∪∪∪∪∪∪∪∪∪N is called a pseudo-surface. Notice that the boundary of a pseudo-surface is a

subset of N and that the definition of the parameter θ(N ) introduced in Section 6 can

be naturally extended to pseudo-surfaces. If Σ is a pseudo-surface with boundary given

by a finite set N of O-arcs pairwise intersecting at finite zero-dimensional subsets of Σ,

note that Σ is a surface with boundary if and only if θ(N ) = 0. Note also that the clo-

sure of each of the two connected components in the last condition of Definition 7.1 is a

pseudo-surface.
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Figure 3: Example of the construction of Σ′ and G′ in the proof of Lemma 8.12. On

the left, we have a graph G (depicted with thick lines) embedded in a pseudo-surface Σ

whose boundary is given by the set of nooses N = {N1, N2, N3, N4, N5} (in grey) pairwise

intersecting at vertices of G, with θ(N ) = 4. On the right, the corresponding graph G′

embedded in a pseudo-surface Σ′ with boundary given by N ′ = {N ′
1, N2, N3, N4, N5}, and

such that θ(N ′) = 3. In this example, we have that |S| = 6 and |S′| = 7.

Lemma 8.12 Let G be a graph embedded in a pseudo-surface Σ whose boundary is given

by a collection N of nooses of G pairwise intersecting only at vertices of G, and such that

θ(N ) > 0. Let S be the set of vertices of G that lie on the boundary of Σ. Then there

is a graph G′ embedded in a pseudo-surface Σ′ with boundary given by a collection N ′ of

nooses of G′, such that

• θ(N ′) = θ(N )− 1;

• G is the result of the contraction of an edge in G′;

• if S′ is the set of vertices of G′ that lie on the boundary of Σ′, then |S′| = |S|+ 1.

Proof: Without loss of generality, let v ∈ N1∩ . . .∩Nℓ, with N1, . . . , Nℓ ∈ N and ℓ ≥ 2, so

by assumption v ∈ S ⊆ V (G); for an illustration throughout the proof, see Figure 3. We

build from Σ a pseudo-surface Σ′ by replacing noose N1 with a noose N ′
1 obtained from

N1 by slightly deforming it around v in such a way that v /∈ N ′
1 (note that this is clearly

possible, as by assumption the nooses intersect only at vertices of G). As the nooses in Σ

and in Σ′ intersect at the same vertices except for vertex v, we have that θ(N ′) = θ(N )−1.

We now construct G′ from G as follows: We start from the embedding of G in Σ, and we

embed it in Σ′ in such a way that v ∈ N2 ∩ . . .∩Nℓ. Finally, we add a new vertex v′ ∈ N ′
1

and we add the edge {v, v′}. By construction, it is clear that G can be obtained from G′

by contracting edge {v, v′}, and that S′ = S ∪ {v′}. �

Proof of Lemma 8.1: In case |mid(e) \ A| ≤ 2, we have that |mid(e)| = O(γ) and the

result follows as |ΠGe(mid(e))| ≤ |B(O(γ))| = 2O(γ log γ). In the remaining case, let H be
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the graph of the polyhedral decomposition (G, A) of G that corresponds to edge e. Let

also N be the corresponding set of O(γ) nooses meeting all vertices of mid(e) \ A. Let

also Σ∗ be the closure of the connected component of Σ\⋃N∈N N where the graph Ge \A
is embedded. Clearly, Σ∗ is a pseudo-surface with boundary given by a set of nooses N
with θ(N ) = O(γ). By inductively applying Lemmata 8.7 and 8.12, we can assume that

Σ∗ is a surface with boundary such that O(|mid(e)|+ γ(Σ)) = O(k+ γ) of the vertices of

Ge lie on this boundary. Then the result follows directly from Lemma 8.11 by setting Ge

instead of G, Σ∗ instead of Σ, A∩mid(e) instead of A′, and A∩ V (Ge) instead of A. �

9 Conclusions and open problems

As stated in Theorem 3.2, our results can be summarized as follows: Every connected

packing-encodable problem whose input graph G is embedded in a surface of Euler genus

γ, and has branchwidth at most k, can be solved in γO(k) · kO(γ) · γO(γ) · nO(1) steps.

As we mentioned, the problems tackled in [13] can be encoded with pairings, and

therefore they can be seen as special cases of packing-encodable problems. As a result

of this, we reproduce all the results of [13]. Moreover, as our approach does not use

planarization, our analysis provides algorithms where the dependence on the Euler genus

γ is better than the one in [13]. In particular, the running time of the algorithms in [13] is

2O(γ·k+γ2·log k) · nO(1), while in our case the running time is 2O(log γ·k+γ·log k+γ·log γ) · nO(1).

Dynamic programming is important for the design of subexponential exact or parame-

terized algorithms. Using the fact that bounded-genus graphs have branchwidth at most

O(
√
γ · n) [21], we derive the existence of exact algorithms in O∗(2O(log γ·√γn+γ·logn+γ·log γ)

steps for all connected packing-encodable problems. Moreover, using bidimensionality the-

ory (see [10,11]), one can derive 2O(γ·log γ·
√
k+γ·log k) · nO(1) time parameterized algorithms

for all bidimensional connected packing-encodable problems, where here k is the corre-

sponding parameter.

Note that the running time of our algorithms is conditioned by the construction of an

appropriate surface cut decomposition. This preprocessing step takes 23k+O(log k) ·n3 steps

by Theorem 7.2. Finding a preprocessing algorithm with better polynomial dependance

remains open. As finding an optimal branch decomposition of a surface-embedded graph

in polynomial time is open, it may be even possible that computing an optimal surface

cut decomposition can be done in polynomial time.

Sometimes dynamic programming demands even more complicated encodings. We

believe that our results can also serve in this direction. For instance, surface cut decompo-

sitions have recently been used in [1] for minor containment problems, where tables encode

partitions of packings of the middle sets.

A natural extension of our results is to consider more general classes of graphs than

bounded-genus graphs. This has been done in [15] for problems where the tables of the

algorithms encode pairings of the middle sets. Extending these results for connected
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packing-encodable problems (where tables encode subsets of the middle sets) using the

planarization approach of [15] appears to be a quite complicated task. We believe that

our surface-oriented approach could be more successful in this direction and we find it an

interesting, but non-trivial task [34].
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Appendix

Two examples of dynamic programming algorithms

In this Appendix we present two examples of typical dynamic programming algorithms on

graphs of bounded branchwidth. The first algorithm solves the Vertex Cover problem,

which is a problem whose solutions can be simply encoded by a subset of vertices. The

second algorithm solves the Connected Vertex Cover problem, which is a packing-

encodable problem, but cannot be encoded by neither a subset nor a pairing of vertices.

Dynamic programming for Vertex Cover. Given a graph G and a non-negative

integer ℓ, we have to decide whether G contains a set S ⊆ V (G), |S| ≤ ℓ, meeting all edges

of G.

Let G be a graph and X,X ′ ⊆ V (G) where X ∩X ′ = ∅. We say that vc(G,X,X ′) ≤ ℓ

if G contains a vertex cover S where |S| ≤ ℓ and X ⊆ S ⊆ V (G) \X ′. Let Re = {(X, ℓ) |
X ⊆ mid(e) and vc(Ge,X,mid(e) \ X) ≤ ℓ} and observe that vc(G) ≤ ℓ if and only

if (∅, ℓ) ∈ Rer . For each e ∈ E(T ) we can compute Re by using the following dynamic

programming formula:

Re =



















{(X, ℓ) | X ⊆ e and X 6= ∅ ∧ ℓ ≥ |X|} if e ∈ L(T )

{(X, ℓ) | ∃(X1, ℓ1) ∈ Re1 ,∃(X2, ℓ2) ∈ Re2 :

(X1 ∪X2) ∩mid(e) = X ∧ ℓ1 + ℓ2 − |X1 ∩X2| ≤ ℓ} if e 6∈ L(T )

Note that for each e ∈ E(T ), |Re| ≤ 2|mid(e)| · ℓ. Therefore, the above algorithm can

check whether vc(G) ≤ ℓ in O(4bw(G) · ℓ2 · |V (T )|) steps. Clearly, this simple algorithm is

single-exponential in bw(G). Moreover the above dynamic programming machinery can

be adapted to many other combinatorial problems where the certificate of the solution is

a (non-restricted) subset of vertices (e.g. Dominating Set, 3-Coloring, Independent

Set, among others).

Dynamic programming for Connected Vertex Cover. Suppose now that we are

looking for a connected vertex cover of size ≤ ℓ. Clearly, the above dynamic programming

formula does not work for this variant as we should keep track of more information on X

towards encoding the connectivity demand.

Let G be a graph, X ⊆ V (G) and H be a (possibly empty) hypergraph whose vertex

set is a subset of X, whose hyperedges are non-empty, pairwise non-intersecting, and such

that each vertex of H belongs to some of its hyperedges (we call such a hypergraph partial

packing of X). Suppose that H is a partial packing on mid(e). We say that cvc(G,H) ≤ ℓ

if G contains a vertex cover S where |S| ≤ ℓ and such that if C is the collection of the

connected components ofGe[S], then either |E(H)| = |C| and (X, {X∩V (C) | C ∈ C}) = H
or E(H) = ∅ and |C| = 1.
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As before, let Qe = {(H, ℓ) | cvc(G,H) ≤ ℓ} and observe that cvc(G) ≤ ℓ if and only if

((∅, ∅), ℓ) ∈ Qer . The dynamic programming formula for computing Qe for each e ∈ E(T )

is the following.

Qe =























































{(H, ℓ) | min{ℓ, |E(H)| + 1} ≥ |V (H)| ≥ 1 if e ∈ L(T )

{(H, ℓ) | ∃(H1, ℓ1) ∈ Qe1 ,∃(H2, ℓ2) ∈ Qe2 :

V (H1) ∩ (mid(e1) ∩mid(e2)) = V (H2) ∩ (mid(e1) ∩mid(e2)),

(H1 ⊕H2)[mid(e)] = H, ℓ1 + ℓ2 − |V (H1) ∩ V (H2)| ≤ ℓ},
if E(H) = ∅ then |E(H1 ⊕H2)| = 1, and

if E(H) 6= ∅ then |E(H1 ⊕H2)| = |E(H)| if e 6∈ L(T ).

In the above formula, H1⊕H2 is the hypergraph with vertex set V (H1)∪V (H2) where each

of its hyperedges contains the vertices of each of the connected components of H1 ∪H2.

Clearly, each H corresponds to a collection of subsets of X and the number of such

collections for a given set mid(e) of r elements is given by the r-th Bell number of r,

denoted by Br. By taking the straightforward upper bound |Br| = 2O(r log r), we have that

one can check whether an input graph G has a connected vertex cover of size at most ℓ in

2O(bw(G)·log bw(G)) · ℓ · |V (T )| steps.
As the growth of Br is not single-exponential, we cannot hope for a single-exponential

(in bw(G)) running time for the above dynamic programming procedure, and no de-

terministic algorithm is known for this problem running in time single-exponential in

bw(G). The same problem appears for numerous other problems where further restric-

tions apply to their solution certificates. Such problems can be connected variants of prob-

lems encodable by a subset of vertices, and others such as Maximum Induced Forest,

Maximum d-Degree-Bounded Connected Subgraph, Metric TSP, Maximum d-

Degree-Bounded Connected Induced Subgraph and all the variants studied in [35],

Connected Dominating Set, Connected r-Domination, Feedback Vertex Set,

Connected Feedback Vertex Set, Maximum Leaf Spanning Tree, Maximum

Full-Degree Spanning Tree, Steiner Tree, or Maximum Leaf Tree.
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