
Efficient Evaluation of Nondeterministic
Automata Using Factorization Forests?

Miko laj Bojańczyk and Pawe l Parys

University of Warsaw

Abstract. In the first part of the paper, we propose an algorithm which
inputs an NFA A and a word a1 · · · an, does a precomputation, and then
answers queries of the form: “is the infix ai · · · aj accepted by A?”. The
precomputation is in time poly(A) · n, and the queries are answered in
time poly(A). This improves on previous algorithms that worked with
the exponentially less succinct DFA’s or monoids.
In the second part of the paper, we propose a transducer model for data
trees. We show that the transducer can be evaluated in linear time. We
use this result to evaluate XPath queries in linear time.
The algorithms in both parts of the paper use factorization forests.

This paper develops the use of factorization forests [8] for efficient evaluation
of automata. The paper has two parts. The first part, which builds on [4, 2],
uses factorization forests to evaluate automata on arbitrary infixes of a word in
constant time, after a linear time precomputation. The second part, which builds
on [3, 7], uses factorization forests to efficiently evaluate queries of XPath.

Infix evaluation. The first part of the paper studies the following problem,
which is parametrized by a regular language L ⊆ A∗. For a word a1 · · · an ∈ A∗,
we want to build a data structure. Then, we want to use the data structure to
quickly answer queries of the form: given two positions i ≤ j in {1, . . . , n}, answer
if the infix ai · · · aj belongs to L. We call this the infix evaluation problem. A
solution of the problem consists of two algorithms: the preprocessing that inputs
a1 · · · an and builds the data structure, and the query answering which inputs
i ≤ j and outputs the answer to ai · · · aj ∈ L.

A natural solution uses a divide and conquer approach. Suppose that L is
recognized by a nondeterministic automaton with states Q. The preprocessing
splits the word into halves, quarters, and so on. Each such infix is decorated
with the set of state pairs that describe possible runs of the automaton over the
infix. The preprocessing is in time poly(Q) · n, while the query answering is in
time poly(Q) · log(n).

As observed by Thomas Colcombet in [4], a beautiful result of Imre Simon,
called the Factorization Forest Theorem [8], can be used to answer the queries
? We acknowledge the financial support of the Future and Emerging Technologies

(FET) programme within the Seventh Framework Programme for Research of the
European Commission, under the FET-Open grant agreement FOX, number FP7-
ICT-233599. Work supported by Polish government grant no. N N206 380037.

in time independent of the word’s length. The data structure uses an algebraic
approach to regular languages, where a language is recognized by a homomor-
phism from A∗ into a finite monoid M . The preprocessing is in time linear in
|M | · n, and the query answering is in time linear in |M |.

What if the language L is given by an automaton and not a homomorphism?
We can always compile the automaton to a monoid and use the above result.
From the point of view of the length n of the word, the preprocessing is in linear
time, and the query answering is in constant time. However, compiling even a
deterministic automaton into a monoid can yield an exponential blowup. This
gives big constants in the linear and constant times.

We can do better. If the language L is given by a deterministic automaton
with states Q, a fairly straightforward structure, called the tape construction
in [2], can be used to solve the problem with preprocessing in time poly(Q) · |n|
and query answering in time poly(Q).

In this paper, we improve the results from [4] and [2]: we give an algorithm
that works with nondeterministic automata. As with the tape construction, the
preprocessing is in time poly(Q) · n and the query answering in time poly(Q).
The new algorithm does not use the tape construction, which does not seem to
generalize from deterministic to nondeterministic automata. Instead, it builds
on factorization forests.

XPath evaluation. The second part of the paper is about XPath evaluation.
The input for an XPath query is an XML document, which we model as a data
tree. A data tree is a tree where each node carries two pieces of information:
a tag name or label from a finite alphabet A, as well as a data value from an
infinite alphabet D (such as integers, or unicode strings). An XPath query says
“yes” or “no” to each node in a data tree. The XPath evaluation problem is to
find the nodes to which the query says “yes”.

There are algorithms which can solve this problem in time polynomial in the
size of the query ϕ and the number of nodes n in the data tree, see [1] for a survey.
However, with large XML documents (e.g. dblp.xml is currently 674 megabytes
and millions of nodes), an algorithm that is quadratic in n is impractical. In
previous work [3, 7], we have developed algorithms which are linear in n.

The first algorithm, from [3], runs in time exp(ϕ) · n. The reason for the
exponential complexity in the query is that parts of the query are represented
by monoids. The algorithm works for an extension of XPath, called Regular
XPath, which allows Kleene star in programs. The second algorithm, from [7],
runs in time poly(ϕ) ·n. It works for XPath without the Kleene star. The general
idea is that monoids can be avoided without the Kleene star. Both algorithms,
especially the first one, use the ideas developed in the infix evaluation problem
that is studied in the first part of this paper.

In the second part of this paper, we propose a new approach to XPath eval-
uation. We introduce an automaton model, which acts as an intermediate step
between XPath and the evaluation algorithm. The automaton model is a type
of transducer, which we call a data aggregate transducer. Given an input data
tree, a data aggregate transducer produces new labels for the nodes, and does

2

not change the data values. A data aggregate transducer can evaluate a query
by writing “yes” or “no” in the new label, depending on whether a node is se-
lected. (Strictly speaking, we use compositions of data aggregate transducers to
evaluate XPath queries.)

The advantage of this new approach is that the syntax of XPath is abstracted
into a simple automaton model. This makes the evaluation algorithm easier to
understand, and its structure more apparent. We also believe that the automata
models we introduce, in the general form for data trees (data aggregate transduc-
ers), and in the restricted form for trees without data (which we call aggregate
transducers), are of independent interest for evaluation algorithms.

The evaluation algorithm uses the algebraic techniques developed in the first
part of the paper. Thanks to the efficient algorithms for nondeterministic au-
tomata (the path expressions in an XPath query are naturally modeled by non-
deterministic automata), we get a new result: For data trees of bounded depth, a
query ϕ of XPath with Kleene star can be evaluated in time poly(ϕ) ·n. In other
words, for documents of bounded depth (a common situation), we can combine
the efficient evaluation of [7] with the more powerful query language of [3].

1 Evaluating infix queries for nondeterministic automata

This section contains the first part of the paper, which talks about the infix
evaluation problem. Instead of specifying an infix by its first x and last position
y, we use the set of all of its positions X = {x, x+1, . . . , y}. This way we can use
set operations on infixes. If X is a set of positions in a word w, we write w[X] for
the subsequence of w consisting of positions from X, e.g. a1a2a3[{1, 3}] = a1a3.
We use the name factor of w for a connected set of positions, and the name infix
for the word w[X] whenX is a factor. (Of course, the algorithms represent factors
by just keeping the first and last position.) We write x, y, z for positions, X,Y, Z
for sets of positions, and F,G,H for factors (which are also sets of positions).

Factorization forests. A factorization forest for a word w is a family of factors
that contains {x} for every position x in w, and where every two factors are either
disjoint, or one is contained in the other. There is a natural forest structure on
the factors, so we can talk about descendants, parents, children and siblings, etc.
The level of a factor is the number of its ancestors (including itself).

Suppose that F1, . . . , Fn are consecutive factors (i.e. the first position of Fi+1

is the next position after the last position of Fi). A collation of these factors is any
union of these factors that is also a factor, i.e. any Fi∪· · ·∪Fj for i ≤ j. Consider
a morphism α : A∗ →M into a finite monoid, which we use to map factors into
M . We say that F1, . . . , Fn are α-homogeneous if all of their collations have the
same value under α. A factorization forest is called α-homogeneous if any choice
of at least three consecutive siblings is α-homogeneous.

Suppose that w is a word with a factorization forest F that is α-homogeneous
for a morphism α : A∗ →M . Colcombet observed in [4] that for any factor I of
w, not necessarily from F , its image under α can be calculated in time linear in

3

the height of F . Our work builds on this observation. As a first step, we show
that the time can be even logarithmic in the height of F .
Logarithmic querying. For the algorithms, we represent a factorization forest F
as follows. Each factor F ∈ F is represented by a record with its first and last
position, and its image under α. Each position x contains a pointer to the record
of the factor {x}.

Each factor record stores a pointer to its parent factor record, but also to
some other ancestors, as described below. Let n be a number from 0 to the
logarithm of the height of the factorization forest. Consider a factor F ∈ F . We
create a pointer from the record of F to the record of the 2n-parent of F , call
it G. (The 2n-parent is the ancestor 2n levels above.) This pointer is called the
accelerating pointer of length 2n. It is decorated by two elements of M , which
are the images under α of the two factors below.

– left(F,G): positions from G that are strictly before all positions from F .
– right(F,G): positions from G that are strictly after all positions from F .

The number of accelerating pointers, and the time required to compute them, is
|F| · log h, where h is the height of F . From now on, we assume in our algorithms
that factorization forests are equipped with accelerating pointers.

The benefit of accelerating pointers is that one can go from a factor to any of
its ancestors by following a number of accelerating pointers that is logarithmic
in the height of the forest. This observation, together with the original idea of
using factorization forests homogeneous with a morphism to calculate images of
infixes, gives the following result.

Lemma 1.1. Let α : A∗ →M be a morphism, and let F be an α-homogeneous
factorization forest for a word w ∈ A∗. Using the accelerating pointers, the image
under α of any factor can be calculated in time logarithmic in the height of F .

Combining the above lemma with a divide and conquer approach, we get a
solution for the infix evaluation problem that has querying in time log(log(|w|)).
This is because a divide and conquer approach yields a factorization forest with
binary branching, and such a forest is α-homogeneous for any α.

1.1 Monoid of binary relations.

Let Q be any finite set. We write MQ for the monoid of binary relations Q,
where the monoid operation is relation composition. In this section, we study
factorization forests that are α-homogeneous, for some α : A∗ → MQ. The size
of the monoid MQ is exponential in the size of Q. The main result of the first
part of this paper is that we can build a factorization forest without worrying
about this exponential blowup.

Theorem 1.2. Consider a morphism α : A∗ → MQ. For any word w ∈ A∗ we
can find, in time poly(Q) · |w|, an α-homogeneous factorization forest for w of
height at most1 poly(MQ).
1 The height can be even linear in |MQ|, but it requires more care in the proof.

4

We describe the proof of this theorem in Section 1.2.

Corollary 1.3. Let L ⊆ A∗ be a language recognized by a nondeterministic
automaton with states Q. The infix evaluation problem for a word w ∈ A∗ can
be solved with precomputation poly(Q)·|w| and query answering in time poly(Q).

Proof. The nondeterministic automaton can be identified with a morphism α :
A∗ → MQ, which maps a word w to the set of pairs (p, q) such that the au-
tomaton has a run from p to q over the word. Using the above theorem, we can
compute a factorization forest in time poly(Q) · |w|. The height of the forest may
be exponential in Q, since the height is bounded by MQ. However, we can use
the logarithm from Lemma 1.1 to query answer infix queries in time poly(Q). �

1.2 Proof of Theorem 1.2

For the rest of this section, we fix the monoid MQ and the morphism α. We write
r, s, t for the binary relations which are elements of MQ, and r◦s for composition
of binary relations, which is the monoid operation.
Green’s relations. Let r, s, t, t1, t2 below be elements of MQ.

– r is called a prefix of s, written r ≥R s, if there is some t with r ◦ t = s.
– r is called a suffix of s, written r ≥L s, if there is some t with t ◦ r = s.
– r is called an infix of s, written as r ≥J s, if there are t1, t2 with t1◦r◦t2 = s.
– If r is both a prefix and a suffix of s, we write r ≥H s.

These relations are called Green’s relations. It is easy to see that each of Green’s
relations is a pre-order: it is both transitive and reflexive. The relations are
not necessarily antisymmetric and therefore it makes sense to consider their
connected components. For instance, we say that r and s are R-equivalent,
written r ∼R s, if both r ≥R s and s ≥R r. An equivalence class is called an
R-class. Likewise for L, J and H.

In the algorithm, we will need to perform operations on MQ in time poly(Q).
One such operation is calculating composition r ◦ s, this is easy to do. A prob-
lem that we will have to work around is that we do not know how to test
J -equivalence in time poly(Q). However, we can do this in some special cases,
as stated in the following lemma.

Lemma 1.4. Given r, s ∈MQ, we can calculate the following in time poly(Q):

r ◦ s, r ◦ s ?∼J r, r ◦ s ?∼J s.

Proof strategy. We present the proof strategy for Theorem 1.2.
The definition of α-homogeneous factors or factorization forests also makes

sense in a more general setting, where α is any function that maps factors of
F to some set, not necessarily a morphism. We use this generalization to define
notions of J -homogeneity and H-homogeneity. Let F1, . . . , Fn be consecutive
factors. We say the factors are J -homogeneous if they are f -homogeneous under

5

the function f that maps a factor to the J -class of its image. (In general, f is
not a morphism.) Likewise we define a J -homogeneous factorization forests, and
the same for H.

Our proof strategy is to first compute a J -homogeneous factorization forest,
then upgrade it to an H-homogeneous one, and then upgrade that one to an
α-homogeneous one. The main difficulty is in the first step – computing a J -
homogeneous forest; we do this below in Lemma 1.5. The other steps are done
using basically the same techniques as in the proof of the factorization forest
theorem from [6], or to the proofs of [8, 4].

Lemma 1.5. Let w ∈ A∗. One can compute a J -homogeneous factorization
forest F in time poly(Q) · |w|. The forest has height linear in MQ.

Proof. The algorithm processes word positions from left to right. We begin by
describing the invariant.

The invariant. After processing position x, the algorithm will have computed a
factorization forest Fx for the prefix 1, . . . , x. For each factor we remember one
additional bit: if the factor is open or closed. All open factors have to contain
the last processed position x. Open factors might grow when processing new
positions. Once a factor becomes closed, it does not change. All singleton factors
are closed. Suppose F1, . . . , Fn ∈ Fx is a maximal set of siblings (written from
left to right). The invariant is that they satisfy the following property ?:

? The factors F1, . . . Fn−1, and the factor F1 ∪ · · · ∪Fn−1 are all J -equivalent.

Additionally, when they are children of an open factor F ∈ Fx, the following
property ?? is satisfied:

?? F and F1 are J -equivalent.

The invariant is satisfied by the initial configuration F1 = {{x}}.
Once we have processed the whole word, it is not difficult to get a J -

homogeneous factorization forest from the one produced by the algorithm. For
each maximal set of siblings F1, . . . , Fn ∈ Fx, it is enough to add a factor
F1 ∪ · · · ∪ Fn−1.
Updating the forest. Suppose we have computed Fx−1, and we want to compute
Fx. Consider the factors open in Fx−1 :

x− 1 ∈ F1 (F2 (· · · (Fn.

There are also closed factors containing x − 1, at least one: {x − 1}. Let C be
the biggest of them. We obtain Fx from Fx−1 as follows.

– Add {x}.
– If C and F1 are not J -equivalent, or n = 0, add open factor G0 = C ∪ {x}.
– Replace the factors Fi by Gi = Fi ∪ {x}, for i ∈ {1, . . . , n}.
– When Gi\{x} and Gi are not J -equivalent close Gi, for i = 0 (if G0 was

added) and for i ∈ {1, . . . , n}.

6

The test on J -equivalence in the second and the last step is done using
Lemma 1.4, since we are testing J -equivalence of a factor and its suffix or prefix.
Below we argue that the invariant is preserved. Then, we show why the algorithm
runs in the required time, and why the factorization forest has height linear in
MQ.

Correctness. Extending a factor does not impact on property ?, as it does not
talk about a last sibling. Property ? has to be checked only for the siblings of
the newly added factor {x}. If G0 is created, {x} has only one sibling, so ? is
satisfied. Otherwise C is no longer the last sibling. This happens only when C is
J -equivalent to its parent F1. As F1 is open, it is J -equivalent to its first child
(from ??), hence to all its children (from ?), which gives ? in the new forest.

Now check the property ?? for open factors. Factor G0 stays open only when
G0 and G0\{x} = C are J -equivalent, which is exactly ??. Any other Gi stays
open when it is J -equivalent to Fi, which (from ??) is equivalent to its first child
(which is also the first child of Gi).

Running time. A potential problem is the last step. Potentially we have to do
n tests for J -equivalence. However notice that when Gi\{x} and Gi are J -
equivalent for some i, then they are R-equivalent (Lemma A.2), hence also
Gj\{x} and Gj are R-equivalent (J -equivalent) for any j > i. Thus we may
stop testing greater i when we detect an equivalence. The number of tests for
J -equivalence is bounded by the number of factors becoming closed (plus one).
Since the total number of factors in a factorization forest is at most twice the
length of the word, we have a limit on the total number of operations in the last
step of the algorithm.

Two implementation problems remain. First, where do we get the images of
the factors F1, . . . , Fn that are used in the tests for J -equivalence? The answer
is that our algorithm maintains for each open factor Fj , the image of its closed
part Fj − Fj−1. Second, what is the cost of adding x to the factors Fi? The
answer is that this can achieved for free, if we do not store the ends of open
factors, but we only keep in mind that they all end in the currently processed
position x.

Height of the forest. Why is the height of the factorization forest linear in MQ?
It would be useful to look at the J -class of the first child of each non-singleton
factor. The following invariant is preserved by the algorithm: whenever a factor
F in the factorization forest is the parent of a non-singleton factor G, then the
first child of F has a smaller J -class than the first child of G. It guarantees that
the level of a factor is bounded by the position of its first child in the ≤J order.

Why is the invariant satisfied? First observe an auxiliary property of the
forest: every closed factor in the factorization forest (except singletons) has a
different (smaller) J -class than its first child. Indeed, when a factor Gi becomes
closed, it has a different J -class than Gi\{x}, which contains the first child of
Gi.

To prove the invariant notice that during execution of the algorithm, the first
child of a factor is never modified. Hence it is enough to analyze each moment
when a new pair of a parent and its child is created. It happens only in the second

7

step, when G0 is created (creating {x} does not matter, as the invariant does not
talk about singleton factors). First compare G0 with its only non-singleton child
C. As C is closed, from the above we know that its first child has greater J -class
than C itself, which is the first child of G0. Now compare G0 with its parent G1.
The factor G0 is created only when C (the first child of G0 has greater J -class
than F1. Because F1 is open, from ?? we get that it is J -equivalent with its first
child (which is also the first child of G1). �

2 Aggregate Transducers

In this part of the paper, we introduce a new transducer model for data trees.
This transducer is designed so that: a) it can compute interesting properties,
such as XPath queries; b) it can be evaluated in linear time.

2.1 Trees without data

Basic definitions. We work on finite, labeled, sibling-ordered trees. The trees are
unranked, which means that there is no restriction on the number of children
of a node. We use the usual notions of node, root, child, parent, descendant,
ancestor etc. We write t(x) for the label assigned by the tree t to the node
x. We write trees(A) for the set of trees labeled by alphabet A. To recognize
tree languages, we use nondeterministic automata on unranked trees. The exact
choice of automaton model is not important for the discussion here; we choose
nondeterministic finite hedge automata as defined in Section 8.2.2 of [5].
Transducers. Let A be an input alphabet and B an output alphabet. If s and t
are trees with the same nodes, over alphabets A and B, then we write s⊗ t for
the tree over alphabet A×B that has the same nodes as s, t and maps each node
x to the pair (s(x), t(x)). Consider a tree language over the product alphabet
A×B. This language can interpreted as a binary relation

f ⊆ trees(A)× trees(B)

which contains a pair of trees (s, t) if the tree s⊗ t belongs to the language. Note
that the relation only contains tree pairs that have the same nodes. This type
of relation is called a transducer. We use functional notation for transducers,
writing f(s) for the set of trees t with (s, t) ∈ f . We say a tree automaton
represents f if it represents the underlying tree language over alphabet A×B.
Aggregation. Consider an alphabet B equipped with a linear order. Suppose
that s and t are trees over B that have the same nodes. We use the linear order
to define a new tree, written st t, which we call the aggregation of s and t. The
tree s t t has the same nodes as s and t, it assigns to a node x the bigger of
the labels s(x), t(x). The aggregation operation is commutative and associative,
and therefore it makes sense to talk about the aggregation tS of a set S of trees
which share the same nodes.

8

Aggregate transducers. Suppose that f is a transducer with input alphabet A
and output alphabet B. Suppose also that B is equipped with a linear order.
Consider the function, call it tf , defined as

s ∈ trees(A) 7→ tf(s) =
⊔

t∈f(s)

t ∈ trees(B).

The notation tf(s) is unambiguous, since (tf)(s) and t(f(s)) mean the same
thing. If f(s) is empty, we define tf(s) to be the tree with nodes from s labeled
by the minimal element of B. Note that while f maps each tree to a set of trees,
the function tf maps each tree to a single tree. Any function of the form tf
is called an aggregate transducer. We believe that aggregate transducers are of
independent interest.

2.2 Trees with data

Data trees. Fix an infinite domain D of data values, e.g. D = N. A data tree
over a finite alphabet A is a tree over alphabet A×D. The set of all data trees
over an alphabet A is denoted dtrees(A). We write such trees as t⊗ µ, where t
is a tree over A and µ a tree over D. The label of a node is its label in t, its data
value is its label in µ. We use the name class for a set of nodes with the same
data value. We assume that the data values are not greater than the number
of nodes; thanks to this the classes can be found in time linear in the tree size.
Data trees will be our document model for XPath queries2.
Data aggregate transducer. We overload the ⊗ notation for sets as follows: if t is
a tree over A and X is a set of nodes, we write t⊗X for the tree over A×{0, 1},
where the label of each node in t is enriched by a bit indicating membership in X.
Consider a transducer f with input alphabet A×{0, 1} and output alphabet B.
Suppose also that B is equipped with a linear order so that trees over B can be
aggregated. Consider the function, call it f̂ , defined as

s⊗ µ ∈ dtrees(A) 7→ f̂(s⊗ µ) =
⊔

Xa class of µ

tf(s⊗X) ∈ trees(B).

This is a function that maps a data tree over A to a tree without data over B.
We use the name data aggregate transducer for any such function. An automaton
representing f̂ is any automaton representing f . Note that since tf(s) is itself
an aggregation, the output f̂(s⊗ µ) is⊔

Xa class of µ

⊔
t∈f(s⊗X)

t.

The main motivation behind data aggregate transducers is that they can be
used to evaluate XPath queries. We show this in Section 3.
2 In XML instead of small numbers we have arbitrary strings; however they can be

sorted lexicographically and replaced by numbers in time linear in their total size.
This is true even when the string value in an element node is not given explicitly,
but is a concatenation of string values in its children, see [7].

9

Evaluation. The principal result on data aggregate transducers is that they can
be evaluated in linear time. We have two variants of this result. The first variant
works for the general case of data trees, but the constant in the linear time
is exponential in the state space of the data aggregate transducer. The second
variant has a polynomial constant, but it works only for data words, which are
the special case of data trees where each node has at most one child.

Theorem 2.1. Let f̂ be a data aggregate transducer represented by a nondeter-
ministic tree automaton with states Q. The output of f̂ on a data tree t⊗ µ can
be evaluated in time

– exp(Q) · |t| in the general tree case;
– poly(Q) · |t| if t⊗ µ is a data word, i.e. each node has one child.

We do not know if the variant for the general tree case can be improved to
run in time poly(Q) · |t|.

2.3 Evaluating a data aggregate transducer on data words
In this section, we prove the word case of Theorem 2.1, which says that data
aggregate transducers can be evaluated in linear time. The tree case is done in
the appendix. Instead of writing a data word as a tree where each node has one
child, we use the standard notation for words as sequences of letters a1 · · · an.

We fix a data aggregate transducer f̂ , and a nondeterministic automaton A
of states Q that recognizes the underlying transducer f . The input alphabet of
A is A×{0, 1}×B. Fix also an input data word w⊗ µ of length n. We want to
compute the output f̂(w ⊗ µ). When talking about factors, we mean factors in
a word of length n.
Snippets. We write ⊥ for the minimal letter in the output alphabet B of f . For a
word v over alphabet B and a set of positions Y , we we write suY for the word
obtained from v by replacing the labels of positions outside Y by ⊥. A partial
output is any value (tf(w ⊗ X)) u Y for some class X. A snippet is a partial
output in which Y is a factor that is either disjoint with X, or included in X.

The type of a word v ∈ (A× {0, 1})∗ is the set of state pairs (p, q) such that
A has a run from p to q over v⊗u for some u ∈ B∗. The internal type of a factor
Y in a word w ⊗X is the type of the corresponding infix. Let Y1 (respectively,
Y2) consist of all positions before (after) a factor Y . The external type of the
factor Y in a word w⊗X is the set of state pairs (p, q) such that (qI , p) is in the
internal type of Y1 and (q, qF) is in the internal type of Y2 for an initial state
qI and an accepting state qF . The external type of Y can be deduced from the
internal types of Y1 and Y2.

We will use a concise representation for a snippet (tf(w ⊗ X)) u Y . The
snippet representation consists of: the factor Y , its external type in w ⊗X and
a membership bit saying whether Y is contained in X or disjoint with X. Note
that this information determines the value of (tf(w⊗X))uY , as a word in B∗,
even without knowing X.

We now have the necessary concepts to present our proof strategy for Theo-
rem 2.1. Our goal is to produce the output f̂(w⊗µ). Our algorithm will represent

10

this output as the aggregation of a set of snippets. Whenever a subroutine of
the algorithm inputs or outputs a set of snippets, we assume that the snippets
are given by their representations.

The algorithm works in three stages.

Stage 1. We compute two factorization forests. Consider two words

w0 = w ⊗ ∅, w1 = w ⊗ {1, . . . , n} ∈ (A× {0, 1})∗.

We will use factorization forests for these words, for the morphism

α : (A× {0, 1})∗ →MQ

which maps a word v to its type. Apply Theorem 1.2 to the words w0, w1 and
the morphism α, yielding factorization forests F0, F1. These factorization forests
will be used by the next two stages of the algorithm.

Stage 2. We show that for each class X, the output tf(w⊗X) can be represented
by a small number of snippets. This is stated by the following lemma.

Lemma 2.2. Let X be a set of positions. We can calculate a set SX of snippets
such that tf(w⊗X) = tSX . The cardinality of SX and time to calculate it are
poly(Q) · |X|.

Proof. Let Y1, . . . , Ym be a partition of {1, . . . , n} into factors such that the
odd numbered factors are the maximal factors contained in X, and the even
numbered ones are disjoint with X. (The first and last factors might be empty.)
The set SX consisting of the snippets (tf(w⊗X))u Yi satisfies the thesis. The
factors Yi can be calculated in time linear in the number of positions in X.

We need to find the representation of the snippets, namely the external types
of Yi in w⊗X. The calculation will take time linear in m, and therefore at most
linear in the size of X. Let first compute their internal types. For even i, the
internal type of Yi is α(w ⊗X[Yi]) = α(w0[Yi]), hence we can compute it using
the factorization forest F0. Using F1, we can do the same for odd i. Using
compositionality of types, we calculate internal types of Y1 ∪ · · · ∪ Yi for each
i, going from left to right, and of Yi ∪ · · · ∪ Ym, going from right to left. The
external type of Yi is found basing on the internal types of Y1 ∪ · · · ∪ Yi−1 and
Yi+1 ∪ · · · ∪ Ym. �

Stage 3. In the third and final stage, we show that snippets can be efficiently
aggregated. We apply Lemma 2.2 to each class X, yielding a set of snippets SX .
All we have to do is to aggregate them, i.e. aggregate all snippets that belong
to some SX for some class X. This can be done in linear time thanks to the
following proposition.

Proposition 2.3. Let s1, . . . , sm be snippets. Their aggregation s1t· · ·tsm can
be calculated in time poly(Q) · (m+ |w|).

11

3 An application to evaluating queries of Regular XPath

Regular XPath is a logic for data trees, which extends XPath 1.0 by adding a
Kleene star. There are two kinds of formulas in Regular XPath: unary queries
and binary queries. A unary query maps a data tree to a set of nodes, and a
binary query maps a data tree to a set of node pairs. The formulas of Regular
XPath and their semantics, as we use them here, are defined in [3].

Theorem 3.1. Let ϕ be a unary query of Regular XPath. The set of nodes
selected by ϕ in a data tree with n nodes can be computed in time:

– exp(ϕ) · n; or
– poly(ϕ) · n; if the input is a word.

The proof, given in the appendix, is straightforward: describe a query using data
aggregate transducers, and apply Theorem 2.1. We would like to point out that
a query is not described by a single data aggregate transducer, but a sequential
composition, where each new transducer reads the output of the previous one.

Corollary 3.2. Let ϕ be a unary query of Regular XPath. The nodes selected by
ϕ in a data tree of height k with n nodes can be computed in time poly(k, ϕ) · n.

Proof. A data tree t ⊗ µ of height k over an alphabet A can be encoded, by
writing the nodes in document order and decorating them with their depths,
as a data word enck(t⊗ µ) over alphabet A× {1, . . . , k}. This encoding can be
decoded by Regular XPath in the following sense: for each unary query ϕ we can
compute in time poly(k, ϕ) a query enck(ϕ) such that the set of nodes selected
by ϕ in t ⊗ µ can be recovered in linear time from the set of nodes selected by
enck(ϕ) in the data word enck(t⊗ µ). The idea is to replace the axes: e.g. next
sibling is replaced by a disjunction, over all i ∈ {1, . . . , k}, of the binary query
which connects a position x of depth i with the first position y > x such that
y has depth i and all positions between x and y have depth at least i + 1. The
Kleene star is needed to talk about the positions between x and y. �

References

1. M. Benedikt and C. Koch. XPath leashed. ACM Comput. Surv., 41(1), 2008.
2. M. Bojanczyk. Factorization forests. In Developments in Language Theory, pages

1–17, 2009.
3. M. Bojanczyk and P. Parys. XPath evaluation in linear time. In PODS, pages

241–250, 2008.
4. T. Colcombet. On factorisation forests. CoRR, abs/cs/0701113, 2007.
5. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-

son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

6. M. Kufleitner. The height of factorization forests. In MFCS, pages 443–454, 2008.
7. P. Parys. XPath evaluation in linear time with polynomial combined complexity.

In PODS, pages 55–64, 2009.
8. I. Simon. Factorization forests of finite height. Theor. Comput. Sci., 72(1):65–94,

1990.

12

A Evaluating infix queries for nondeterministic automata

A.1 Accelerating pointers

We first show some additional lemma about factorization forests, which will be
used in Section A.2, as well as in Section D.

When we say that a factor F is decomposed into some factors, we mean that
the factors are disjoint and their union is F .

Let F be a factorization forest. Consider the family P(F) containing

– all factors from F , and
– for each accelerating pointer from F toG, the factors left(F,G) and right(F,G),

if are nonempty.

Note that the number of factors in P(F) is linear in |w| and logarithmic in the
height of F , and that this family satisfies the following property]: for each factor
X in P(F),

– X = {x} for some position x, or
– X is decomposed into factors X1, X2 ∈ P(F). Moreover, P(F) is organized

so that X1 and X2 can be found in constant time.

Indeed, a non-singleton factor F ∈ F can be decomposed into its first child F1

and the factor right(F1, F) (we have an accelerating pointer of length 1 from
F1 to F). A factor left(F,G) for an accelerating pointer of length 2k > 1 from
F to G can be decomposed into left(F, F ′) and left(F ′, G), where from F to F ′

and from F ′ to G we have pointers of length 2k−1. When the length is 1, we
decompose left(F,G) into the previous sibling F ′ of F and left(F ′, G). Similarly
for right(F,G).

The accelerating pointers are invented in such a way that the following lemma
holds.

Lemma A.1. Any factor X can be decomposed into several factors X1, . . . , Xm

from P(F) and at most one factor X ′ being a collation F1 ∪ · · · ∪ Fk, where
F1, . . . , Fk are siblings in F . Both the number of factors and the time to compute
it are logarithmic in the height of the forest.

Proof. Let F be the smallest factor in F that contains X, and let F0, . . . , Fn+1

(n ≥ 0) be the children of F that intersect X, written from left to right. The
records of F, F0 and Fn+1 can be found by following the pointers in the forest,
starting with the leftmost and rightmost positions inX. If we use the accelerating
pointers, we only need time logarithmic in the height of the forest.

The factor X is decomposed as

X = right(X,F0) ∪ F1 ∪ . . . ∪ Fn ∪ left(X,Fn+1).

Moreover, right(X,F0) can be decomposed into several factors of the form right(F,G)
with an accelerating pointer from F to G. Namely, we take such factor for each
accelerating pointer used to find F0. Their number is logarithmic in F . Similarly
for left(X,Fn). �

13

A.2 Proof of Lemma 1.1

Let X be a factor whose image under α we want to calculate. We decompose
X using Lemma A.1 into factors from P(F) and a collation. It is enough to
find the image under α for each of them, and then compose. For the factors
from P(F) the image is remembered in the data structure. Let now find the
image of the factor F1 ∪ · · · ∪ Fn. If n = 1 or 2, we can simply read the image.
Otherwise, n > 2 and therefore F1, . . . , Fn are α-homogeneous, and the image
of the collation F1 ∪ · · · ∪Fn is the same as the image of, say F1, which is stored
in its record.

A.3 Proof of Lemma 1.4

It is easy to compute the composition r ◦ s of two relations r, s ∈ MQ in time
poly(Q). The rest of Section A.3 is devoted to showing how to test

r ◦ s ?∼J r, r ◦ s ?∼J s.

The following lemma shows that all we need to do is test R-equivalence and
L-equivalence.

Lemma A.2. For r, s ∈MQ the two equivalences below hold:

r ◦ s ∼J r ⇔ r ◦ s ∼R r and r ◦ s ∼J s ⇔ r ◦ s ∼L s.

Proof. This is a classic fact from the theory of Green’s relations, but we prove it
here for the sake of completeness. We only prove the part concerning R-classes,
namely

r ◦ s ∼J r ⇔ r ◦ s ∼R r.

The proof for L-classes is the same. Only the implication from left to right is
nontrivial. By the assumption r ◦ s ∼J r there must be some t, u ∈M such that

r = t ◦ r ◦ s ◦ u

By substituting n times the right side instead of r, we get

r = tn ◦ r ◦ (s ◦ u)n

If we choose n so that (s · u)n is idempotent (this is always possible in a finite
monoid), we get

r = tn ◦ r ◦ (s ◦ u)n = tn ◦ r ◦ (s ◦ u)n ◦ (s ◦ u)n = r ◦ (s ◦ u)n

which shows that r ◦ s is a prefix of r, and hence r ◦ s ∼R r. �

To complete the proof of Lemma 1.4, it remains to efficiently testR-equivalence
and L-equivalence. We show how to test R-equivalence, L-equivalence is done
the same way. The key observation is stated below.

14

Lemma A.3. Let Q be a finite set and r1, r2 two elements of MQ. We define

Q1(q2) = {q1 : r−1
1 (q1) ⊆ r−1

2 (q2)}.

It holds r1 ≥R r2 iff r−1
1 (Q1(q2)) = r−1

2 (q2) for each state q2.

Proof. First assume that r1 ≥R r2, i.e. r1 · r = r2 for some r ∈ MQ. Fix
some state q2. Of course r−1

1 (Q1(q2)) ⊆ r−1
2 (q2) because q1 ∈ Q1(q2) only if

r−1
1 (q1) ⊆ r−1

2 (q2). Now take q ∈ r−1
2 (q2), which means that q ∈ r−1

1 (q1) for some
q1 ∈ r−1(q2). But then r−1

1 (q1) ⊆ r−1
2 (q2), so q1 ∈ Q1(q2) and q ∈ r−1

1 (Q1(q2)).
For the other direction assume that r−1

1 (Q1(q2)) = r−1
2 (q2) for each state q2;

we need to find r such that r1 · r = r2. Let r contain pairs (q1, q2) such that
q1 ∈ Q1(q2). Then for any state q2 it holds

(r1 · r)−1(q2) = r−1
1 (r−1(q2)) = r−1

1 (Q1(q2)) = r−1
2 (q2),

which shows that r1 · r = r2. �

The above lemma gives a criterion for deciding whether r1 ≥R r2, which may
be checked in time O(|Q|3).

A.4 From a J -homogeneous forest to an α-homogeneous one

In this part of the appendix we finish the proof of Theorem 1.2. Recall that
thanks to Lemma 1.5, we have a J -homogeneous factorization forest for our
input word, which has height linear in |MQ|.

Our proof is in two steps. First, we upgrade the J -homogeneous factoriza-
tion forest to an H-homogeneous one. Then, we upgrade the H-homogeneous
factorization forest to an α-homogeneous one required by Theorem 1.2.

First we state a technical lemma, which will be used in both steps.

Left-zero monoids. As a tool in the proof, we show that factorization forests
can be efficiently computed for monoids where the value of a factor is the value
of its leftmost position.

For a set M , define a monoid left(M). Its elements are elements of M , plus
an identity. The multiplication is defined by mn = m for m ∈ M . This type of
monoid is called a left-zero monoid.

Lemma A.4. Let M be a set whose elements can be represented using k bits.
Let β : M∗ → left(M) be the morphism that extends the identity function. For
each word w ∈M∗, in time k ·|w| we can compute a β-homogeneous factorization
forest of height at most |M |.

Proof. Using the bit representation, we create a dictionary, whose keys are ele-
ments of M , and whose values are subsets of positions in w. If the dictionary is
based on a binary search tree, any key in the dictionary can be found in time k.
For m ∈M , consider the set Xm of positions in the word w which are labeled by
m. In particular, each factor of w that begins in a position from Xm has value

15

m. In time linear in k · |w| we compute a dictionary which contains the nonempty
sets Xm.

Define a linear order ≤ on elements of M , e.g. the lexicographic order on bit
representations. We process the nonempty sets Xm according to the order. For
each Xm, we define a family of factors Fm as follows. Consider two consecutive
positions j < l in

Ym =
⋃
n≤m

Xn ∪ {1, |w|},

If at least one of j, l is in Xm, we add to Fm the factor that begins in position j
and ends in position l−1. The size of Fm and the time to compute it is linear in
Xm (as a byproduct we compute Ym based on the previous Ym). It is not hard
to see that F =

⋃
i Fi is a β-homogeneous factorization forest. �

From a J -homogeneous forest to an H-homogeneous one. We first
present an auxiliary lemma. A partial factorization forest is defined like a fac-
torization forest, but its leaves need not be singletons. We also require that any
factor is the union of its children, a requirement which is redundant when leaves
are singletons.

Lemma A.5. Let F1, . . . , Fk be consecutive factors that are J -homogeneous. In
time poly(Q) ·k, we can construct an R-homogeneous partial factorization forest
with leaves F1, . . . , Fn and height at most |MQ|.

Proof. Let F be the union F1 ∪ · · · ∪ Fk. Recall the notation right(F,G) defined
in the part of Section 1 about logarithmic querying. We will treat the factors
F1, . . . , Fk as letters in a word

v = r1 · · · rk ∈ (MQ)∗,

where ri is the image of Fi ∪ right(Fi, F). Apply Lemma A.4 to the word v
with M = MQ, yielding a factorization forest G′. By expanding the i-th letter
of v to the factor Fi, we can convert the factorization forest G′ into a partial
factorization forest G with leaves F1, . . . , Fk and root F .

We claim that G satisfies the statement of the lemma. Its height is at most
|M | by Lemma A.4, so we only need to show that it is R-homogeneous.

Consider a set of at least three siblings G1, . . . , Gm in G. From the way G was
constructed, we know that for each i ∈ {1, . . . , n} the image of Gi ∪ right(Gi, F)
is the same. Note that for each i, Gi is a prefix of Gi ∪ right(Gi, F), and both
are J -equivalent. Consequently, by Lemma A.2, they must be R-equivalent. It
follows that G1, . . . , Gm are all R-equivalent. �

We use the above lemma to upgrade a J -homogeneous factorization forest F
to an R-homogeneous one, call it G. We will simply add factors to F . Initially,
G = F . We process each maximal set of siblings S = {F1, . . . , Fk} from F . (In
most cases, S consists of all the children of a common parent, the exception is

16

when S is the roots of F .) If S has at most two factors, we do not need to do
anything. Otherwise, by assumption on J -consistency of F , we can apply the
above lemma to the factors in S, and add all factors of the resulting factorization
forest GS to G. Note that the added factors from GS are all included in

⋃
S, so

G is a factorization forest. The processing time needed to compute G is linear in
the number of factors in all the sets S, which is simply the number of factors in
F . Finally, if G contains a set of at least three siblings, then these siblings were
added in some GS , and hence they all have the same R-class.

By a symmetric argument we upgrade the factorization forest G to an L-
homogeneous one, call it H. But H is also R-homogeneous, as already G was
such. (If a factorization forest G is f -homogeneous for some function f , and a fac-
torization forest H contains more factors than G, then H is also f -homogeneous.)
Thus H is H-homogeneous.

From H-consistency to α-consistency. In this section we show how to up-
grade an H-homogeneous factorization forest to an α-homogeneous one. The
structure of the proof is the same as in the previous case, we only need a new
version of Lemma A.5.

Lemma A.6. Let F1, . . . , Fk be consecutive factors that are H-homogeneous. In
time poly(Q) ·k, we can construct an α-homogeneous partial factorization forest
with leaves F1, . . . , Fn and height at most |MQ|.

Proof. We use the same approach as in Lemma A.5. Let F be F1 ∪ · · · ∪ Fk. We
treat each of the factors F1, . . . , Fk as a letter in a word

v = r1 · · · rk ∈ (MQ)∗

where ri is the image of Fi ∪ right(Fi, F). Apply Lemma A.4 to the word v with
M = MQ, yielding a factorization forest G′. Replacing each letter ri by the factor
Fi, we convert G′ into a partial factorization forest G′′ with leaves F1, . . . , Fk.
Then for each maximal set of siblings G1, . . . , Gm (for m > 2) we add the factor
G1 ∪ · · · ∪Gm−1, getting a partial factorization forest G.

We claim that G is α-homogeneous. We argue as in Lemma A.5: consider
a maximal set of at least three siblings. The only possibility is that these are
G1, . . . , Gm−1 among some maximal set of siblings G1, . . . , Gm from G′′. From
the way G was constructed, we know that for each i the images ofGi∪right(Gi, F)
is the same. Let us write g1, . . . , gm for the images of G1, . . . , Gm; these satisfy

gi ◦ gi+1 ◦ · · · ◦ gm = gi+1 ◦ · · · ◦ gm for all i < m.

The following well known lemma on Green’s relations completes the proof of
Lemma A.6, since it shows that all the elements g1, . . . , gm−1 must be equal, as
they all represent the group identity. (In a group, if g ◦h = h holds, then g must
be the group identity.) �

Fact A.7. Let H be a H-class in a finite monoid M . If there exist s, t ∈ H such
that s · t ∈ H, then H is a group.

17

Proof. Take a, b ∈ H such that a · b ∈ H and take any d ∈ H. Since b ∼R d, then
a · b ∼R a · d, so even more d ∼J a · b ∼J a · d. On the other hand a · b ∼L d
(because both are in H) and d ∼L a · d (from Lemma A.2). Hence a · b ∼R a · d
and a · b ∼L a · d, so a · d ∈ H. Symmetrically we may show that if a · d ∈ H for
some a, d ∈ H, then also c · d ∈ H for any c ∈ H. This shows that c · d ∈ H for
any c, d ∈ H.

Take any a ∈ H. Since M is finite it has to be an = a2n for some positive
n. It is an ∈ H. Denote an as 1H (for some fixed a). We have 1H · 1H = 1H .
This will be the neutral element in H. Indeed, take any b ∈ H. We may write
b = m · (b · 1H) for some m ∈M . Then b = m · b · 1H = m · b · 1H · 1H = b · 1H .
Symmetrically 1H · b = b.

To conclude that H is a group it is enough to show that each element has
an inverse. Take any a ∈ H. For some positive n there is an = a2n. As above
b ·an = b for any b ∈ H. So an = 1H ·an = 1H , hence an−1 is an inverse of a. �

B Binary trees

A binary (data) tree is a (data) tree where every node has at most two children.
In the proofs, it will be convenient to deal with binary tress. In this part of the
appendix, we show that binary trees can be considered without loss of generality.

A nondeterministic binary tree automaton is given by: a state space Q, an
alphabet A, a set of accepting states F ⊆ Q, and a set of transitions

∆ ⊆
⋃

i∈{0,1,2}

Q×A×Qi .

A run is a mapping of tree nodes to states that is consistent with ∆ in the
following sense: a) the root is mapped to an accepting state; and b) for every
node x with i ∈ {0, 1, 2} children, there is a transition in Q× A×Qi such that
the state in x is the first coordinate, the label in x is the second coordinate, and
the states in the children are the remaining coordinates. A partial run is like a
run, but it does not need to be defined for every node; the consistency condition
a) is checked only if the partial run is defined in the root; and the consistency
condition b) is checked only for nodes x such that x and all of its children have
defined values in the partial run.

A data aggregate transducer on binary trees is one where the underlying
automaton is of the kind above.

If t is an unranked (data) tree, we write enc(t) for the usual first-child/next-
sibling encoding. This encoding, and its inverse, can be computed in linear time.
The following lemma, which can be proved in a standard way, allows us to talk
about binary trees from now on.

Lemma B.1. Let f̂ be a data aggregate transducer on unranked data tees. In
polynomial time we can compute a data aggregate transducer on binary trees
enc(f̂) such that for any unranked data tree t⊗ µ,

enc(f̂(t⊗ µ)) = (enc(f̂))(enc(t⊗ µ))

18

C Aggregate transducers

In this part of the appendix, we sketch an argument that aggregate transducers
(without data) are interesting in their own right. The general idea is to consider
the data-free case of the whole approach to evaluating XPath on data trees
by using data aggregate transducers. Many of the constructions are drastically
simplified (in particular, there is no need for factorization forests); but the results
are still interesting.

The first observation is that an aggregate transducer can be evaluated effi-
ciently: linear data complexity, and polynomial combined complexity.

Lemma C.1. Suppose that tf is an aggregate transducer recognized by a non-
deterministic automaton with states Q. The value tf(s) can be calculated in
time poly(Q) · |s|.

Proof. Thanks to the results from Section B, we can use binary trees. Let A, B
be the input and output alphabets of f . For each node x of s, we calculate

– downx is the set of states q such that for some tree t ∈ trees(B), there is a
partial run on s⊗ t that is defined on x and its desecendants, and uses state
q in x.

– upx is the set of states q such that for some tree t ∈ trees(B), there is a
partial run on s⊗ t that is defined on nodes that are not proper descendants
of x, and uses state q in x.

– Bx is the set of labels b ∈ B such that for some tree t ∈ trees(B), the
automaton accepts s⊗ t and t has label b in x.

We first calculate the sets downx in a bottom-up pass through s; next we cal-
culate the sets upx in a top-down pass; finally use both sets to calculate the
sets Bx. The sets Bx determine the output tf(s), since the label of a node x in
tf(s) is the maximal letter in Bx. �

We now show how compositions of aggregate transducers can be used to
capture Regular Core XPath, which is the variant of Regular XPath for trees
without data, see e.g.“Navigational XPath: calculus and algebra” by Balder ten
Cate and Maarten Marx in Sigmod Record Volume 36, Issue 2. It is well known
that Regular Core Xpath can be translated into automata; the contribution here
is that the translation is polynomial, and not exponential.

The characteristic function of a unary query of Regular Core Xpath with
input alphabet A is the function

char(ϕ) : trees(A)→ trees({0, 1})

which maps each tree s to a tree with the same nodes, where the label of each
node x indicates if the node is selected by ϕ.

Lemma C.2. Let ϕ be a unary query of Core XPath. There are aggregate trans-
ducers tf1, . . . ,tfn such that the characteristic function of ϕ is tf1 ◦ · · · ◦ tfn.
The number n, the state spaces of the automata recognizing the aggregate trans-
ducers, and the time to compute them are all polynomial in ϕ.

19

Proof. Using the same techniques as in Section G.
�

D Evaluation of data aggregate transducers on data
words

In this section we prove Proposition 2.3, which is the only missing element of the
algorithm evaluating data aggregate transducers on data words. As the input we
have snippets s1, . . . , sm. We want to output their aggregation s1 t · · · t sm. It
will be done separately for snippets tf(w ⊗X) u Y in which Y is disjoint with
X (“no” snippets), and separately for those in which Y is contained in X (“yes”
snippets); then the two results will be aggregated together. Hence assume that
for all snippets Y is disjoint with X (the other case is done in exactly the same
way, with the only difference that we use the factorization forest F1 instead of
F0)3.

The snippets tf(w⊗X)uY in which Y ∈ P(F0) (where P(F0) is the struc-
ture defined in Section A.1) will be called structural snippets and the snippets
in which Y = F1 ∪ · · · ∪Fk for siblings from F0 will be called neighbor snippets.

Consider a snippet tf(w ⊗X) u Y . We decompose Y according to Lemma
A.1 into Y1, . . . , Yn, Y

′. This gives a decomposition of the snippet into structural
and neighbor snippets:

tf(w ⊗X) u Y = (tf(w ⊗X) u Y ′) t
⊔

1≤i≤k

(tf(w ⊗X) u Yi).

Hence we may replace the original snippet by the new ones. We do this for each
of the snippets; the number of snippets increases by poly(Q).

A first observation is that for each factor we need only a constant number of
snippets.

Lemma D.1. Let Y be a factor and S a set of “no” snippets of the form tf(w⊗
X) u Y . Then a subset S′ ⊆ S of cardinality at most |Q|2 can be chosen such
that

⊔
S =

⊔
S′. Moreover, S′ can be calculated in time poly(Q) · |S|.

Proof. By QS denote the union of external types of the snippets from S (more
precisely: external types of the factors Y in the word w0, for each snippet tf(w⊗
X) u Y). Then for each pair (p, q) ∈ QS we take to S′ one (any) snippet from
s which has (p, q) in its external type. Each run of the automaton in Y allowed
by some snippet from S uses particular states: p just before Y and q just after
Y , for (p, q) ∈ QS . Hence this run is allowed also by some snippet from S′, the
one taken for this pair of states. �

A second observation allows us to reduce the number of neighbor snippets.

3 In fact the combined size of all “yes” snippets generated by Lemma 2.2 is |w|, hence
we can evaluate them directly. The real problem is only with “no” snippets.

20

Lemma D.2. Let F1, . . . , Fn be consecutive α-homogeneous siblings in F0 and
S a set of “no” neighbor snippets of the form σ = tf(w⊗Xσ)u(Fi(σ)∪· · ·∪Fk),
i.e. they all end on the same Fk, but may begin on different Fi(σ). Then there
exists a set S′ of neighbor snippets ending on Fk and a set S′′ of structural
snippets, such that

⊔
S =

⊔
S′ t

⊔
S′′, and |S′| ≤ |Q|2, |S′′| ≤ |S|. Moreover,

the sets can be calculated in time poly(Q) · (|S|+ |w|).

Proof. First we split each snippet σ into two snippets. The part tf(w⊗Xσ)uFi(σ)

is taken to S′′; it is a structural snippet. The part from Fi(σ)+1 to Fk is taken to
S̃′; it is a neighbor snippet. The problem is that S̃′ is too big. In a second step,
for each pair of states (p, q) we take to S′ the longest snippet from S̃′ (i.e. this
with i(σ) as small as possible) among those containing (p, q) in its external type.
If there is no such snippet, we do not take any; if there are many longest, we
take any of them.

We have to proof that
⊔
S̃′ =

⊔
S′, as obviously

⊔
S =

⊔
S̃′t

⊔
S′′. Take any

label generated by some snippet σ′ ∈ S̃′, which was created as a part of a snippet
σ ∈ S. The label was generated by a run of A having some state p just before
Fi(σ)+1 and some state q just after Fk. For the pair (p, q) some snippet τ ′ ∈ S̃′ was
taken to S′, which was created as a part of a snippet τ ∈ S. It holds i(τ) ≤ i(σ).
Because (p, q) is contained in the external type of τ ′, there exists p′ such that
(p′, q) is contained in the external type of τ and (p′, p) ∈ α(w0[Fi(τ)]). Because
the split is consistent with α, it holds α(w0[Fi(τ)]) = α(w0[Fi(τ) ∪ · · · ∪ Fi(σ)]),
hence τ ′ also allows a run which has p just before Fi(σ)+1 and q just after Fk. �

We process the neighbor snippets in a right-to-left pass through each sequence
of siblings in F0. When we are in a factor Fk, we eliminate neighbor snippets
ending in Fk. First we reduce their number using Lemma D.2, so that only |Q|2
are left. Then we split each of them into Fk and the rest, which results in a
structural snippet and a neighbor snippet ending in Fk−1. The snippets of the
second kind are processed again later, when we are in Fk−1. Lemma D.2 ensures
that the number of snippets is always small, hence the running time is linear in
|t|+ |S| and polynomial in |Q|.

The only thing left is to simplify the structural snippets, which is possible
thanks to the property], given in Section A.1. We start from the longest snippets
and we move towards shorter. For each Y in P(F0), we first reduce the number
of snippets to |Q|2 using Lemma D.1, and then we decompose them into Y1 and
Y2 (such that Y1 ∪ Y2 = Y), getting shorter snippets, which are processed again
later.

E Factorization forests for trees

Here we prove the tree case of Theorem 2.1. We begin by defining the factoriza-
tion forests for trees.

Thanks to the discussion in Section B, we may assume that all trees are
binary. For two nodes x, y we write x ≤ y (x < y) to say that x is a (proper)
ancestor of y.

21

The definition of a factorization forest is in a slightly different style than for
words: we will use forward ramseyan splits [4]. A split is a function

split : nodes(t)→ {1, . . . ,K}.

The number K is called the height of the split.
Consider a function α which maps node pairs x < y to elements of a finite

monoid M . Such a function is called a morphism when for any three nodes
x ≤ y ≤ z,

α(x, z) = α(x, y) ◦ α(y, z).

Given a split, two nodes x ≤ y are called neighbors if their split values
are equal and no node between them has smaller split value. A split is α-
homogeneous4 if for any x1 < x2 and y1 < y2 which are all neighbors (in
particular all are on one path from the root to a leaf) it holds

α(x1, x2) = α(x1, x2) ◦ α(y1, y2).

Note how this is a different requirement than in the word case. A theorem by
Colcombet says that such a split can be constructed.

Theorem E.1 ([4]). Let t be a tree, M a finite monoid, and α a morphism
into M given by its values for pairs x, y in which x is the parent of y. Then an
α-homogeneous split of height K = O(|MQ|) exists and can be computed by a
deterministic transducer, hence in time linear in the tree size.

The state space of the transducer is linear in MQ, and therefore the constant in
the linear time is also linear in MQ. The key point is that the height K does not
depend on the tree, only on the monoid. Additionally, we may assume that the
value assigned to the root is 1.

Besides of the split we keep the following information, for each 1 ≤ k ≤ K:

A) an unranked tree sk consisting of nodes of t having split value at most k (a
node is a child of an other node in sk if it is its descendant in t and each
node between them has a split value greater than k);

B) for each node x, a pointer to its closest proper ancestor y being in sk (i.e. with
the split value at most k).

Denote the set of pointers (pairs of nodes) from B as P(split). Observe that
the information of both types can be constructed in time linear in the tree
size (e.g. separately for each k). Moreover we have the following fact which we
use for the trees sk. This fact comes from “The LCA Problem Revisited”, by
M. Bender and M. Farach-Colton (LATIN 2000), or “Fast algorithms for finding
nearest ancestors”, by D. Harel and R. Tarjan (SICOMP 1984).

Fact E.2. There is a data structure, which

– for a given tree t, can be constructed in time O(|t|), and can be used to
4 Colcombet uses the name forward ramseyan split instead.

22

– find for any nodes x, y their closest common ancestor in time O(1).

Corollary E.3. There is a data structure, which

– for a given unranked tree t, can be constructed in time O(|t|),
– then, for a given node x and its descendant y, one can read which child of x

is an ancestor of y, in time O(1).

The additional information is prepared in such a way that the following
lemma holds.

Lemma E.4. For two nodes x < y we can compute a sequence of nodes x =
x0 < x1 < · · · < xn = y such that every two consecutive nodes are either
neighbors or are connected by a pointer from P(split); both n and the running
time is O(K) (i.e. constant in the tree size and in the distance between x and
y).

Proof. The proof is by induction on split(x) + split(y). When x and y are neigh-
bors, we are done (it is the case when split(x) = split(y) and their pointers in
B for k = split(x) − 1 point to the same node). Otherwise there are two cases.
First assume split(x) ≤ split(y). Then from B we read a closest ancestor z of
y with a split value smaller than split(y). It has to be x or a descendant of x,
as otherwise x and y would be neighbors. Now z can be the last element of the
sequence and we can proceed inductively for x and z, which have a smaller sum
of split values.

Otherwise split(x) > split(y). Here we have to do something similar, but the
problem is that pointers from B go only up. Let k = split(x) − 1. From x we
go to its closest ancestor z with split(z) ≤ k. Then we use Fact E.3 to find in
sk the child z′ of z which is an ancestor of y (or is equal to y); if y is not in sk
we first move to its closest ancestor being in sk. Now again from z′ we go to its
closest ancestor z′′ being in sk+1. Note that x and z′′ are neighbors (possibly
x = z′′), as no node between them is in sk. Hence we may use z′′ and z′ as first
two elements of the sequence, and then proceed inductively for z′ and y.

Note that each step is done in constant time, and the number of steps is
limited by split(x) + split(y), which is O(K). �

Now observe that the set P(split) defined above satisfies the following prop-
erty]]: for each pair (x, y) in P(split),

– x is the parent of y, or
– there is z such that (x, z) ∈ P(split) and (z, y) ∈ P(split) (moreover,
P(split) is organized such that z and these pairs can be found in constant
time).

Indeed, as z we can take the parent of y. This is a tree replacement of property
] for words (from Section A.1). From this property follows that we can calculate
α(x, y) for each pair in P(split) in time linear in |P(split)|, hence linear in |t|. It
is an easy dynamic algorithm: we calculate the values for longer pointers using
the results for shorter ones.

23

Corollary E.5. Given the α-homogeneous split for a tree t (together with the
additional information), one can for any given nodes x < y calculate α(x, y) in
time linear in the height of the split.

Proof. Thanks to Lemma E.4 it is enough to calculate α when x and y are
neighbors or (x, y) is in P(split) (and then compose the values). In the second
case α(x, y) is known, as noted above. Let now x and y be neighbors and let x′

be the closest neighbor of x such that x < x′ ≤ y. Node x′ can be read from
ssplit(x) using Fact E.3. As the split is α-homogeneous, we know that

α(x, y) = α(x, x′) · α(x′, y) = α(x, x′).

However we have a pointer in P(split) from x′ to x, hence the last value is
known. �

F Evaluation of data aggregate transducers on data trees

In this section, we prove the tree case of Theorem 2.1, which says that split
transducers can be evaluated in linear time. We fix a split transducer f̂ and a
data tree t⊗ µ. We want to compute the output f̂(t⊗ µ).

Thanks to the discussion in Section B, we are working on binary trees. Recall
that a split transducer is given by a tree automaton (which we assume to be
a nondeterministic automaton on binary trees), as well a linear order on the
output alphabet. Suppose that for the split transducer f̂ this automaton is A,
with states Q. The input alphabet of f is A × {0, 1} and the output alphabet
is B.

Unless otherwise stated, all the trees considered in this section will have the
same nodes as t. They will either be t, or trees of the form t ⊗X for some set
of nodes X, or outputs in f(t ⊗X). In particular, the alphabets will be either
A (for t), or A×{0, 1} (for the trees t⊗X), or B (for the outputs in f(t⊗X)).

We present our proof strategy in Section F.2. First we introduce some ter-
minology.

F.1 Zones, types and snippets

Zones. We use the name zone for a set of nodes in t. We write X,Y, Z for zones.
The complement X of a zone X is with respect to the nodes of t. We will be
mainly interested in prime zones, which are of three kinds: node, tree, or context.
A node zone consists of a single node. A tree zone is given by a node, called its
root; the zone contains the root and all of its descendants. A context zone is
given by two nodes, called the root and the hole, one a proper descendant of
the other; it contains the root node and its descendants, excluding the hole its
descendants. Hence it is a difference of two tree zones: one rooted in the root
and the other rooted in the hole.

Prime zones are to trees what factors are to words.

24

Fact F.1. Any set X of nodes can be partitioned into at most O(|X|) prime
zones.

Proof. Let Y be all the nodes in X together with their closest common ancestors.
The complement of Y can be partitioned into at most 2|Y | + 1 prime zones:
contexts and trees, which are given by nodes from Y as holes, and children of
nodes from Y and the root of the tree as roots. Then, we add node zones for
Y −X. �

We will need to quickly compute this partition, given X. For that we need a
procedure calculating closest common ancestors (Fact E.2) and a little more.

Fact F.2. The partition from Fact F.1 can be computed in time O(|X|), when
the nodes of X are given in document order.

Proof. A skeleton is a tree containing nodes from Y ; a node x ∈ Y is a child
of other node y ∈ Y if it is its descendant in t and no node between them is
in Y . It is a binary tree (each node has at most two children). Calculating the
skeleton is enough, we can easily read the partition from it. Note that it is also
necessary: having just a list of roots and a list of holes is not enough, we need
to know how they are paired.

We process the nodes of X in the document order (from left to right). At
every moment we already have a skeleton for some subset of X, and all other
nodes from X are later in the document order. We want to add the next node
y ∈ X. We find the closest common ancestor z of this new node y and the
rightmost already processed node x ∈ X. We need to add z in the appropriate
place in the skeleton. We compare z with the nodes on the rightmost path of
the skeleton, starting from x and going up (note that Fact E.2 allows us also to
check if a node is a descendant of other node). When z is between some node
and its parent in the skeleton, we add it there, together with attached y. It is
also possible that z = x or that z is over the root of the current skeleton.

Why does it work in linear time? Potentially there are many nodes on the
rightmost path of the current version of a skeleton. However always only one of
the visited nodes is an ancestor of z. Other visited nodes, which are not ancestors
of z no longer will be on the rightmost path, so every node can be visited only
once in that role. �

Types of prime zones. Like for words, we define two notions of type for prime
zones: an internal type, and an external type.

We first define the internal type of a prime zone Y inside a tree t⊗X, where
X is some class. The definition is by cases, depending on whether Y is a tree,
node or context zone. If Y is a tree zone, then the internal type is the set of states
q such that for some s ∈ trees(B), there is a partial run of the tree automaton
on t⊗X ⊗ s that is defined on nodes from Y and has state q in the root of Y .
(Note that only the labels of s in nodes from Y are relevant to this definition,
a similar situation will hold for context and node zones.) If Y is a context zone,
then its internal type is a set of state pairs: it contains a pair (p, q) if there is

25

some tree s ∈ trees(B) and a partial run of the tree automaton on t⊗X⊗s that
is defined on nodes from Y (and the hole), and has state p in the root of Y and
state q in the hole of Y . Likewise for a node zone, but this time we get a set of
state triples: we take a state in the node and in its two children (if one or two
of the children does not exists, the type consists of pairs or single states). The
external type of a prime zone Y is defined in the same way, but now we consider
mappings which are consistent in the complement of Y .

The internal types are compositional in the following sense: if a prime zone
is partitioned into several smaller prime zones, only the internal types of the
smaller prime zones are needed to determine the internal type of the larger
prime zone. The idea behind the external type is that it describes the type of
the zone’s complement. The following lemma says external types can be deduced
from internal types.

Lemma F.3. Let X be a partition of the nodes of a tree s into prime zones,
whose internal types in s are known. The external types of these zones in s can
be calculated in time poly(Q) · |X |.
Proof. Let X be the set of nodes from the node zones in X and the roots of
the context zones in X ; it is linear in the size of X . We use compositionality
of internal types to calculate, in a leaves-root pass, for each node x ∈ X the
internal type of the tree zone given be x. Likewise, in a root-leaves pass, we
calculate for each node x ∈ X the internal type of the context whose root is the
root of s and whose hole is x. The internal types calculated in these two passes
are all sufficient to give all the external types of zones in X . �

Snippets. Like for words, a partial output is any value (tf(t⊗X))uY , where X
is a class and Y is a set of nodes; a snippet is a partial output (tf(t⊗X)) u Y
where Y is a prime zone that is either disjoint with X (a “no” snippet), or
included in X (a “yes” snippet).

The point of snippets is that they can be represented by a constant number
of pieces of information: at most two nodes to represent the prime zone Y , an
external type of a prime zone, and a “yes”/“no” bit. This is described by the
following observation.

Observation F.4. Let Y be a prime zone that is disjoint with or included in a
zone X. The value

(tf(t⊗X)) u Y

of the snippet (for a given t and f) depends only on Y , the external type of Y
in t⊗X, and whether the snippet is a “yes”/“no” snippet.

We use the name snippet representation for the above information. This repre-
sentation has size poly(Q). (We assume that nodes are stored using unit cost.)

F.2 Proof strategy

We now have the necessary concepts to present our proof strategy for Theo-
rem 2.1. Our goal is to produce the output of the split transducer f̂ on a data

26

tree t⊗ µ. This output is, by definition,

f̂(t⊗ µ) = tXa class of µ t f(t⊗X).

Our algorithm will be manipulating sets of snippets. Whenever a subroutine
inputs or outputs a set of snippets, we assume that the snippets are given by
their constant size representations, as described before Observation F.4.

The algorithm works in three stages. First, we construct factorization forests.
Then, we show that for each class X, the output tf(t⊗X) can be represented
by a small number of snippets. Finally, we show that these snippets can be
efficiently aggregated.

Stage 1. In the first stage, we compute two factorization forests. Consider two
trees

t0 = t⊗ ∅, t1 = t⊗ ∅

over alphabet A × {0, 1}. We want to compute factorization forests (splits) for
these words. We use the morphism α which maps a pair of nodes x < y into
the internal type of the context having the root in x and the hole in y. Apply
Theorem E.1 to the trees t0, t1 and the morphism α, yielding factorization forests
split0, split1. These factorization forests will be used by the next two stages of
the algorithm. As an input of Theorem E.1 we have to give the values of α for
pairs (x, y) in which x is the parent of y. Note that these values can be computed
in linear time, as a context zone with the root in the parent of the hole can be
decomposed into a tree zone and a node zone. The internal types of all tree zones
can be computed in one leaves-root pass.

Stage 2. As for words, we show that for each class X, the output tf(w⊗X) can
be represented by a small number of snippets. This is stated by the following
lemma.

Lemma F.5. Let X be a zone. We can calculate a set SX of snippets such that
tf(t⊗X) = tSX . Both the cardinality of SX and time to calculate it are linear
in the number of nodes in X.

Proof. Thanks to Fact F.2, we can calculate disjoint prime zones Y1, . . . , Ym that
partition the complement of X. Moreover, we can assume that these are only
node and context zones, as each tree zone can be partitioned into one node zone
and one context zone (the node zone and simultaneously the hole is in any leaf).
Both m and the time to calculate these zones are at most linear in |X|. Since
Y1, . . . , Ym and X cover all the nodes of t, we have

tf(t⊗X) = tx∈X(tf(t⊗X) u {x}) t ti∈{1,...,m}((tf(t⊗X)) u Yi).

The above gives a decomposition into snippets as required. The problem is that
we need to calculate representations of these snippets. In order to do this, we
need to know the external types, in t ⊗X, of the zones {x} for x ∈ X and the
prime zones Y1, . . . , Ym.

27

Thanks to Lemma F.3, all we need is the internal types of the zones. For the
node zones this is easy: the internal type just depends on the label of the node.
For the context zones Yi, we remark that the internal type of Yi in t⊗X is the
same as the internal type of Yi in t⊗∅, since X is disjoint with Yi. Therefore, we
may read the internal types of Y1, . . . , Yn in t⊗X from the factorization forest
F0 (Corollary E.5). �

Stage 3. Finally we aggregate the snippets. The following proposition is shown
in the next subsection.

Proposition F.6. Let s1, . . . , sm be snippets. Their aggregation s1 t · · · t sm
can be calculated in time linear in m+ |t|.

F.3 Aggregating snippets

We now prove Proposition F.6, which says that for any set of snippets S, its
aggregation tS can be computed in time linear in the cardinality of S. We can
treat the “yes” and “no” context snippets separately, and then aggregate the
two partial outputs. Therefore, without loss of generality, we may assume that
only one kind of snippets appears in S, say “no” snippets. The problem is that
S might have quadratic combined size (the size of a snippet is the number of
nodes with a defined value; the combined size of a set of snippets is the sum of
the sizes of its snippets). If the combined size is small, then aggregation can be
computed easily, as stated by the following lemma.

Lemma F.7. For a set S of snippets, tS can be calculated in time linear in the
combined size of S, and polynomial in |Q|.

A second observation is that for each prime zone we need only a constant
number of snippets; this is a tree equivalent of Lemma D.1 and can be proved
analogously.

Lemma F.8. Let Y be a tree zone or a context zone and S a set of “no” snippets
of the form (tf(t ⊗X)) u Y . Then a subset S′ ⊆ S of cardinality at most |Q|2
can be chosen such that tS = tS′. Moreover, S′ can be calculated in time linear
in the cardinality of S, and polynomial in |Q|.

The snippets that involve node zones can be aggregated in linear time using
Lemma F.7. Furthermore, also the tree snippets can be quickly aggregated.

Lemma F.9. For a set S of tree snippets, tS can be calculated in time linear
in |t|+ |S|, and polynomial in |Q|.

Proof. First in a leaves-root pass we may calculate the internal type of each tree
zone in t⊗ ∅.

Then we process the tree in a root-leaves pass. For each tree zone Y we first
reduce the number of snippets of the form (tf(t ⊗X)) u Y using Lemma F.8.
Then we split each of them into three snippets: a node snippet tf(t⊗X)u {y}

28

and two tree snippets (tf(t⊗X)) u YL, (tf(t⊗X)) u YR, where y is the root
of Y , and YL, YR are its two subtrees rooted in the children of y. The internal
types of YL, YR, {y} in t ⊗X (needed to calculate their external types) are the
same as in t ⊗ ∅ (since X and Y are disjoint), hence known. The smaller tree
snippets are then processed in the children of y.

Finally the node snippets are aggregated using Lemma F.7. The total running
time is linear, because we were always eliminating redundant snippets, hence for
each subtree we had a constant number of snippets. �

Our proof of Proposition F.6 for context snippets proceeds in two steps. In
the first step, we split each context snippet from S into some number of context
snippets in which the hole is a child of the root. However we can not calculate
all of them, as there would be too many of them (quadratically many). We have
to eliminate redundant ones, in the spirit of Lemma F.8. This way, we create a
new set S′ of context snippets with the hole in a child of the root, of cardinality
linear in |t|, with the property tS = tS′. Each snippet in S′ can be divided into
a tree snippet and a node snippet, which can be aggregated using Lemmas F.7
and F.9. Thus it is enough to show the following proposition.

Proposition F.10. For a set S of context snippets, we can calculate a set S′

of snippets such that each context snippet from S′ has the hole is a child of the
root, and tS = tS′. The cardinality of S′, as well as the running time, can be
linear in |t|+ |S|.

Now we prove the above proposition. In a first step we use Lemma E.4 to
partition each context snippet from S into context snippets in which the root and
the hole are either neighbors (we call them neighbor snippets) or are connected
by a pointer from P(split0) (we call them structural snippets); we get a set
S̃ containing O(|S|K) snippets. In a second step we will eliminate neighbor
snippets; the following lemma will be useful. This is a tree equivalent of Lemma
D.2, and can be proved analogously.

Lemma F.11. Let x be a node and S a set of “no” neighbor snippets with the
hole in x. Then there exists a set S′ of neighbor snippets with the hole in x and
a set S′′ of structural snippets, such that tS = (tS′) t (tS′′), and |S′| ≤ |Q|2,
|S′′| ≤ |S|. Moreover, the sets can be calculated in time linear in |S| + |t|, and
polynomial in |Q|.

We process the neighbor snippets in a leaves-root pass. When we are in a
node x, we eliminate neighbor snippets having the hole in x. First we reduce
their number using Lemma F.11, so that only |Q|2 are left. Then we decompose
each of them in the closest neighbor y < x, which results in a structural snippet
(from y to x) and a neighbor snippet with a hole in y. The snippets of the second
kind are processed again later, when we are in y. Lemma F.11 ensures that the
number of snippets is always small, hence the running time is linear in |t|+ |S̃|
and polynomial in |Q|.

The only thing left is to simplify the structural snippets. We start from the
longest snippets and we move towards shorter. For each x < y in P(split0), we

29

first reduce the number of snippets to |Q|2 using Lemma F.8, and then we split
them at the node z (such that (x, z) and (z, y) are in P(split0)), getting shorter
snippets, which are processed again later.

G XPath evaluation

G.1 Definition of Regular XPath

There are two types of expressions: programs and node tests. A program is a
binary query. In each data tree, a program will select a set of pairs (x, y) of
nodes. Intuitively a program will describe the path from x to y, although the
path might not be the shortest one. A typical program is next−sibling, it
selects a pair (x, y) if y is the right child of x (which corresponds to being the
next sibling in the original XML document). A node test, on the other hand, is
a unary query: it selects a set of nodes in a data tree. A typical node test is a,
it selects nodes that are labeled by the tag name a. In general, the two types of
expression are mutually recursive, as defined below:

– Every tag name a is a node test, which holds in nodes labeled by tag a.
– Node tests admit negation, conjunction and disjunction.
– There are two types of atomic programs. Every axis

first−child parent−of−first next−sibling prev−sibling

is an atomic program, which holds in pairs of nodes connected by this axis.
Furthermore, a node test ϕ can be interpreted as an atomic program [ϕ],
which holds in pairs (x, x) such that ϕ holds in x.

– In general, a program is a regular expression over atomic programs. In other
words, programs contain the atomic programs, the empty program ε, and are
closed under union, composition and Kleene star. For instance, the program
first−child · next−sibling∗ select (x, y) if y is a child of x, i.e. it stands
for child axis; and program ε selects all identity pairs (x, x), i.e. it stands
for self axis.

– If α, β are programs then α ∼ β is a node test. In a data tree t ⊗ µ, this
query selects a node x if there exist nodes y, z in the same class such that
(x, y) is selected by α and (x, z) is selected by β.

– Similar to the above, a node test α 6∼ β is also defined. Here, the requirement
is that y and z are in different class.

Note that we allow the Kleene star in programs, while usually XPath does
not (the extension is called Regular XPath). We do so because our techniques
work even when the Kleene star is present. Also, the Kleene star allows us to use
a smaller set of four axes and to encode trees of fixed height into words. When
referring below to XPath or Regular XPath, we mean the fragment above. We
have defined unary queries (node tests) and binary queries (programs). Boolean
queries can be defined by taking a unary query, and choosing the matching trees
where the root is selected.

30

G.2 Proof of Theorem 3.1

In the proof, we compose data aggregate transducers. We need to adjust the
definitions a bit to make composition work, since the output of a data aggregate
transducer is a tree without data. Consider alphabets A and B1, . . . , Bn. Let
f̂1, . . . , f̂n be data aggregate transducers, where the input alphabet of f̂i is A×
B1 × · · · ×Bi−1 and the output alphabet if Bi. Consider a data tree t0 ⊗ µ over
alphabet A. We define ti to be the output of f̂i on the data tree t0⊗· · ·⊗ ti−1⊗
µ. The function, call it f , which maps t0 ⊗ µ to tn is called a composed data
aggregate transducer. The state space Q of f is defined to be the disjoint union
of states spaces of the automata representing f̂1, . . . , f̂n. By repeatedly applying
Theorem 2.1 we can compute tn = f(t0⊗µ) in time exp(Q) · |t0| in general, and
in time poly(Q) · |t0| when t0 is a word.

To complete the proof, we will show that for every regular XPath query ϕ,
there is a composed data aggregate transducer, whose state space is polynomial
in ϕ, and which maps each data tree to the characteristic function of the set of
nodes selected by ϕ.

Lemma G.1. For every node test ϕ of Regular XPath, there is a composed data
aggregate transducer, whose state space is polynomial in ϕ, and which maps each
data tree to the characteristic function of the set of nodes selected by ϕ.

Technically, the proof is simple; and no new techniques are used on top
of what was done in, say [3] or [7]. The general idea is that composition of
transducers is used to deal with composition of formulas; and the aggregate
transducers are designed to capture the basic types of node test.

Product alphabets. In the construction, we consider alphabets of the form

A× {0, 1}k

where k is polynomial in ϕ. Technically, such an alphabet is exponential (of
course, each letter is represented in polynomial space). On the other hand, we
want to use expressions and state spaces of automata that are polynomial in ϕ.
To solve this problem, the automata and expressions will refer to the alphabet
in a succinct way. For the automata, we assume that there is a polynomial
algorithm, which given the representation of an input letter a computes the
(polynomial size) set of transitions that involve this letter. For the expressions,
we allow label tests (i.e. test for tag names) of the form: test if coordinate i has
label a.

Reduction to unnested queries. A program α of Regular XPath is called
unnested if all the node tests that appear in it are just label tests (possibly in
the more general succinct form described above, where only some coordinate of
the label is tested).

31

In the proof of Lemma G.1, we first reduce to the case when the node test ϕ
only uses unnested programs. This reduction is standard; it uses the idea that a
sub-transducer computes the sub-queries of ϕ.

Let sub(ϕ) be all the node tests that appear as proper subformulas of ϕ. Let
ϕsub be the query with input alphabet A× {0, 1}sub(ϕ) that is obtained from ϕ
by replacing each node test ψ ∈ sub(ϕ) by a label test which checks if the label
has bit 1 on the coordinate corresponding to ψ. By construction, every program
in ϕΓ is unnested. For a data tree t⊗ µ, we define a tree tsub without data over
the alphabet {0, 1}sub(ϕ). This tree has the same nodes as t; the label of a node
says x which node tests from Γ are true in x.

The query ϕsub and the data tree tsub are defined so that the nodes selected
by ϕsub in the data tree t⊗tsub⊗µ are the same as the nodes selected by ϕ in the
data tree t ⊗ µ. By induction assumption, we have a composed data aggregate
transducer for each ψ ∈ sub(ϕ). Composing these transducers, we see that

t⊗ µ ∈ dtrees(A) 7→ t⊗ tsub ⊗ µ ∈ dtrees(A× {0, 1}sub(ϕ))

can be computed by a composed data aggregate transducer; which consists of
a polynomial number of polynomial size data aggregate transducers (all poly-
nomials in ϕ). All that remains to be done is finding a composed data aggre-
gate transducer that evaluates the unnested query ϕsub. We do this below. The
transducer for ϕsub that we will produce will also require composition; so the
composition of transducers is required also to deal with unnested programs.

Computing loops. Let α be an unnested program with input alphabet A.
An unnested program cannot refer to data, since data can only be tested via a
subquery α ∼ β or α 6∼ β, which involves nesting. Therefore, it makes sense to
talk the set α(t) of node pairs selected by α in a tree t ∈ trees(A) without data.

When talking of a path here, we mean a sequence of nodes connected by
parent/child edges in the binary encoding of the tree. Hence in the unranked
tree it may go between a node and its first child (in any direction), and between
consecutive siblings. The path may loop. Note that this corresponds to the set
of axes in our definition of XPath5. In the natural way we say what it means for
a path π to be consistent with a program α.

We now define the notion of a k-looping path. A 1-looping path is any path
without repetition of nodes. A (k+1)-looping path is a k-looping path, or a path
of the form

σ0x1π1x1σ1x2π2x2 · · ·σn−1xnπnxnσn

where σ0, . . . , σn and π1, . . . , πn are paths, x1, . . . , xn are nodes (or paths of
length 1), the path

σ0x1σ1 · · ·σn−1xnσn

5 Note that in some sense this switching to binary tree is necessary. Consider the
next−sibling axis. It does not correspond to any edge in the unranked tree. More-
over it can not be expressed as a combination of parent and child axes, as after
going to the parent we loose the information from which child we have came.

32

is 1-looping and the paths π1, . . . , πn are k-looping. We define αk(t) to be the
set of node pairs (x, y) in t such that some k-looping path in t that is consistent
with α can go from x to y. By a pumping argument, one sees that αk(t) grows
and then stabilizes after k exceeds some polynomial in α. This stabilized value
is the set of node pairs α(t) that are selected by α in t.

Let sub(α) be the set of subprograms in α. We define loopsα,k(t) to be the
tree where node x is labeled by the set of programs

{β ∈ sub(α) : (x, x) ∈ βk(t)}.

The following lemma, which can be proved in a standard way, shows that the
mapping loopsα,k can be computed by a composition of aggregate transducers
(without data).

Lemma G.2. The function loopsα,k : trees(A)→ trees(P (sub(α))) is a compo-
sition of k aggregate transducers, each with state space polynomial in α.

Unnested node tests. We now show that any node test ϕ that only contains
unnested programs can be computed by a composed data aggregate transducer.
The interesting case is when ϕ is of the form α ∼ β or α 6∼ β, where α, β are
unnested programs. We omit the simple proof the following lemma.

Lemma G.3. We can compute a tree automaton Aα,β with poly(α, β) states,
input alphabet

A× P (sub(α))× P (sub(β))× {0, 1} × {0, 1}

and the following property. For any tree t ∈ trees(A), any set of nodes X, and
any node x, the automaton accepts the tree

t⊗ loopsα(t)⊗ loopsβ(t)⊗X ⊗ {x}

if and only if there are nodes y, z ∈ X with (x, y) ∈ α(t) and (x, z) ∈ β(t).

We use the above lemma to present the composed data transducers for the
query α ∼ β. We can treat the automaton Aα,β as a binary relation

fα,β ⊆ trees(A× P (sub(α))× P (sub(β))× {0, 1})× trees({0, 1}).

Using the order 0 < 1 on the output alphabet {0, 1}, we get an aggregate data
transducer

f̂α,β : dtrees(A× P (sub(α))× P (sub(β)))→ trees({0, 1}).

Thanks to the property stated by Lemma G.3, this transducer computes the set
of nodes that satisfy the query α ∼ β; assuming that its input is of the form

t⊗ loopsα(t)⊗ loopsβ(t)⊗ µ.

The coordinates describing the loops can then be filled in by transducers from
Lemma G.2. Note that the transducers from Lemma G.2 did not use the data;
they were not data aggregate transducers, but aggregate transducers. They can
easily be lifted to data aggregate transducers by ignoring the data.

Queries α 6∼ β can be solved in a similar way.

33

