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Maximum Quadratic Assignment Problem:
Reduction from Maximum Label Cover and

LP-based Approximation Algorithm∗

Konstantin Makarychev† Rajsekar Manokaran‡ Maxim Sviridenko§

Abstract

We show that for every positive ε > 0, unless NP ⊂ BPQP, it is impossible to approximate
the maximum quadratic assignment problem within a factor better than 2log

1−ε

n by a reduction
from the maximum label cover problem. Our result also implies that Approximate Graph
Isomorphism is not robust and is in fact, 1−ǫ vs ǫ hard assuming the Unique Games Conjecture.

Then, we present an O(
√
n)-approximation algorithm for the problem based on rounding of

the linear programming relaxation often used in the state of the art exact algorithms.

1 Introduction

In this paper we consider the Quadratic Assignment Problem. An instance of the problem, Γ =
(G,H) is specified by two weighted graphs G = (VG, wG) and H = (VH , wH) such that |VG| = |VH |
(we denote n = |VG|). The set of feasible solutions consists of bijections from VG to VH . For a
given bijection ϕ the objective function is

valueQAP(Γ, ϕ) =
∑

(u,v)∈VG×VG

wG(u, v)wH (ϕ(u), ϕ(v)). (1)

There are two variants of the problem the Minimum Quadratic Assignment Problem and the
Maximum Quadratic Assignment Problem (MaxQAP) depending on whether the objective func-
tion (1) is to be minimized or maximized. The problem was first defined by Koopmans and
Beckman [26] and sometimes this formulation of the problem is referred to as Koopmans-Beckman
formulation of the Quadratic Assignment Problem. Both variants of the problem model an astonish-
ingly large number of combinatorial optimization problems such as traveling salesman, maximum
acyclic subgraph, densest subgraph and clustering problems to name a few. It also generalizes
many practical problems that arise in various areas such as modeling of backboard wiring [35],
campus and hospital layout [17, 19], scheduling [23] and many others [18, 27]. The surveys and
books [2, 11, 14, 12, 28, 31] contain an in-depth treatment of special cases and various applications
of the Quadratic Assignment Problem.

The Quadratic Assignment Problem is an extremely difficult optimization problem. The state
of the art exact algorithms can solve instances with approximately 30 vertices, so a lot of research
effort was concentrated on constructing good heuristics and relaxations of the problem.

∗The conference version of the paper appeared at ICALP 2010.
†Microsoft Research, Redmond, WA 98122, USA
‡School of CSC, KTH, Stockholm, Sweden. Work done while visiting IBM TJ Watson Research Center, NY, USA.
§Yahoo! Labs
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Previous Results. The Minimum Quadratic Assignment Problem is known to be hard to
approximate even under some very restrictive conditions on the weights of graphs G and H. In
particular, even when H induces a line metric, any polynomial factor approximation (in polynomial
time) implies that P = NP [34]. Polynomial time exact [14] and approximation algorithms [24]
are known for very specialized instances.

In contrast, MaxQAP seem to be more tractable. Barvinok [9] constructed an approxima-
tion algorithm with performance guarantee εn for any ε > 0. Nagarajan and Sviridenko [30]
designed O(

√
n log2 n)-approximation algorithm by utilizing approximation algorithms for the min-

imum vertex cover, densest k-subgraph and star packing problems. For the special case when one
of the edge weight functions (wG or wH) satisfy the triangle inequality there are combinatorial
4-approximation [3] and LP-based 3.16-approximation algorithms [30]. Another tractable special
case is the so-called dense Quadratic Assignment Problem [4]. This special case admits a sub-
exponential time approximation scheme and in some cases it could be implemented in polynomial
time [4, 22]. On the negative side, APX-hardness of MaxQAP is implied by the APX-hardness of
its special cases, e.g. Traveling Salesman Problem with Distances One and Two [32].

An interesting special case of MaxQAP is the Densest k-Subgraph Problem. The best known
algorithm by Bhaskara, Charikar, Chlamtac, Feige, and Vijayaraghavan [10] gives a O(n1/4) ap-
proximation. However, the problem is not even known to be APX-hard (under standard com-
plexity assumptions). Feige [20] showed that the Densest k-Subgraph Problem does not admit a
ρ-approximation (for some universal constant ρ > 1) assuming that random 3-SAT formulas are
hard to refute. Khot [25] ruled out PTAS for the problem under the assumption that NP does not
have randomized algorithms that run in sub-exponential time.

Our Results. Our first result is the first superconstant non-approximability for MaxQAP.
We show that for every positive ε > 0, unlessNP ⊂ BPQP (BPQP is the class of problems solvable
in randomized quasipolynomial-time), it is impossible to approximate the maximum quadratic

assignment problem with the approximation factor better than 2log
1−ε n. Particularly, there is

no polynomial time poly-logarithmic approximation algorithms for MaxQAP under the above
complexity assumption. It is an interesting open question if our techniques can be used to obtain
a similar result for the Densest k-Subgraph Problem.

Our second result is an O(
√
n)-approximation algorithm based on rounding of the optimal

solution of the linear programming relaxation. The LP relaxation was first considered by Adams
and Johnson [1] in 1994. As a consequence of our result we obtain a bound of O(

√
n) on the

integrality gap of this relaxation that almost matches a lower bound of Ω(
√
n/ log n) of Nagarajan

and Sviridenko [30]. Note, that the previous O(
√
n log2 n)-approximation algorithm [30] was not

based on the linear programming relaxation, and therefore no non-trivial upper bound on the
integrality gap of the LP was known.

Note Added in Proof. Suppose that the graphs G and H have the same number of edges.
Then, G and H are isomorphic if and only if the optimal value of the unweighted Maximum
Quadratic Assignment problem equals 1. This observation gives another name to the problem:
The unweighted version of Maximum Quadratic Assignment is also known as Approximate Graph
Isomorphism. In Approximate Graph Isomorphism, it is natural to divide the objective function
by |EG| = |EH |, then for isomorphic graphs G and H, the optimal objective value is 1. We do
not know the complexity of the (exact) Graph Isomorphism problem, and hence we do not know
whether finding the exact solution for satisfiable instances of Approximate Graph Isomorphism (i.e.,
instances of value 1) is NP-hard. In several recent works [8, 16] (published after the conference
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version of this paper appeared at ICALP 2010), the authors asked what can be done if the instance
is almost satisfiable i.e., the value of the optimal solution is at least (1−ε). The immediate corollary
of our result is that it is not possible to distinguish instances of value at least (1− ε) and instances
of value at most δ in randomized polynomial time for every positive ε and δ. This result holds
assuming that the (randomized) Unique Games Conjecture holds. In other words, we assume that
for every positive ε and δ, there is no randomized polynomial-time algorithm that distinguishes
(1− ε) satisfiable instances of Unique Games and δ satisfiable instances of Unique Games. To get
the result, in the reduction we present below, we need to use an instance of MAX Γ-Lin(k) instead
of an arbitrary instance of Label Cover, the graph G contains k copies of the constraint graph of the
MAX Γ-Lin(k) instance, the graph H is the label-extended graph of the MAX Γ-Lin(k) instance.

2 Hardness of Approximation

A weighted graph G = (V,w) is specified by a vertex set V along with a weight function w :
V × V → R such that for every u, v ∈ V , w(u, v) = w(v, u) and w(u, v) ≥ 0. An edge e = (u, v) is
said to be present in the graph G if w(u, v) is non-zero.

We prove the inapproximability of the MaxQAP problem via an approximation preserving
poly-time randomized reduction from the Label Cover problem defined below.

Definition 2.1 (Label Cover Problem). An instance of the label cover problem denoted by Υ =
(G = (VG, EG), π, [k]) consists of a graph G on VG with edge set EG along with a set of labels
[k] = {0, 1, . . . k − 1}. For each edge (u, v) ∈ EG, there is a constraint πuv, a subset of [k] × [k]
defining the set of accepted labelings for the end points of the edge. The goal is to find a labeling of
the vertices, Λ : VG → [k] maximizing the total fraction of the edge constraints satisfied. We will
denote the optimum of an instance Υ by OPTLC(Υ). In other words,

OPTLC(Υ)
def
= max

Λ:VG→[k]

1

|EG|
∑

(u,v)∈E

I((Λ(u),Λ(v)) ∈ πuv),

where I(·) is the indicator of an event. We denote the optimum by OPTQAP(Γ). We will denote
the fraction of edges satisfied by a labeling Λ by valueLC(Υ,Λ).

The PCP theorem [6, 7], along with the Raz parallel repetition theorem [33] shows that the

label cover problem is hard to approximate within a factor of 2log
1−ε n.

Theorem 2.2 (see e.g., Arora and Lund [5]). If NP 6⊂ QP, then for every positive ε > 0, it is not
possible to distinguish satisfiable instances of the label cover problem from instances with optimum
at most 2− log1−ε n in polynomial time.

We will show an approximation preserving reduction from a label cover instance to a MaxQAP

instance such that: If the label cover instance Υ is completely satisfiable, then the MaxQAP

instance Γ will have optimum 1; on the other hand, if OPTLC(Υ) is at most δ, then no bijection ϕ
obtains a value greater than O(δ).

Strictly speaking, the problem is not well defined when the graphs G and H do not have the
same number of vertices. However, in our reduction, we will relax this condition by letting G have
fewer vertices than H, and allowing the map ϕ to be only injective (i.e., ϕ(u) 6= ϕ(v), for u 6= v).
The reason is that we can always add enough isolated vertices to G to satisfy |VG| = |VH |. We
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also assume that the graphs are unweighted, and thus given an instance Γ consisting of two graphs
G = (VG, EG) and H = (VH , EH), the goal is to find an injective map ϕ : VG → VH , so as maximize

valueQAP(Γ, ϕ) =
∑

(u,v)∈EG

I((ϕ(u), ϕ(v)) ∈ EH).

Informally, our reduction does the following. Given an instance Υ = (G = (VG, EG), π, [k]) of
the label cover problem, consider the label extended graph H on VG× [k] with edges ((u, i)− (v, j))
for every (u, v) ∈ EG and every accepting label pair (i, j) ∈ πuv. Every labeling Λ for Υ naturally
defines an injective map, ϕ between VG and VG × [k]: ϕ(u) = (u,Λ(u)). Note that ϕ maps
edges satisfied by Λ onto edges of H. Conversely, given an injection ϕ : VG → VG × [k] such
that ϕ(u) ∈ {u} × [k] for every u ∈ VG, we can construct a labeling Λ for Υ satisfying exactly
the constraint edges in G which were mapped on to edges of H. However, the requirement that
ϕ(u) = (u,Λ(u)) is crucial for the converse to hold: an arbitrary injective map might not correspond
to any labeling of the label cover Υ.

To overcome the above shortcoming, we modify the graphs G and H as follows. We replace
each vertex u in G with a “cloud” of vertices {(u, i) : i ∈ [N ]} and each vertex (u, x) in H with a
cloud of vertices {(u, x, i) : i ∈ [N ]}, each index i is from a significantly large set [N ]. Call the new
graphs G̃ and H̃ respectively.

For every edge (u, v) ∈ EG, the corresponding clouds in G̃ are connected by a random bipartite
graph where each edge occurs with probability α. We do this independently for each edge in EG.
For every accepting pair (x, y) ∈ πuv, we copy the “pattern” between the clouds (u, x, ⋆) and (v, y, ⋆)
in H̃.

As before, every solution of the label cover problem u 7→ Λ(u) corresponds to the map (u, i) 7→
(u,Λ(u), i) which maps every “satisfied” edge of G̃ to an edge of H̃. However, now, we may assume
that every (u, i) is mapped to some (u, x, i), since, loosely speaking, the pattern of edges between
(u, ⋆) and (v, ⋆) is unique for each edge (u, v): there is no way to map the cloud of u to the cloud
of u′ and the cloud of v to the cloud of v′ (unless u = u′ and v = v′), so that more than an α
fraction of the edges of one cloud are mapped on edges of the other cloud. We will make the above
discussion formal in the rest of this section.

Hardness Reduction

Input: A label cover instance Υ = (G = (VG, EG), π, [k]).

Output: A MaxQAP instance Γ = (G̃, H̃); G̃ = (VG̃, EG̃), H̃ = (VH̃ , EH̃).

Parameters: Let N = ⌈n4|EG|k5⌉ and α = 1/n.

• Define V
G̃
= VG × [N ] and V

H̃
= VG × [k]× [N ].

• For every edge (u, v) of G pick a random set of pairs Euv ⊂ [N ] × [N ]. Each pair (i, j) ∈
[N ]× [N ] belongs to Euv independently with probability α.

• For every edge (u, v) of G and every pair (i, j) in Euv, add an edge ((u, i), (v, j)) to G̃. Then

EG̃ = {((u, i), (v, j)) : (u, v) ∈ EG and (i, j) ∈ Euv}.
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• For every edge (u, v) of G, every pair (i, j) in Euv, and every pair (x, y) in πuv, add an edge
((u, x, i), (v, y, j)) to H̃. Then

EH̃ = {((u, x, i), (v, y, j)) : (u, v) ∈ EG, (i, j) ∈ Euv and (x, y) ∈ πuv}.

It is easy to see that the reduction runs in polynomial time. In our reduction, both k and N
are polynomial in n.

We will now show that the reduction is in fact approximation preserving with high probability.
In the rest of the section, we will assume Γ = (G̃, H̃) is a MaxQAP instance obtained from a label
cover instance Υ using the above reduction with parameteres N and α. Note that Γ is a random
variable.

We will first show that if the label cover instance has a good labeling, then the MaxQAP

instance output by the above reduction has a large optimum. The following claim, which follows
from a simple concentration inequality, shows that the graph G̃ has, in fact, as many edges as
expected.

Claim 2.3. With high probability, G̃ contains at least α|EG|N2/2 edges.

Lemma 2.4 (Completeness). Let Υ be a satisfiable instance of the Label Cover Problem. Then
there exists a map of G̃ to H̃ that maps every edge of G̃ to an edge of H̃. Thus, OPTQAP(Γ) = |E

G̃
|.

Proof. Let u 7→ Λ(u) be the solution of the label cover that satisfies all constrains. Define the map
ϕ : V

G̃
→ V

H̃
as follows ϕ(u, i) = (u,Λ(u), i). Suppose that ((u, i), (v, j)) is an edge in G̃. Then

(u, v) ∈ EG and (i, j) ∈ Euv. Since the constraint between u and v is satisfied in the instance of the
label cover, (Λ(u),Λ(v)) ∈ πuv. Thus, ((u,Λ(u), i), (v,Λ(v), j)) ∈ E

H̃
.

Next, we will bound the optimum of Γ in terms of the value of the label cover instance Υ. We
do this in two steps. We will first show that for a fixed map ϕ from V

G̃
to V

H̃
the expected value

of Γ can be bounded as a function of the optimum of Υ. Note that this is well defined as V
G̃

and
V
H̃

are determined by Υ and N (and independent of the randomness used by the reduction). Next,
we show that the value is, in fact, tightly concentrated around the expected value. Then, we do a
simple union bound over all possible ϕ to obtain the desired result. In what follows, ϕ is a fixed
injective map from VG̃ to VH̃ . Denote the first, second and third components of ϕ by ϕV , ϕlabel

and ϕ[N ] respectively. Then, ϕ(u, i) = (ϕV (u, i), ϕlabel(u, i), ϕ[N ](u, i)).

Lemma 2.5. For every injective map ϕ : V
G̃
→ V

H̃
,

E [valueQAP(Γ, ϕ)] ≤ α|EG|N2 × (OPTLC(Υ) + α).

Proof. Define a probabilistic labeling of G as follows: for every vertex u, pick a random i ∈ [N ],
and assign label ϕlabel(u, i) to u i.e., set Λ(u) = ϕlabel(u, i). The expected value of the solution to
the Label Cover problem equals

EΛ[valueLC(Υ,Λ)] =
1

|EG|
∑

(u,v)∈EG

EΛ[I((Λ(u),Λ(v)) ∈ πuv)]

=
1

|EG|
∑

(u,v)∈EG

1

N2

∑

i,j∈[N ]

I((ϕlabel(u, i), ϕlabel(v, j)) ∈ πuv).
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Since valueLC(Υ,Λ) ≤ OPTLC(Υ) for every labeling u 7→ Λ(u),

∑

(u,v)∈EG

∑

i,j∈[N ]

I((ϕlabel(u, i), ϕlabel(v, j)) ∈ πuv) ≤ |EG| ·N2 ·OPTLC(Υ). (2)

On the other hand,

E [valueQAP(Γ, ϕ)] = E




∑

((u,i),(v,j))∈E
G̃

I((ϕ(u, i), ϕ(v, j)) ∈ E
H̃
)




=
∑

(u,v)∈EG

∑

i,j∈[N ]

Pr
{
(i, j) ∈ Euv and (ϕ(u, i), ϕ(v, j)) ∈ EH̃

}
. (3)

Recall, that the goal of the whole construction was to force the solution to map each (u, i) to
(u, ϕlabel(u, i), i). Let Cϕ denote the set of quadruples that satisfy this property:

Cϕ = {(u, i, v, j) : (u, v) ∈ EG and ϕ(u, i) = (u, ϕlabel(u, i), i), ϕ(v, j) = (v, ϕlabel(v, j), j)} .

If (u, i, v, j) ∈ Cϕ, then

Pr{(i, j) ∈ Euv and (ϕ(u, i), ϕ(v, j)) ∈ E
H̃
}

= Pr {(i, j) ∈ Euv and (ϕlabel(u, i), ϕlabel(v, j)) ∈ πuv}
= Pr {(i, j) ∈ Euv} · I((ϕlabel(u, i), ϕlabel(v, j)) ∈ πuv)
= α · I((ϕlabel(u, i), ϕlabel(v, j)) ∈ πuv).

If (u, v) ∈ EG, but (u, i, v, j) /∈ Cϕ, then either (i, j) 6= (ϕ[N ](u, i), ϕ[N ](v, j)) or (u, v) 6=
(ϕV (u, i), ϕV (v, j)), and hence the events {(i, j) ∈ Euv} and {(ϕ[N ](u, i), ϕ[N ](v, j)) ∈ EϕV (u,i)ϕV (v,j)}
are independent. We have

Pr
{
(i, j) ∈ Euv and (ϕ(u, i), ϕ(v, j)) ∈ E

H̃

}
≤

Pr
{
(i, j) ∈ Euv and (ϕ[N ](u, i), ϕ[N ](v, j)) ∈ EϕV (u,i)ϕV (v,j)

}
≤ α2.

Now, splitting summation (3) into two parts depending on whether (u, i, v, j) ∈ Cϕ, we have

E [valueQAP(Γ, (ϕ)] ≤ α|EG|N2 OPTLC(Υ) + α2|EG|N2.

We use the following concentration inequality for Lipschitz functions on the boolean cube.

Theorem 2.6 (McDiarmid [29], Theorem 3.1, p. 206). Let X1, . . . XT be independent random
variables taking values in the set {0, 1}. Let f : {0, 1}T → R be a K-Lipschitz function i.e., for
every x, y ∈ {0, 1}T , |f(x)−f(y)| ≤ K‖x−y‖1. Finally, let µ = E [f(X1, . . . ,XT )]. Then for every
positive ε,

Pr {f(X1, . . . ,Xn)− µ ≥ ε} ≤ e
−2ε2

TK2 .

Lemma 2.7. For every injective map ϕ : VG̃ → VH̃ ,

Pr
{
valueQAP(Γ, ϕ)− E [valueQAP(Γ, ϕ)] ≥ αN2

}
≤ e−n2Nk.

6



Proof. The presence of edges in the random graphs G̃ and H̃ is determined by the random sets Euv
(where (u, v) ∈ EG). Thus, we can think of the random variable valueQAP(Γ, ϕ) as of function of
the indicator variables Xuivj , where Xuivj equals 1, if (i, j) ∈ Euv; and 0, otherwise. To be precise,
valueQAP(Γ, ϕ) equals

∑

(u,v)∈EG

i,j∈[N ]

XuivjXϕV (u,i)ϕ[N](u,i)ϕV (v,j)ϕ[N](v,j)I((ϕlabel(u, i), ϕlabel(v, j)) ∈ πϕV (u,i)ϕV (v,j)).

Observe, that variables Xuivj are mutually independent (we identify Xuivj with Xvjui). Each
Xuivj = 1 with probability α. Finally, valueQAP(Γ, ϕ) is (k2 + 1)-Lipschitz as a function of the
variables Xuivj . That is, if we change one of the variables Xuivj from 0 to 1, or from 1 to 0, then
the value of the function may change by at most k2 + 1. This follows from the expression above,
since for every fixed ϕ, each Xuivj may appear in at most k2 + 1 terms (reason: there is one term
XuivjXϕV (u,i)ϕ[N](u,i)ϕV (v,j)ϕ[N](v,j) and at most k2 terms Xu′i′v′j′XϕV (u′,i′)ϕ[N](u′,i′)ϕV (v′,j′)ϕ[N](v′,j′),

such that ϕ(u′, i′) = (u, x, i) and ϕ(v′, j′) = (v, y, j) for some x, y ∈ [k], since ϕ is an injective map).
McDiarmid’s inequality with T = N2 · |EG|, K = (k2 + 1), and ε = αN2, implies the statement of
the lemma.

Corollary 2.8 (Soundness). With high probability, the reduction outputs an instance Γ such that

OPTQAP(Γ) ≤ α|EG|N2 × (OPTLC(Υ) + 2α)

Remark 2.9. It is instructive to think, that 2α≪ OPTLC(Υ).

Proof. The total number of maps from VG to VH is (nNk)nN . Thus, by the union bound, with
probability 1− o(1), for every injective mapping ϕ : VG → VH :

valueQAP(Γ, ϕ) − E [valueQAP(Γ, ϕ)] ≤ αN2.

Plugging in the bound for the expected value from Lemma 2.5 gives

OPTQAP(Γ) ≤ α|EG|N2 OPTLC(Υ) + α2|EG|N2 + αN2.

Theorem 2.10. For every positive ε > 0, there is no polynomial time approximation algorithm for
the Maximum Quadratic Assignment problem with the approximation factor less than D = 2log

1−ε n

(where n is the number of vertices in the graph) unless NP ⊂ BPQP.

Proof. Assume to the contrary that there exists a polynomial time algorithm A with the approx-
imation factor less than D = 2log

1−ε n for some positive ε. We use this algorithm to distinguish
satisfiable instances of the label cover from at most 1/(4D)– satisfiable instances in randomized
polynomial time, which is not possible (if NP 6⊂ BPQP) according to Theorem 2.2.

Let Υ be an instance of the label cover. Using the reduction described above transform Υ to
an instance of MaxQAP Γ. Run the algorithm A on Γ. Accept Υ, if the value A(Γ) returned
by the algorithm is at least |E

G̃
|/D. Reject Υ, otherwise. By Lemma 2.4, if Υ is satisfiable, then

OPTQAP(Γ) = |E
G̃
| and, hence A(Γ) ≥ |E

G̃
|/D. Thus we always accept satisfiable instances. On

7



the other hand, if the instance Υ is at most 1/(4D)– satisfiable, then, by Corollary 2.8, with high
probability

OPTQAP(Γ) ≤ α|EG|N2(OPTLC(Υ) + 2α) < |E
G̃
|/D,

the second inequality follows from |EG̃| ≥ α|EG|N2/2 (see Claim 2.3). Therefore, with high prob-
ability, we reject Υ.

3 LP Relaxation and Approximation Algorithm

We now present a new O(
√
n) approximation algorithm slightly improving on the result of Nagara-

jan and Sviridenko [30]. The new algorithm is surprisingly simple. It is based on a rounding of a
natural LP relaxation. The LP relaxation is due to Adams and Johnson [1]. Thus we show that
the integrality gap of the LP is O(

√
n).

Consider the following integer program. We have assignment variables xup between vertices of
the two graphs that are indicator variables of the events “u maps to p”, and variables yupvq that
are indicator variables of the events “u maps to p and v maps to q”. The LP relaxation is obtained
by dropping the integrality condition on variables.

8



LP Relaxation

max
∑

u,v∈VG

p,q∈VH

wG(u, v)wH (p, q)yupvq

∑
p∈VH

xup = 1, for all u ∈ VG;∑
u∈VG

xup = 1, for all p ∈ VH ;∑
u∈VG

yupvq = xvq, for all v ∈ VG, p, q ∈ VH ;∑
p∈VH

yupvq = xvq, for all u, v ∈ VG, q ∈ VH ;

yupvq = yvqup, for all u, v ∈ VG, p, q ∈ VH ;
xup ∈ [0, 1], for all u ∈ VG, p ∈ VH ;
yupvq ∈ [0, 1], for all u ∈ VG, p ∈ VH .

Approximation Algorithm

1. We solve the LP relaxation and obtain an optimal solution (x∗, y∗). Then we pick random
subsets of vertices LG ⊂ VG and LH ⊂ VH of size ⌊n/2⌋. Let RG = VG\LG and RH = VH\LH .
In the rest of the algorithm, we will care only about edges going from LG to RG and from
LH to RH ; and we will ignore edges that completely lie in LG, RG, LH or RH .

2. For every vertex u in the set LG, we pick a vertex p in LH with probability x∗up and set
ϕ̃(u) = p (recall that

∑
p x

∗
up = 1, for all u; with probability 1−∑p∈LH

x∗up we do not choose
any vertex for u). Then for every vertex p ∈ LH , which is chosen by at least one element u,
we pick one of these u’s uniformly at random; and set ϕ(u) = p (in other words, we choose a
random u ∈ ϕ̃−1(p) and set ϕ(u) = p). Let L̃G ⊂ LG be the set of all chosen u’s.

3. We now find a bijection ψ : RG → RH so as to maximize the contribution we get from edges
from L̃G to RG i.e., to maximize the sum

∑

u∈L̃G

v∈RG

wG(u, v)wH (ϕ(u), ψ(v)). (4)

This can be done, since the problem is equivalent to the maximum matching problem between
the sets RG and RH where the weight of the edge from v to q equals

∑

u∈L̃G

wG(u, v)wH (ϕ(u), q).

4. Output the union of the maps ϕ, ψ and an arbitrary bijection from LG \ L̃G to LH \ ϕ(L̃G).
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3.1 Analysis of the Algorithm

Theorem 3.1. The approximation ratio of the algorithm is O(
√
n).

While the algorithm is really simple, the analysis is more involved. Let LP ∗ be the value of the
LP solution. To prove that the algorithm gives O(

√
n)-approximation, it suffices to show that

E



∑

u∈LG

v∈RG

wG(u, v)wH (ϕ(u), ψ(v))


 ≥ LP ∗

O(
√
n)
. (5)

We split all edges of graph G into two sets: heavy edges and light edges. For each vertex u ∈ VG,
let Wu be the set of ⌈√n⌉ vertices v ∈ VG with the largest weight wG(u, v). Then,

LP ∗ =
∑

u∈VG

v∈VG\Wu

∑

p,q∈VH

y∗upvqwG(u, v)wH (p, q) +
∑

u∈VG

v∈Wu

∑

p,q∈VH

y∗upvqwG(u, v)wH(p, q).

Denote the first term by LP ∗
I and the second by LP ∗

II . Instead of working with ψ, we explicitly
define two new bijective maps νI and νII from RG to RH and prove, that

E



∑

u∈L̃G

v∈RG

wG(u, v)wH (ϕ(u), νI (v))


 ≥ LP ∗

I

O(
√
n)

; and E



∑

u∈L̃G

v∈RG

wG(u, v)wH (ϕ(u), νII (v))


 ≥ LP ∗

II

O(
√
n)
.

These two inequalities imply the bound we need, since the sum (5) is greater than or equal to each
of the sums above (by the choice of ψ; see (4)). Before we proceed, we state two simple lemmas we
need later (see the appendix for the proofs).

Lemma 3.2. Let S be a random subset of a set V . Suppose that for u ∈ V , all events {u′ ∈ S} where
u′ 6= u are jointly independent of the event {u ∈ S}. Let s be an element of S chosen uniformly at
random (if S = ∅, then s is not defined). Then Pr {u = s} ≥ Pr {u ∈ S} /(E [|S|] + 1).

Lemma 3.3. Let S be a random subset of a set L, and T be a random subset of a set R. Suppose
that for (l, r) ∈ L × R, all events {l′ ∈ S} where l′ 6= l and all events {r′ ∈ T} where r′ 6= r are
jointly independent of the event {(l, r) ∈ S × T}. Let s be an element of S chosen uniformly at
random, and let t be an element of T chosen uniformly at random. Then,

Pr {(l, r) = (s, t)} ≥ Pr {(l, r) ∈ S × T}
(E [|S|] + 1)× (E [|T |] + 1)

(here (s, t) is not defined if S = ∅ or T = ∅).

The first map νI is a random permutation between RG and RH . Observe, that given subsets
LG and LH , the events {ϕ̃(u) = p} are mutually independent for different u’s and the expected
size of ϕ̃−1(p) is at most 1, here ϕ̃−1(p) is the preimage of p (recall the map ϕ̃ may have collisions,
and hence ϕ̃−1(p) may contain more than one element). Thus, by Lemma 3.2 applied to the set
ϕ̃−1(p) ⊂ LG,

Pr {ϕ(u) = p | LG, LH} ≥ Pr {ϕ̃(u) = p | LG, LH} /2 =

{
x∗up/2, if u ∈ LG and p ∈ LH ;

0, otherwise.
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For every u, v ∈ VG and p, q ∈ VH , let Eupvq be the event {u ∈ LG, v ∈ RG, p ∈ LH , q ∈ RH}. Then,

Pr {Eupvq} = Pr {u ∈ LG, v ∈ RG, p ∈ LH , q ∈ RH} ≥ 1

16
.

Thus, the probability that ϕ(u) = p and νI(v) = q is Ω(x∗up/n). We have

E



∑

u∈LG

v∈RG

wG(u, v)wH(ϕ(u), νI (v))


 ≥ Ω(1)×

∑

u,v∈VG

∑

p,q∈VH

x∗up
n

wG(u, v)wH (p, q)

≥ Ω(1)×
∑

p,q∈VH

wH(p, q)
∑

u∈VG

x∗up
∑

v∈Wu

wG(u, v)

n

≥ Ω(1)×
∑

p,q∈VH

wH(p, q)
∑

u∈VG

x∗up
min{wG(u, v) : v ∈ Wu}√

n
.

On the other hand, using
∑

v∈VG
y∗upvq/x

∗
up = 1, we get

LP ∗
I =

∑

p,q∈VH

wH(p, q)
∑

u∈VG

x∗up




∑

v∈VG\Wu

y∗upvq
x∗up

wG(u, v)




≤
∑

p,q∈VH

wH(p, q)
∑

u∈VG

x∗upmax{wG(u, v) : v ∈ VG \ Wu}

≤
∑

p,q∈VH

wH(p, q)
∑

u∈VG

x∗upmin{wG(u, v) : v ∈ Wu}.

We now define νII . For every v ∈ VG, let

l(v) = argmaxu∈VG




∑

p,q∈VH

wG(u, v)wH (p, q)y∗upvq



 .

We say that (l(v), v) is a heavy edge. For every u ∈ LG, let

Ru = {v ∈ RG : l(v) = u} .

All sets Ru are disjoint subsets of RG. Note, that l(v) does not depend on the partitioning VG =
LG ∪ RG and VH = LH ∪ RH , but Ru depends on RG. We now define a map ν̃II : Ru → RH

independently for each u for which ϕ̃(u) is defined (even if ϕ(u) is not defined). For every v ∈ Ru,
and q ∈ RH , define

zvq =
y∗uϕ̃(u)vq

x∗uϕ̃(u)
.

Observe, that
∑

v∈Ru
zvq ≤ 1 for each q ∈ RH and

∑
q∈RH

zvq ≤ 1 for each v ∈ Ru. Hence, for
a fixed Ru, the vector (zvq : v ∈ Ru, q ∈ RH) lies in the convex hull of integral partial matchings
between Ru and RH . Thus, the fractional matching (zvq : v ∈ Ru, q ∈ RH) can be represented
as a convex combination of integral partial matchings. Pick one of them with the probability
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proportional to its weight in the convex combination. Call this matching ν̃uII . Note, that ν̃uII is
injective and that the supports of ν̃u

′

II and ν̃u
′′

II do not intersect if u′ 6= u′′ (since Ru′ ∩ Ru′′ = ∅).
Let ν̃II be the union of ν̃uII for all u ∈ LG. The partial map ν̃II may not be injective and may map
several vertices of RG to the same vertex q. Thus, for every q in the image of RG, we pick uniformly
at random one preimage v and set νII(v) = q. We define νII on the rest of RG arbitrarily.

Fix LG, LH , RG = VG \LG, RH = VH \LH , and also Ru = {v ∈ RG : l(v) = u} (for all u ∈ LG).
Let u ∈ LG, v ∈ Ru, p ∈ LH and q ∈ RH . We want to estimate the probability that ϕ(u) = p
and νII(v) = q. Observe, that given sets LG and LH , the event {ϕ̃(u) = p and ν̃II(v) = q} is
independent of all events {ϕ̃(u′) = p} for u′ 6= u and all events {ν̃II(v′) = q} for v′ /∈ Ru. The
expected size of ν̃−1

II (q) is at most 1, since

∑

u′∈LG

∑

v′∈R
u′

Pr
{
ν̃u

′

II(v
′) = q

}
≤
∑

u′∈LG

∑

v′∈R
u′

∑

p′∈LH

x∗u′p′y
∗
u′p′v′q/x

∗
u′p′ ≤

∑

v′∈VG

∑

p′∈VH

y∗l(v′)p′v′q =
∑

v′∈VG

x∗v′q ≤ 1.

Therefore, by Lemma 3.3,

Pr {ϕ(u) = p and νII(v) = q | LG, LH , u ∈ LG, v ∈ Ru, p ∈ LH , q ∈ RH} ≥
Pr {ϕ̃(u) = p and ν̃II(v) = q | LG, LH , u ∈ LG, v ∈ Ru, p ∈ LH , q ∈ RH} /4 = y∗upvq/4.

We are now ready to estimate the value of the solution:

E



∑

u∈LG

v∈RG

wG(u, v)wH (ϕ(u), νII (v))


 ≥ ELG,LH



∑

u∈LG

v∈Ru

∑

p∈LH

q∈RH

y∗upvq
4

wG(u, v)wH (p, q)




=
1

4
ELG,LH




∑

v∈RG:l(v)∈LG

∑

p∈LH

q∈RH

y∗l(v)pvq wG(l(v), v)wH (p, q)




=
1

4

∑

v∈VG

∑

p,q∈VH

Pr
{
El(v)pvq

}
y∗l(v)pvq wG(l(v), v)wH (p, q)

=
1

64

∑

v∈VG

∑

p,q∈VH

y∗l(v)pvq wG(l(v), v)wH (p, q)

≥ 1

64

∑

v∈VG

max
u∈VG




∑

p,q∈VH

y∗upvq wG(u, v)wH (p, q)





≥ 1

64

∑

v∈VG

1

|Wv|
∑

u∈Wv



∑

p,q∈VH

y∗upvq wG(u, v)wH (p, q)




=
1

64
× LP ∗

II

⌈√n ⌉ .

This finishes the proof.
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3.2 De-randomized algorithm

We now give a de-randomized version of the approximation algorithm. The algorithm will iteratively
find partial mappings of VG to VH and remove vertices for which the mapping is defined. We want
the LP to be valid even after we removed some vertices from VG and VH . To this end, we slightly
modify the LP. We new LP is slightly weaker than the original LP.

LP Relaxation

max
∑

u,v∈VG

p,q∈VH

wG(u, v)wH (p, q)yupvq

∑
p∈VH

xup ≤ 1, for all u ∈ VG;∑
u∈VG

xup ≤ 1, for all p ∈ VH ;∑
u∈VG

yupvq ≤ xvq, for all v ∈ VG, p, q ∈ VH ;∑
p∈VH

yupvq ≤ xvq, for all u, v ∈ VG, q ∈ VH ;

yupvq = yvqup, for all u, v ∈ VG, p, q ∈ VH ;
xup ∈ [0, 1], for all u ∈ VG, p ∈ VH ;
yupvq ∈ [0, 1], for all u ∈ VG, p ∈ VH .

This LP is obtained from the original LP by replacing equalities “=” with inequalities “≤” in
the first four constraints. The integrality gap of the new LP is the same as of the original LP. In fact,
given a feasible solution x∗, y∗ of the new LP we can always increase the values of some variables
to get a feasible solution x∗∗, y∗∗ of the original LP (then x∗∗ ≥ x∗ and y∗∗ ≥ y∗ component-wise).

Theorem 3.4. There exists a polynomial time (deterministic) algorithm that given an instance
Γ of MaxQAP consisting of two weighted graphs G = (VG, wG), H = (VH , wH) and a solution
(x∗, y∗) to the LP, of cost LP ∗, outputs a bijection ϕ : VG → VH such that

valueQAP(Γ, ϕ) ≥
LP ∗

O(
√
n)
.

Proof. The existence of the map ϕ follows from Theorem 3.1. We have already established that
either LP ∗

I ≥ LP ∗
II (see Theorem 3.1 for definitions) and then

∑

u,v∈VG

∑

p,q∈VH

x∗up
n
wG(u, v)wH (p, q) ≥ Cr.alg

LP ∗

√
n
;

or LP ∗
II ≥ LP ∗

I and then there exists a map ϕr.alg : VG → VH (returned by the randomized
algorithm) and a disjoint set of stars S = {(u,Ru)} (each with the center in the vertex u ∈ VG and
leaves Ru ⊂ VG) such that

∑

(u,Ru)∈S

∑

v∈Ru

wG(u, v)wH (ϕr.alg(u), ϕr.alg(v)) ≥ Cr.alg
LP ∗

√
n
,

for some universal constant Cr.alg. We consider these cases separately.
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I. First, assume that LP ∗
I ≥ LP ∗

II . Our approach is similar to the approach we used in The-
orem 3.1. However, instead of peaking random sets LG, LH and random maps ϕ and ν we pick
them deterministically. We first find ϕ and ν to maximize the fractional value:

∑

u∈VG

∑

v∈VG

wG(u, v)wH (ϕ(u), ν(v)).

Then, we pick LG and LH greedily to maximize
∑

u∈LG:ϕ(u)∈LH

v∈RG:ν(v)∈RH

wG(u, v)wH (ϕ(u), ν(v)).

We map LG according to ϕ and RG = VG \ LG according to ν. The details are below.
Find a bijection ϕ : VG → VH that maximizes

Eν

∑

u∈VG



∑

v∈VG

wG(u, v)wH (ϕ(u), ν(v))


 =

∑

u∈VG



1

n

∑

v∈VG

q∈VH

wG(u, v)wH (ϕ(u), q)


 ,

here ν : VG → VH is a random bijection chosen uniformly from the set of all bijections. We find
the bijection by solving the maximum matching problem between VG and VH , where the cost of
mapping u 7→ p equals

1

n

∑

v∈VG

q∈VH

wG(u, v)wH (p, q).

Then we find a bijection ν : VG → VH that maximizes
∑

u,v∈VG

wG(u, v)wH (ϕ(u), ν(v)).

Again, we do this by solving the maximum matching problem, where now the cost of mapping
v 7→ q equals ∑

u∈VG

wG(u, v)wH (ϕ(u), q).

Since for a random permutation νI the maximum is at least Cr.algLP
∗/
√
n, we get

∑

u∈VG

∑

v∈VG

wG(u, v)wH(ϕ(u), ν(v)) ≥ Cr.alg
LP ∗

√
n
. (6)

We now use the greedy deterministic MAX CUT approximation algorithm1 to partition VG into
two sets LG and RG so as to maximize

∑

u∈LG

∑

v∈RG

wG(u, v)wH (ϕ(u), ν(v)).

1The greedy MAX CUT algorithm picks vertices from the set VG in an arbitrary order and puts them in the sets
LG or RG. Thus, at every step t all vertices are partitioned into three groups LG(t), RG(t) and a group of not yet
processed vertices UG(t). If the weight of edges going from v to RG(t) is greater than the weight of edges going from
v to LG(t), then the algorithm adds v to LG, otherwise to RG. The algorithm maintain the following invariant: at
every step the weight of cut edges is greater than or equal to the weight of uncut edges. Thus, in the end, the weight
of cut edges is at least a half of the total weight of all edges.

14



The cost of cutting an edge (u, v) is wG(u, v)wH (ϕ(u), ν(v)). The cost of the obtained solution is
at least a half of (6). We now use the greedy deterministic MAX DICUT (directed maximum cut)
approximation algorithm2 to partition VH into sets LH and RH so as to maximize

∑

u∈LG

ϕ(u)∈LH

∑

v∈RG

ϕ(v)∈RH

wG(u, v)wH (ϕ(u), ν(v)) =
∑

p∈LH

ϕ−1(p)∈LG

∑

q∈RH

ν−1(q)∈LH

wG(ϕ
−1(p), ν−1(q))wH (p, q).

The cost of a directed edge (p, q) is wG(ϕ
−1(p), ν−1(q))wH (p, q), if ϕ−1(p) ∈ LG, ν

−1(q) ∈ RG; and
0 otherwise. The cost of the obtained solution is at least 1/8 of (6). Thus

∑

u∈LG:ϕ(u)∈LH

v∈RG:ν(v)∈RH

wG(u, v)wH (ϕ(u), ν(v)) ≥ Cr.alg

8

LP ∗

√
n
. (7)

Note that we do not require that |LG| = |LH | or that |RG| = |RH |. We output the map that maps
u ∈ LG to ϕ(u) if ϕ(u) ∈ LH ; and v ∈ RG to ν(v) if ν(v) ∈ RH . It maps the remaining vertices in
an arbitrary way. The cost of the solution is at least (7).

II. We now assume that there exists a collection of disjoint stars S = {(u,Ru)} (each with the
center in the vertex u ∈ VG and leaves Ru ⊂ VG) and a map ϕr.alg : VG → VH such that

∑

(u,Ru)∈S

∑

v∈Ru

wG(u, v)wH (ϕr.alg(u), ϕr.alg(v)) ≥ Cr.alg
LP ∗

√
n
. (8)

Define the LP volume of sets S ⊂ VG, T ⊂ VH as follows:

volLP (S, T ) =
∑

u∈S
v∈VG

∑

p,q∈VH

wG(u, v)wH (p, q)y∗upvq +
∑

u,v∈VG

∑

p∈T
q∈VH

wG(u, v)wH (p, q)y∗upvq.

If S1, . . . , Sk is a partition of VG and T1, . . . , Tk is a partition of VH , then

k∑

i=1

volLP (Sk, Tk) = 2LP ∗,

since on the left hand side every term of the LP is counted twice. Particularly,

∑

(u,Ru)∈S

volLP ({u} ∪ Ru, ϕr.alg({u} ∪ Ru)) = 2LP ∗.

Plugging in (8), we get

∑

(u,Ru)∈S

(
2
∑

v∈Ru

wG(u, v)wH (ϕr.alg(u), ϕr.alg(v)) −
Cr.alg√
n

volLP ({u} ∪ Ru, ϕr.alg({u} ∪ Ru))

)
≥ 0.

2The greedy MAX DICUT algorithm first finds an undirected maximum cut (AG, BG) using the greedy MAX
CUT algorithm. The cost of the undirected maximum cut is at least a half of the total weight of all edges. Then,
it outputs the cut (AG, BG), if more edges are directed from AG to BG than from BG to AG, it outputs the cut
(BG, AG), otherwise. The cost of the directed cut is at least a quarter of the total weight of all directed edges.
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This inequality implies that there exists one star (u∗,Ru∗) such that

2
∑

v∈Ru∗

wG(u
∗, v)wH(ϕr.alg(u

∗), ϕr.alg(v)) ≥
Cr.alg√
n

volLP ({u∗} ∪Ru∗ , ϕr.alg({u∗} ∪ Ru∗)).

We find a star (u∗,R∗) and an injective map ϕ : {u} ∪ R → VH satisfying this inequality. We do
this as follows: For every choice of u and ϕ(u), we solve the maximum partial matching problem
where the cost of assigning v 7→ q equals

2wG(u, v)wH (ϕ(u), q)−

− Cr.alg√
n



∑

u′∈VG

∑

p′,q′∈VH

wG(u
′, v)wH (p′, q′)y∗u′p′vq′ +

∑

u′,v′∈VG

∑

p′∈VH

wG(u
′, v′)wH(p′, q)y∗u′p′v′q


 .

The set of matched vertices v is the set of leaves of the star; u is the center.
We fix the solution to be ϕ on (u∗,R∗). We remove the star (u∗,R∗) from the graph G and

its image (ϕ(u∗), ϕ(R∗)) from the graph H. We repeat the algorithm recursively for the remaining
graphs (we do not resolve the LP, but we again consider two cases: LP ∗

I ≥ LP ∗
II and LP ∗

I ≤ LP ∗
II).

To estimate the cost of the solution, observe that the value of the LP decreases by

∑

u,v∈VG

p,q∈VH

wG(u, v)wH(p, q)y∗upvq −
∑

u,v∈VG\({u∗}∪R∗)
p,q∈VH\({ϕ(u∗)}∪ϕ(R∗))

wG(u, v)wH (p, q)y∗upvq

≤
∑

u∈({u∗}∪R∗),v∈VG

p,q∈VH

wG(u, v)wH (p, q)y∗upvq +
∑

u,v∈VG

p∈({ϕ(u∗)}∪ϕ(R∗)),q∈VH

wG(u, v)wH (p, q)y∗upvq

+
∑

u∈VG,v∈({u∗}∪R∗)
p,q∈VH

wG(u, v)wH (p, q)y∗upvq +
∑

u,v∈VG

p∈VH ,q∈({ϕ(u∗)}∪ϕ(R∗))

wG(u, v)wH (p, q)y∗upvq

= 2volLP ({u∗} ∪ R∗, ϕ({u∗} ∪ R∗)),

while the profit we get from mapping (u∗,R∗) 7→ (ϕ(u∗), ϕ(R∗)) is at least

Cr.alg

2
√
n

volLP ({u∗} ∪ R∗, ϕ({u∗} ∪ R∗)).

Hence, the approximation ratio is at least Cr.alg/(4
√
n).
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A Appendix

Lemma 3.2 Let S be a random subset of a set V . Suppose that for u ∈ V , all events {u′ ∈ S} where
u′ 6= u are jointly independent of the event {u ∈ S}. Let s be an element of S chosen uniformly at
random (if S = ∅, then s is not defined). Then Pr {u = s} ≥ Pr {u ∈ S} /(E [|S|] + 1).

Proof. We have

Pr {u = s} = Pr {u ∈ S} × E

[
1

|S| | u ∈ S

]
.

By Jensen’s inequality E [1/|S| | u ∈ S] ≥ 1/E [|S| | u ∈ S]. Moreover,

E [|S| | u ∈ S] = E [|S \ {u}| | u ∈ S] + 1 = E [|S \ {u}|] + 1 ≤ E [|S|] + 1.

Lemma 3.3 Let S be a random subset of a set L, and T be a random subset of a set R. Suppose
that for (l, r) ∈ L × R, all events {l′ ∈ S} where l′ 6= l and all events {r′ ∈ T} where r′ 6= r are
jointly independent of the event {(l, r) ∈ S × T}. Let s be an element of S chosen uniformly at
random, and let t be an element of T chosen uniformly at random. Then,

Pr {(l, r) = (s, t)} ≥ Pr {(l, r) ∈ S × T}
(E [|S|] + 1)× (E [|T |] + 1)

(here (s, t) is not defined if S = ∅ or T = ∅).

Proof. We have

Pr {(l, r) = (s, t)} = Pr {(l, r) ∈ S × T} × E

[
1

|S| · |T | | (l, r) ∈ S × T

]
.
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Note, that if (l, r) ∈ S × T , then S 6= ∅ and T 6= ∅ and hence 1/(|S| · |T |) is well defined. By
Jensen’s inequality (for the convex function t 7→ (1/t)2),

E

[
1

|S| · |T | | (l, r) ∈ S × T

]
=

E



(

1√
|S| · |T |

)2

| (l, r) ∈ S × T


 ≥


 1

E

[√
|S| · |T | | (l, r) ∈ S × T

]




2

.

Then,

E

[√
|S| · |T | | (l, r) ∈ S × T

]
= E

[√
(|S \ {l}| + 1)(|T \ {r}|+ 1) | (l, r) ∈ S × T

]

= E

[√
(|S \ {l}| + 1)(|T \ {r}|+ 1)

]

≤ E

[√
(|S|+ 1)(|T | + 1)

]

≤
√

E [|S|+ 1]E [|T |+ 1],

where the last inequality follows from the Cauchy-Schwarz inequality. This finishes the proof.
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