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Abstract

We show that linear probing requires 5-independent hash functions for expected constant-
time performance, matching an upper bound of [Pagh et al. STOC’07,SICOMP’09]. More
precisely, we construct a random 4-independent hash function yielding expected logarithmic
search time for certain keys. For (1 + ε)-approximate minwise independence, we show that
Ω(lg 1

ε
)-independent hash functions are required, matching an upper bound of [Indyk, SODA’99,

JALG’01]. We also show that the very fast 2-independent multiply-shift scheme of Dietzfelbinger
[STACS’96] fails badly in both applications.

1 Introduction

The concept of k-independence was introduced by Wegman and Carter [34] in FOCS’79 and has
been the cornerstone of our understanding of hash functions ever since. Formally, we think of a hash
function h : [u] → [t] as a random variable distributed over [t][u]. Here [s] = {0, . . . , s− 1}. We say
that h is k-independent if (1) for any distinct keys x1, . . . , xk ∈ [u], the hash values h(x1), . . . , h(xk)
are independent random variables; and (2) for any fixed x, h(x) is uniformly distributed in [t].

As the concept of independence is fundamental to probabilistic analysis, k-independent hash
functions are both natural and powerful in algorithm analysis. They allow us to replace the heuristic
assumption of truly random hash functions that are uniformly distributed in [t][u], hence needing
u lg t random bits (lg = log2), with real implementable hash functions that are still “independent
enough” to yield provable performance guarantees similar to those proved with true randomness.
We are then left with the natural goal of understanding the independence required by algorithms.

Once we have proved that k-independence suffices for a hashing-based randomized algorithm,
we are free to use any k-independent hash function. The canonical construction of a k-independent
hash function is based on polynomials of degree k − 1. Let p ≥ u be prime. Picking random
a0, . . . , ak−1 ∈ {0, . . . , p− 1}, the hash function is defined by:

h(x) =
(

(

ak−1x
k−1 + · · ·+ a1x+ a0

)

mod p
)
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If we want to limit the range of hash values to [t], we use h(x) mod t. This preserves requirement
(1) of independence among k hash values. Requirement (2) of uniformity is close to satisfied if
p ≫ t.

Sometimes 2-independence suffices. For example, 2-independence implies so-called universality
[7]; namely that the probability of two keys x and y colliding with h(x) = h(y) is 1/t; or close
to 1/t if the uniformity of (2) is only approximate. Universality implies expected constant time
performance of hash tables implemented with chaining. Universality also suffices for the 2-level
hashing of Fredman et al. [14], yielding static hash tables with constant query time.

At the other end of the spectrum, when dealing with problems involving n objects, O(lg n)-
independence suffices in a vast majority of applications. One reason for this is the Chernoff bounds
of [29] for k-independent events, whose probability bounds differ from the full-independence Cher-
noff bound by 2−Ω(k). Another reason is that random graphs with O(lg n)-independent edges [2]
share many of the properties of truly random graphs.

The independence measure has long been central to the study of randomized algorithms. It
applies not only to hash functions, but also to pseudo-random number generators viewed as as-
signing hash values to 0, 1, 2, ... For example, [18] considers variants of QuickSort, [1] consider the
maximal bucket size for hashing with chaining, and [17, 12] consider Cuckoo hashing. In several
cases [1, 12, 18], it is proved that linear transformations x 7→

(

(ax + b) mod p
)

do not suffice for
good performance, hence that 2-independence is not in itself sufficient.

In this paper, we study the independence for two important applications in which it is already
known that 2-independence does not suffice: linear probing and minwise-independent hashing.

1.1 Linear probing

Linear probing is a classic implementation of hash tables. It uses a hash function h to map a set
of n keys into an array of size t. When inserting x, if the desired location h(x) ∈ [t] is already
occupied, the algorithm scans h(x)+ 1, h(x)+ 2, . . . , t− 1, 0, 1, . . . until an empty location is found,
and places x there. The query algorithm starts at h(x) and scans either until it finds x, or runs
into an empty position, which certifies that x is not in the hash table. When the query search is
unsuccessful, that is, when x is not stored, the query algorithm scans exactly the same locations
as an insert of x. A general bound on the query time is hence also a bound on the insertion time.

We generally assume constant load of the hash table, e.g. the number of keys is n ≤ 2
3 t.

This classic data structure is one of the most popular implementations of hash tables, due to its
unmatched simplicity and efficiency. The practical use of linear probing dates back at least to 1954
to an assembly program by Samuel, Amdahl, Boehme (c.f. [21]). On modern architectures, access
to memory is done in cache lines (of much more than a word), so inspecting a few consecutive
values typically translates into a single memory access. Even if the scan straddles a cache line, the
behavior will still be better than a second random memory access on architectures with prefetching.
Empirical evaluations [4, 15, 24] confirm the practical advantage of linear probing over other known
schemes, while cautioning [15, 33] that it behaves quite unreliably with weak hash functions (such
as 2-independent). Taken together, these findings form a strong motivation for theoretical analysis.

Linear probing was shown to take expected constant time for any operation in 1963 by
Knuth [20], in a report which is now regarded as the birth of algorithm analysis. This analy-
sis, however, assumed a truly random hash function.

A central open question of Wegman and Carter [34] was how linear probing behaves with
k-independence. Siegel and Schmidt [28, 30] showed that O(lg n)-independence suffices for any
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Independence 2 3 4 ≥ 5

Query time Θ(
√
n) Θ(lg n) Θ(lg n) Θ(1)

Construction time Θ(n lgn) Θ(n lg n) Θ(n) Θ(n)

Table 1: Expected time bounds for linear probing with a poor k-independent hash function. The
bounds are worst-case expected, e.g., a lower bound for the query means that there is a concrete
combination of stored set, query key, and k-independent hash function with this expected search
time while the upper-bound means that this is the worst expected time for any such combination.
Construction time refers to the worst-case expected total time for inserting n keys starting from
an empty table.

operation to take expected constant time. Pagh et al. [23] showed that just 5-independence suffices
for this expected constant operation time. They also showed that linear transformations do not
suffice, hence that 2-independence is not in itself sufficient.

Here we close this line of work, showing that 4-independence is not in itself sufficient for expected
constant operation time. We display a concrete combination of keys and a 4-independent random
hash function where searching certain keys takes super constant expected time. This shows that
the 5-independence result of Pagh et al. [23] is best possible.

We will, in fact, provide a complete understanding of linear probing with low independence as
summarized in Table 1. This includes a new upper and lower bound of Θ(

√
n) for the query time

with 2-independence. All the other upper bounds in the table are contained, at least implicitly, in
[23]. On the lower bound side, the only lower bound known from [23] was the Ω(n log n) lower bound
on the construction time with 2-independence, which we show here also holds with 3-independence.

1.2 Minwise independence

The concept of minwise independence was introduced by two classic algorithms: detecting near-
duplicate documents [5, 6] and approximating the size of the transitive closure [8]. The basic step
in these algorithms is estimating the size of the intersection of pairs of sets, relative to their union:
for A and B, we want to estimate |A∩B||A∪B| (the Jaccard similarity coefficient). To do this efficiently,

one can choose a hash function h and maintain minh(A) as the sketch of an entire set A. If the

hash function is truly random, we have Pr[minh(A) = minh(B)] = |A∩B|
|A∪B| . Thus, by repeating with

several hash functions, the Jaccard coefficient can be estimated up to a small error.
To make this idea work, the property required of the hash function is minwise independence.

Formally, a random hash function h : [u] → [u] is said to be minwise independent if, for any set
S ⊂ [u] and any x /∈ S, we have Prh[h(x) < minh(S)] = 1

|S|+1 . In other words, x is the minimum

of S ∪ {x} only with its “fair” probability 1
|S|+1 .

A hash function providing a truly random permutation on [u] is minwise independent, but
representing such a function requires Θ(u) bits [5]. Therefore the definition is relaxed to ε-minwise
independent, requiring that Prh[h(x) < minh(S)] = 1±ε

|S|+1 . Using such a function, we will have

Pr[minh(A) = minh(B)] = (1 ± ε) |A∩B||A∪B| . Thus, the ε parameter of the minwise independent hash

function dictates the best approximation achievable in the algorithms (which cannot be improved
by repetition).

Broder et al. [5] proved that linear transformations are only Ω(log n)-minwise independent.
Indyk [16] provided the only known implementation of minwise independence with provable guar-
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antees, showing that O(lg 1
ε )-independent hash functions are ε-minwise independent.

In this paper, we show for any ε > 0, that there exist Ω(lg 1
ε )-independent hash functions which

are no better than ε-minwise independent, hence that Indyk’s result is best possible.

1.3 Concrete Schemes.

Our results provide a powerful understanding of a natural combinatorial resource (independence) for
two important algorithmic questions. In other words, they provide limits on how far the paradigm
of independence can take us. Note, however, that independence is only one of many properties that
concrete hash schemes can possess. In a particular application, a hash scheme can behave much
better than its independence guarantees, if it has some other probabilistic property unrelated to
independence. Obviously, proving that a concrete hashing scheme works is not as attractive as
proving that every k-independent scheme works, including more efficient k-independent schemes
found in the future. However, if low independence does not work, then a concrete scheme may be
the best we can hope for.

For both of our applications, we know that the classic linear transformation x 7→
(

(ax+b) mod p
)

does not give good bounds [5, 23]. However, there is a much more practical 2-independent hash
function; namely Dietzfelbinger’s multiply-shift scheme [10], which on some computers is 10 times
as fast [31]. To hash w-bit integers to ℓ-bit integers, ℓ ≤ w, the scheme picks two random 2w-bit
integers a and b, and maps x 7→(a*x+b)>>(2w− ℓ). The operators are those from the programming
language C [19], where * and + are 2w-bit multiplication and addition, and >> is an unsigned right
shift.

We are not aware of any previous papers considering the concrete limits of multiply-shift in
concrete applications, but in this paper, we prove that linear probing with multiply-shift hashing
suffers from Ω(lg n) expected operation times on some inputs. Similarly, we show that minwise
independent hashing may have a very large approximation error of ε = Ω(lg n). These lower bounds
match those from [5, 23] for the classic linear transformations, and may not be surprising given the
“moral similarity” of the schemes, but they do require different rather involved arguments. We feel
that this effort to understand the limits of multiply-shift is justified, as it brings the theoretical
lower bounds more in line with programming reality.

Later work. After the negative findings of the current paper, we continued our quest for concrete
hashing schemes that were both efficient and possessed good probabilistic properties for our target
applications. We considered simple tabulation hashing [26], which breaks fundamentally from
polynomial hashing schemes. Tabulation based hashing is comparable in speed to multiply-shift
hashing [10], but it uses much more space (uΩ(1) where u is the size of the universe instead of
constant). Simple tabulation is only 3-independent, yet it does give constant expected operation
time for linear probing and o(1)-minwise hashing. We also proposed a variant, twisted tabulation,
with even stronger probabilistic guarantees for both linear probing and minwise hashing [9, 27].
Both of these tabulation schemes are of a general nature with many applications even though they
are only 3-independent.

We note that there has been several other studies of hashing schemes that for other concrete
applications have greater power than their independence suggests, e.g., [3, 13]. The focus in this
paper, however, is hashing for linear probing and minwise hashing.

The problems discovered here for minwise hashing, also made the last author consider an al-
ternative to repeating minwise hashing d times independently; namely to store the d smallest hash
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value with a single hash function [32]. It turns out that as d increases, this scheme performs well
even with 2-independence.

2 Linear probing with k-independence

To better situate our lower bounds, we will first present some simple proofs of the known upper
bounds for linear probing from Table 1. This is the O(n lg n) expected construction time with
2-independence, the O(n) expected construction time with 4-independence, the O(lg n) expected
query time with 3-independence, and the O(1) expected query time with 5-independence. The last
bound is the main result from [23], and all the other bounds are at least implicit in [23]. Our proof
here is quite different from that in [23]: simpler and more close in line with our later lower bound
constructions. Our proof is also simplified in that we only consider load factors below 2/3. A more
elaborate proof obtaining tight bounds for 5-independence for all load factors 1 − ε is presented
in [26].

The main probabilistic tool featuring in the upper bound analysis is standard moment bounds:
consider throwing n balls into b bins uniformly. Let Xi be the indicator variable for the event that
ball i lands in some fixed bin, and X =

∑n
i=1 Xi the number of balls in the this bin. We have

µ = E[X] = n
b . As usual, the kth central moment of X is defined as E[(X − µ)k]. If k = O(1) and

µ = Ω(1), then E[(X − µ)k] = O(µk/2). Therefore, by Markov’s inequality, if k is further even,

Pr[|X − µ| ≥ αµ] = Pr[(X − µ)k ≥ αkµk] = O(1/(αkµk/2)). (1)

These kth moment bounds were also used in [23], but the way we apply them here is quite different.
We consider a perfect binary tree spanning the array [t] where t is a power of two. A node at height
h ≤ lg2 t has an interval of 2h array positions below it, and is identified with this interval.

We assume that the load factor is at most 2/3, that is n ≤ 2
3 t, so we expect at most 2

3 2
h keys

to hash to the interval of a height h node (recall that with linear probing, keys may end up in
positions later than the ones they hash to). Call the node “near-full” if at least 3

4 2
h keys hash to

its interval.

Construction time for k = 2, 4 We will now bound the total expected time it takes to construct
the hash table (the cost of inserting n distinct keys). A run is a maximal interval of filled locations.
If the table consists of runs of ℓ1, ℓ2, . . . keys (

∑

ℓi = n), the cost of constructing it is bounded
from above by O(ℓ21 + ℓ22 + . . . ). We note that runs of length ℓi < 4 contribute O(n) to this sum
of squares. To bound the longer runs, we make the following crucial observation: if a run contains
between 2h+2 and 2h+3 keys for h ≥ 0, then some node at height h above it is near-full. In fact,
there will be such a near-full height h node whose last position is in the run.

For a proof, we study a run of length at least 2h+2. The run is preceded by an empty position,
so all keys in the run are hashed to the run (but may appear later in the run than the position they
hashed to). We now consider the first 4 height h nodes with their last position in the interval. The
last 3 of these have all their positions in the run. Assume for a contradiction that none of these
are near-full. The first node (whose first positions may not be in the run) contributes less than
3
4 2

h keys to the run (in the most extreme case, this many keys hash to the last position of that
node). The subsequent nodes have all 2h positions in the run, but with less than 3

4 2
h keys hashing

to these positions. Even with the maximal excess from the first node, we cannot fill the intervals of
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three subsequent nodes, so the run must stop before the end of the third node, contradicting that
its last position was in the run.

Each node has its last position in at most one run, so the observation gives an upper bound
on the cost: for each height h ≥ 0, add O(22(h+2)) = O(22h) for each near-full node at height h.
Denoting by p(h) the probability that a node on height h is near-full, the expected total cost over
all heights is thus bounded by

O





lg2 t
∑

h=0

(t/2h) · p(h) · 22h


 = O



n ·
lg2 t
∑

h=0

2h · p(h)



 .

Applying (1) with µ = 2
3 2

h and α = 3
4/

2
3 = 9

8 , we get p(h) = O(2−kh/2). With k = 2, we obtain
p(h) = O(2−h), so the total expected construction cost with 2-independence is O(n lg n). However,
the 4th moment gives p(h) = O(2−2h), so the total expected construction cost with 4-independence
is O(n). These are the upper bounds on the expected construction time for Table 1.

Query time for k = 3, 5 To bound the running time of one particular operation (query or insert
q), we first pick that hash value of q. Conditioned on this choice, the hashing of the stored keys is
(k − 1)-dependent. The analysis is now very similar to the one for the construction time referring
to the same binary tree.

Suppose the hash of q is contained in a run of length ℓ. Then O(ℓ) bounds the query time.
Assume ℓ ∈ [2h+2, 2h+3) for h ≥ 0. Then as we argued above, one of the first 4 nodes of height
h whose last position is in the run is near-full. Since the run contains the fixed hash of q and is
of length at most 2h+3, there are at most 12 relevant height h nodes; namely the ancestor of the
hash of q, the 8 nodes to its left and the 3 nodes to its right. Each has probability p(h) of being
near-full, so the expected run length is

E[ℓ] ≤ 3 +

lg t
∑

h=0

12 · p(h) · 2h+3 = O

(

lg t
∑

h=0

p(h) · 2h
)

.

This time, we use k′ = k − 1 in (1), so with 3-independence we obtain p(h) = O(2−h), and an
expected query time of O(lg n). With 5-independence, we get p(h) = O(2−2h), so the expected
query time is O(1).

Our results. Two intriguing questions pop out of the above analysis. First, is the independence
of the query really crucial? Perhaps one could argue that the query behaves like an average
operation, even if it is not completely independent of everything else. Secondly, one has to wonder
whether 3-independence suffices (by using something other than 3rd moment): all that is needed
is a bound slightly stronger than 2nd moment in order to make the costs with increasing heights
decay geometrically!

We answer both questions in strong negative terms. The complete understanding we provide
of linear probing with low independence is summarized in Table 1. Addressing the first question,
we show that there are 4-independent hash functions that for certain combinations of query and
stored keys lead to an expected search time of Ω(lg n) time. Our proof demonstrates an important
phenomenon: even though most bins have low load, a particular query key’s hash value could be
correlated with the (uniformly random) choice of which bins have high load.
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An even more striking illustration of this fact happens for 2-independence: the query time blows
up to Ω(

√
n) in expectation, since we are left with no independence at all after conditioning on

the query’s hash. A matching upper bound will also be presented. This demonstrates a very large
separation between linear probing and collision chaining, which enjoys O(1) query times even for
2-independent hash functions.

Addressing the second question, we show that 3-independence is not enough to guarantee even
a construction time of O(n). Thus, in some sense, the 4th moment analysis is the best one can hope
for.

The constructions will be progressively more complicated as the independence k grows, and the
constructions for higher k will assume a full understanding of the constructions for lower k.

2.1 Expected Query Time Θ(
√
n) with 2-Independence

Above we saw that the expected construction time with 2-independence is O(n lg n), so the average
cost per key is O(lg n). We will now define a 2-independent hash function such that the expected
query time for some concrete key is Ω(

√
n). Afterwards, we will show a matching upper bound of

O(
√
n) that holds with any 2-independent hash function.
The main idea of the lower bound proof is that a designated query q can play a special role:

even if most portions of the hash table are lightly loaded, the query can be correlated with the
portions that are loaded. We assume that the number n of stored keys is a square and that the
table size is t = 2n.

We think of the stored keys and the query key as given, and we want to find bad ways of
distributing them 2-independently into the range [t]. To extend the hash function to the entire
universe, all other keys are hashed totally randomly. We consider unsuccessful searches, i.e. the
search key q is not stored in the hash table. The query time for q is the number of cells considered
from h(q) up to the first empty cell. If, for some d, the interval Q = (h(q)− d, h(q)] has 2d or more
keys hashing into it, then the search time is Ω(d).

Let d = 2
√
n, noting that d divides t. In our construction, we first pick the hash value h(q)

uniformly. We then divide the range into
√
n intervals of length d, of the form (h(q) + i · d, h(q) +

(i+ 1)d], wrapping around modulo t. One of these intervals is exactly Q.
Below we prescribe the distribution of stored keys among the intervals. We will only specify

how many keys go in each interval. Otherwise, the distribution is assumed to be fully random.
Thus it is understood that the keys are randomly permuted between the intervals and that the
keys in an interval are placed fully randomly within that interval.

To place 2d = 4
√
n keys in the query interval with constant probability, we mix two strategies,

each followed with a constant probabilities to be determined:

S1: Spread keys evenly, with
√
n keys in each interval.

S2: Consider the query interval Q and pick three random intervals, distinct from Q and each other.
Place 4

√
n keys in a random one of these 4 intervals, and none in the others. All other

intervals than these 4 get
√
n keys.

With probability 1/4, it is Q that gets 4
√
n = 2d keys, overloading it by a factor 2. Then, as

described above, the search time is Ω(
√
n).

To argue that the distribution is 2-independent with appropriate balancing between S1 and S2, we
need to consider pairs of two stored keys, and pairs involving the query and one stored key.
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Consider first the query key q versus a stored key x. Given h(q), we want to argue that x is
placed uniformly at random in [t]. The key x is placed uniformly in whatever interval it lands in.
With S1, the distribution among intervals is symmetric, so x is indeed placed uniformly in [t] with
S1. Now consider S2. Since the three special non-query intervals with S2 are random, x has the
same chance of landing in any non-query interval. All that remains is to argue that the probability
that x lands in the query interval Q is 1/

√
n. This follows because the expected number of keys in

Q is
√
n and the n stored keys are treated symmetrically. The hashing of the query and a stored

key is thus independent both with S1 and S2.
We now consider two stored keys. We will think of the hash value h(q) as being picked in two

steps. First we pick the offset r(q) = h(q) mod d uniformly at random. This offset decides the
locations of our intervals as (r(q)+ (j − 1) · d, r(q)+ j · d], for j = 0, . . . ,

√
n− 1, with wrap-around

modulo t. Second with pick the uniformly random index i(q) = ⌊h(q)/d⌋ of the query interval
Q = (r(q) + (i(q)− 1) · d, r(q) + i(q) · d].

Now consider the strategy S2 after the offset has been fixed. The query interval is chosen
uniformly at random, so from the perspective of stored keys, the four special intervals with S2

are completely random. This means that from the perspective of the stored keys, all intervals are
symmetric both with S1 and S2.

All that remains is to understand the probability of the two keys landing in the same interval.
We call this a “collision”. We need to balance the strategies so that the collision probability is
exactly 1/

√
n. Since all stored keys are treated symmetrically, this is equivalent to saying that the

expected number of collisions among stored keys is
(n
2

)

/
√
n = 1

2n
1.5 − 1

2

√
n.

In strategy S1, we get the smallest possible number of collisions:
√
n
(

√
n
2

)

= 1
2n

1.5 − 1
2n. This

is too few by almost n/2. In strategy S2, we get (
√
n − 4)

(

√
n
2

)

+
(4
√
n

2

)

= 1
2n

1.5 + 11
2 n collisions,

which is too much by a bit more than 5.5n. To get the right expected number of collisions, we use

S1 with probability PS1
= 5.5n+0.5

√
n

0.5n+5.5n = 11
12 +

1
12
√
n
. With this mix of strategies, our hashing of keys

is 2-independent, and since PS2
= Ω(1), the expected search cost is Ω(

√
n).

Upper bound We will now prove a matching upper bound of O(
√
n) on the expected query

time T with any 2-independent scheme. As an upper bound on the query time, we consider the
longest run length L in the whole linear probing table. Then T = O(L) no matter which location
the query key hash to. Therefore it does not matter if the hash value of the query key depends on
the hashing of the stored keys.

The table size is t = (1 + ε)n, for some ε ∈ (0, 1], and we assume for simplicity that n is a
square and

√
n divides t. We will prove that E[L] = O(

√
n/ε). As in the lower bound, we divide

[t] into
√
n equal sized intervals. We view keys as colliding if they hash to the same interval. We

want to argue that a large run imply too many collisions for 2-independence, but the argument is
not based on a standard 2nd moment bound.

Let C be the number of collisions. The expected number of collisions is E[C] =
(

n
2

)

/
√
n =

n3/2/2−n1/2/2. The minimum number of collisions is with the distribution S1 from the lower bound:

a perfectly regular distribution with n/
√
n =

√
n keys in each interval, hence C ≥ √

n ·
(

√
n
2

)

=

n3/2/2− n/2 collisions.
An interval with m keys has m2/2 − m/2 collisions and the derivative is m − 1/2. It follows

that if we move a key from an interval with m1 keys to one with m2 ≥ m1 keys, the number
of collisions increases by more than m2 − m1. Any distribution can be obtained from the above
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minimal distribution by moving keys from intervals with at most
√
n keys to intervals with at least√

n keys, and each such move increases the number of collisions.
A run of length L implies that this many keys hash to an interval of this length. The run is

contained in less than L/((1 + ε)
√
n) + 2 of our length t/

√
n = (1 + ε)

√
n intervals. In the process

of creating a distribution with this run from the minimum distribution, we have to move at least
L− (ε

√
n/2)(L/((1 + ε)

√
n) + 2) keys to intervals that already have ε

√
n/2 keys added, and each

such move gains at least ε
√
n/2 collisions. Thus our total gain in collisions is at least

(ε
√
n/2)(L − (ε

√
n/2)(L/((1 + ε)

√
n) + 2)) = (1− ε/(2(1 + ε)))εL

√
n/2− ε2n/2

≥ 3εL
√
n/8− ε2n/2.

The total number of collisions C with a run of length L is therefore at least

CL = n3/2/2− n/2 + 3εL
√
n/8− ε2n/2 ≥ n3/2/2− n+ 3ε2L

√
n/8.

Since CL is linear in L, the expected number of collisions is thus lower bounded by

E[C] ≥ E[CL] = n3/2/2 − n+ 3εE[L]
√
n/8.

But E[C] = n3/2/2− n1/2/2, so we conclude that

n3/2/2 − n1/2/2 ≥ n3/2/2− n+ 3εE[L]
√
n/8 =⇒ E[L] ≤ 8(n − n1/2)/(3ε

√
n) < 3

√
n/ε.

The expected maximal run length is thus less than 3
√
n/ε, so the expected query time is O(

√
n/ε).

Summing up, we have proved

Theorem 1 If n keys are stored in a linear probing table of size t = (1+ε)n using a 2-independent
scheme, then the expected query time for any key is O(

√
n/ε). Moreover, for any set of n given

keys plus a distinct query key, there exists a 2-independent scheme such that if it is used to insert
the n keys in a linear probing table of size t = 2n, then the query takes Ω(

√
n) time.

2.2 Construction Time Ω(n lg n) with 3-Independence

We will now construct a 3-independent hash function, such that the time to insert n keys into a
hash table is Ω(n lg n). The lower bound is based on overflowing intervals.

Lemma 2 Suppose an interval [a, b] of length d has d + ∆ stored keys hashing to it. Then the
insertion cost of these keys is Ω(∆2).

Proof The overflowing ∆ keys will be part of a run containing (b, b+∆]. At least ⌈∆/2⌉ of them
must end at position b + ⌈∆/2⌉ or later, i.e., a displacement of at least ⌈∆/2⌉. Interference from
stored keys hashing outside [a, b] can only increase the displacement, so the insertion cost is Ω(∆2).

We will add up such squared overflow costs over disjoint intervals, demonstrating an expected total
cost of Ω(n lg n).

As before, we assume the array size t = 2p is a power of two, and we set n = ⌈23 t⌉. We imagine
a perfect binary tree of height p spanning [t]: The root is level 0 and level ℓ is the nodes at depth
ℓ. The 2p leaves on level p are identified with [t].
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Our hash function will recursively distribute keys from a node to its two children, starting
at the root. Nodes run independent random distribution processes. Then, if each node makes a
k-independent distribution, overall the function is k-independent.

For a node, we mix between two strategies for distributing 2m keys between the two children
(here m may only be half-integral):

S1: Distribute the keys evenly between the children. If 2m is odd, a random child gets ⌈m⌉ keys.
The keys are randomly permuted, so it is random which keys ends in which interval.

S2: Give all the keys to a random child.

Our goal is to prove that there is a probability for the second strategy, PS2
, such that the distribution

process is 3-independent. Then we will calculate the cost it induces on linear probing. First,
however, we need some basic facts about k-independence.

2.2.1 Characterizing k-Independence

Our distribution procedure treats keys symmetrically, and ignores the distinction between left/right
children. We call such distributions fully symmetric. As above, we consider a node that has
to distribute 2m keys to its two children. The key set is identified with [2m]. Let Xa be the
indicator random variable for key a ending in the left child, and X =

∑

a∈[2m] Xa. By symmetry

of the children, E[Xa] =
1
2 , so E[X] = m. The kth moment is Fk = E[(X − m)k]. Also define

pk = Pr[X1 = · · · = Xk = 1]. Note here by symmetry that any k distinct keys yield the same value.
Also, by symmetry, p1 = 1/2.

Lemma 3 A fully symmetric distribution is k-independent iff pi = 2−i for all i = 2, . . . , k.

Proof For the non-trivial direction, assume pi = 2−i for all i = 2, . . . , k. We need to show that,
for any (x1, . . . , xk) ∈ {0, 1}k, Pr[(X1 = x1) ∧ · · · ∧ (Xk = xk)] = 2−k. By symmetry of the keys,
we can sort the vector to x1 = · · · = xt = 1 and xt+1 = · · · = xk = 0. Let pk,t be the probability
that such a vector is seen.

We use induction on k. In the base case, p1,0 = p1,1 =
1
2 by symmetry. For k ≥ 2, we start with

pk,k = pk = 2−k. We then use induction for t = k − 1 down to t = 0. The induction step is simple:
pk,t = pk−1,t− pk,t+1 = 2−(k−1)− 2−k = 2−k. Indeed, Pr[X1 = · · · = Xt = 1∧Xt+1 = · · · = Xk = 0]
can be computed as the difference between Pr[X1 = · · · = Xt = 1 ∧ Xt+1 = · · · = Xk−1 = 0]
(measured by pk−1,t) and Pr[X1 = · · · = Xt = 1 ∧Xt+1 = · · · = Xk−1 = 0 ∧Xk = 1] (measured by
pk,t+1).

Based on this lemma, we can also give a characterization based on moments. First observe
that any odd moment is necessarily zero, as Pr[X = m+ δ] = Pr[X = m− δ] by symmetry of the
children.

Lemma 4 A fully symmetric distribution is k-independent iff its even moments up to Fk coincide
with the moments of the truly random distribution.
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Proof We will show that p2, . . . , pk are determined by F2, . . . , Fk, and vice versa. Thus, any
distribution that has the same moments as a truly random distribution, will have the same values
p2, . . . , pk as the truly random distribution (pi = 2−i as in Lemma 3).

Let nk = n(n − 1) . . . (n − k + 1) be the falling factorial. The complete dependence between
p2, . . . , pk and F2, . . . , Fk follows inductively from the following statement:

Fk = (2m)kpk + fk(m, p2, .., pk−1), for some function fk. (2)

To see this, first note that

Fk = E[(X −m)k] =

k
∑

j=0

(

k

j

)

E[Xj ](−m)k−j = E[Xk] + gk
(

m,E[X2], . . . ,E[Xk−1]
)

(3)

for some function gk. Moreover,

E[Xk] =
∑

(a1,...,ak)∈[2m]k

E[Xa1 · · ·Xak ] = d0(m,k)pk + d1(m,k)pk−1 + · · · + dk−1(m,k)p1, (4)

where di(m,k) is the number of tuples (a1, . . . , ak) ∈ [2m]k with i duplicates, hence k − i distinct
keys. In particular, d0(m,k) = (2m)k, and by symmetry, we always have p1 = 1/2. Combining this
with (3) and (4), we get that

Fk = (2m)kpk + g∗k
(

m, p2, .., pk−1,E[X2], . . . ,E[Xk−1]
)

for some function g∗k, and then (2) follows by induction.

2.2.2 Mixing the Strategies

As a general convention, when we are mixing strategies Si, we use PSi
to denote the probability of

picking strategy Si while we use a superscript Si to denote measures within strategy Si, e.g., F
Si

2

is the second moment when strategy Si is applied.
Our strategies S1 and S2 are both fully symmetric, so by Lemma 4, a mix of S1 and S2 is

3-independent iff it has the correct 2nd moment F2 = m
2 . In strategy S1, X = m ± 1 (due to

rounding errors if 2m is odd), so FS1

2 ≤ 1. In S2 (all to one child), |X −m| = m so FS2

2 = m2. For
a correct 2nd moment of m/2, we balance with PS2

= 1
2m ±O( 1

m2 ).

2.2.3 The Construction Cost of Linear Probing

We now calculate the cost in terms of squared overflows. As long as the recursive steps spread the
keys evenly with S1, the load factor stays around 2/3: at level ℓ, the intervals have length t/2ℓ and
2m = 2/3 · t/2ℓ ± 1 keys to be split between child intervals of length t/2ℓ+1. If now, for a node v on
level ℓ, we apply strategy S2 collecting all keys into one child, that child interval gets an overflow
of 1/3 · n/2ℓ ± 1 = Ω(m) keys. By Lemma 2, the keys at the child will have a total insertion cost
of Ω(m2). Since PS2

= Θ(1/m), the expected cost induced by v is Ω(m) = Ω(n/2i).
The above situation is the only one in which we will charge keys at a node v, that is, the keys

at v are only charged if the S2 collection is applied to v but to no ancestors of v. This implies that
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the same key cannot be charged at different nodes. In fact, we will only charges nodes v at the top
(lg n)/2 levels where the chance that the S2 collection has been done higher up is small.

It remains to bound the probability that the S2 collection has been applied to an ancestor of
a node v on a given level ℓ ≤ (lg n)/2. The collection probability for a node u on level i ≤ ℓ is
PS2

= Θ(1/m) = Θ(2i/n) assuming no collection among the ancestors of u. By the union bound,
the probability that any ancestor u of v is first to be collected is

∑ℓ−1
i=0 Θ(2i/n) = Θ(2ℓ/n) =

Θ(1/
√
n) = o(1). We conclude that v has no collected ancestors with probability 1 − o(1), hence

that the expected cost of v is Ω(n/2ℓ) as above. The total expected cost over all 2ℓ level ℓ nodes is
thus Ω(n). Summing over all levels ℓ ≤ (lg n)/2, we get an expected total insertion cost of Ω(n lg n)
for our 3-independent scheme. Thus we have proved

Theorem 5 For any set of n given keys, there exists a 3-independent hashing scheme such that
if it is used to insert the n keys in a linear probing table of size t = 2n, then the expected total
insertion time is Ω(n log n).

2.3 Expected Query Time Ω(lg n) with 4-Independence

Proving high expected search cost with 4-independence combines the ideas for 2-independence and
3-independence. However, some quite severe complications will arise. The lower bound is based on
overflowing intervals.

Lemma 6 Suppose an interval [a, b] of length d has d + ∆, ∆ = Ω(d), stored keys hashing to it.
Assuming that the interval has even length and that the stored keys hash symmetrically to the first
and second half of [a, b]. Moreover, assume that the query key hashes uniformly in [a, b]. Then the
expected query time is Ω(∆).

Proof By symmetry between the first and the second half, with probability 1/2, the first half
gets half the keys, hence an overflow of ∆/2 keys, and a run containing [a + d/2, a + d/2 + ∆/2).
Since ∆ = Ω(d), the probability that the query key hits the first half of this run is Ω(1), and then
the expected query cost is Ω(∆).

As for 2-independence, we will first choose h(q) and then make the stored keys cluster preferentially
around h(q). As for 3-independence, the distribution will be described using a perfectly balanced
binary tree over [t]. The basic idea is to use the 3-independent distribution from Section 2.2 along
the query path. For brevity, we call nodes on the query path query nodes. The overflows that
lead to an Ω(n lg n) construction cost, will yield an Ω(lg n) expected query time. However, the
clustering of our 3-independent distribution is far too strong for 4-independence, and therefore we
cannot apply it in the top of the tree. However, further down, we can balance clustering on the
query path by some anti-clustering distributions outside the query path.

2.3.1 3-independent Building Blocks

For a node that has 2m keys to distribute, we consider three basic strategies:

S1: Distribute the keys evenly between the two children. If 2m is odd, a random child gets ⌈m⌉
keys.

S2: Give all the keys to a random child.
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S3: Pick a child randomly, and give it m+ δ = ⌈m+
√

m/2⌉ keys.

By mixing among these, we define two super-strategies:

T1 = PS2
× S2 + (1− PS2

)× S1;

T2 = PS3
× S3 + (1− PS3

)× S1.

The above notation means that strategy T1 picks strategy S2 with probability PS2
; S1 otherwise.

Likewise T2 picks S3 with probability PS3
; S1 otherwise. The probabilities PS2

and PS3
are chosen

such that T1 and T2 are 3-independent. The strategy T1 is the 3-independent strategy from Sec-
tion 2.2 where we determined PS2

= 2
m ± O( 1

m2 ). This will be our preferred strategy on the query
path.

To compute PS3
, we employ the 2nd moments: FS1

2 ≤ 1 and FS3

2 = m
2 +O(

√
m). (If one ignored

rounding, we would have the precise bounds FS1

2 = 0 and FS3

2 = m
2 .) By Lemma 4, we need a 2nd

moment of m/2. Thus, we have PS3
= 1−O( 1√

m
).

2.3.2 4-Independence on the Average, One Level At The Time

We are going to get 4-independence by an appropriate mix of our 3-independent strategies T1 and
T2. Our first step is to hash the query uniformly into [t]. This defines the query path. We will do
the mixing top-down, one level ℓ at the time. The individual node will not distribute its keys 4-
independently. Nodes on the query path will prefer T1 while keys outside the query path will prefer
T2, all in a mix that leads to global 4-independence. There will also be neutral nodes for which we
use a truly random distribution. Since all distributions are 3-independent regardless of the query
path, the query hashes independently of any 3 stored keys. We are therefore only concerned about
the 4-independence among stored keys.

It is tempting to try balancing of T1 and T2 via 4th moments using Lemma 4. However, even on
the same level ℓ, the distribution of the number of keys at the node on the query path will be different
from the distributions outside the query path, and this makes balancing via 4th moments non-
obvious. Instead, we will argue independence via Lemma 3: since we already have 3-independence
and all distributions are symmetric, we only need to show p4 = 2−4. Thus, conditioned on 4 given
keys a, b, c, d being together on level ℓ, we want them all to go to the left child with probability 2−4.
By symmetry, our 4-tuple (a, b, c, d) is uniformly random among all 4-tuples surviving together on
level ℓ. On the average we thus want such 4-tuples to go left together with probability 2−4.

2.3.3 Analyzing T1 and T2

Our aim now is to compute pT1

4 and pT2

4 for a node with 2m keys to be split between its children.
First we note:

pS1

4 = m4/(2m)4 = 1
24

(

1− 6
m ± O(1)

m2

)

Indeed, the first key will go to the left child with probability 1
2 = m

2m . Conditioned on this, the
second key will go to the left child with probability m−1

2m , etc. In S2, all keys go to the left child

with probability a half, so pS2

4 = 1
2 . Since PS2

= 2
m ±O( 1

m2 ), we get

pT1

4 = PS2
· pS2

4 + (1− PS2
)pS1

4 = 1
24

(

1 + 8
m ± O(1)

m2

)

= 2−4 +Θ(1/m).
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To avoid a rather involved calculation, we will not derive pT2

4 directly, but rather as a function of
the 4th moment. We have FS1

4 ≤ 1, FS3

4 = δ4 = 1
4m

2 +O(m3/2), and PS3
= 1−O( 1√

m
), so

F T2

4 = PS3
FS3

4 + (1− PS3
)FS1

4 =
1

4
m2 ±O(m3/2).

From the proof of Lemma 4, we know that F4 = (2m)4p4 + fk(m, p2, p3) with any distribution.
Since T2 is 3-independent, it has the same p2 and p3 as a truly random distribution. Thus, we can
compute f(m, p2, p3) using the p4 and F4 values of a truly random distribution. The 4th moment
of a truly random distribution is:

F4 =
2m

24
+

(

4

2

)

(2m)2

24
=

24m2 − 10m

24
.

Since p4 = 2−4 in the truly random case, we have: f(m, p2, p3) = 2−4
[

(2m)4− (24m2−10m)
]

. Now

we can return to pT2

4 :

pT2

4 =
F T2

4 + f(m, p2, p3)

(2m)4
=

1

24

(

4m2 ±O(m3/2)

(2m)4
+ 1− 24m2 − 10m

(2m)4

)

=
1

24

(

1− 20m2 ±O(m1.5)

(2m)4

)

=
1

24

(

1− 20

m2
± O(1)

m2.5

)

= 2−4 −Θ(1/m2).

To get p4 = 2−4 for a given node, we use a strategy T ∗ that on the average over a level applies T1

with some probability P ∗T1
= Θ(1/m); T2 otherwise. However, as stated earlier, we will often give

preference to T1 on the query path, and to T2 elsewhere.

2.3.4 The Distribution Tree

We are now ready to describe the mix of strategies used in the binary tree. On the top 2
3 lg2 t levels,

we use the above mentioned mix T ∗ of T1 and T2 yielding a perfect 4-independent distribution of
the keys at each node.

On the next levels ℓ ≥ 2
3 lg2 t, we will always use T1 on the query path. For the other nodes, we

use T1 with the probability P−T1
such that if all non-query nodes on level ℓ use the strategy

T− = P−T1
× T1 + (1− P−T1

)× T2;

then we get p4 = 2−4 for an average 4-tuple on level ℓ. We note that P−T1
depends completely on

the distribution of 4-tuples at the nodes on level ℓ and that P−T1
has to compensate for the fact that

T1 is used at the query node. We shall prove the existence of P−T1
shortly.

Finally, we have a stopping criteria: if at some level ℓ, we use the S2 collection on the query
path, or if ℓ + 1 > 5

6 lg2 t, then we use a truly random distribution on all subsequent levels. We
note that the S2 collection could happen already on a top level ℓ ≤ 2

3 lg2 t.

2.3.5 Possibility of Balance

Consider a level ℓ before the stopping criteria has been applied. We need to argue that the above
mentioned probability P−T1

exists. We will argue that P−T1
= 0 implies p4 < 2−4 while P−T1

= 1

implies p4 > 2−4. Then continuity implies that there exists a P−T1
∈ [0, 1] yielding p4 = 2−4.
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With P−T1
= 1, we use strategy T1 for all nodes on the level, and we already know that pT1

4 > 2−4.

Now consider P−T1
= 0, that is, we use T1 only at the query node. Starting with a simplistic

calculation, assume that all 2ℓ nodes on level ℓ had exactly 2m = n/2ℓ keys, hence the same number
of 4-tuples. Then the average is

pT1

4 + (2ℓ − 1)pT2

4

2ℓ
=

2−4 +Θ(1/m)− (2ℓ − 1)(2−4 +Θ(1/m2))

2ℓ
< 2−4.

The inequality follows because ℓ ≥ 2
3 lg2 t implies 2ℓ > n2/3 while m < n/2ℓ ≤ n1/3. However, the

number of keys at different nodes on level ℓ is not expected to be the same, and we will handle this
below.

We want to prove that the average p4 over all 4-tuples on level ℓ is below 2−4. To simplify
calculations, we can add pT1

4 − 2−4 = Θ(1/m) for each 4-tuple using T1 and pT2

4 − 2−4 = −Θ(1/m2)
for each tuple using T2, and show that the sum is negative. If the query node has 2m keys, all
using T1, we thus add (2m)4Θ(1/m) = Θ(m3). If a non-query node has 2m keys, we subtract
(2m)4Θ(1/m2) = Θ(m2).

We now want to bound the number of keys at the level ℓ query node. Since the stopping criteria
has not applied, we know that the S2 collection has not been applied to any of its ancestors.

Lemma 7 If we have never applied the S2 collection on the path to a query node v on level j ≤
5
6 lg2 t, then v has n/2j ± 3

√

n/2j keys.

Proof On the path to v, we have only applied strategies S1 and S3. Hence, if an ancestor of v
has 2m keys, then each child gets m± (

√

m/2 + 1) keys. The bound follows by induction starting
with 2m = n keys at the root on level 0.

Our level ℓ query node thus has Θ(n/2ℓ) keys and contributes O((n/2ℓ)3) to the sum.
To lower bound the negative contribution from the non-query nodes on level ℓ, we first note that

they share all the n−O(n/2ℓ) = Ω(n) keys not on the query path. The negative contribution for a
node with 2m keys is Ω(m2). By convexity, the total negative contribution is minimized if the keys
are evenly spread among the 2ℓ − 1 non-query nodes, and even less if we distributed on 2ℓ nodes.
The total negative contribution is therefore at least 2ℓ Ω((n/2ℓ)2) = Ω(n2/2ℓ). This dominates
the positive contribution from the query node since (2ℓ)2 ≥ n4/3 = ω(n). Thus we conclude that
p4 < 2−4 when P−T1

= 0. This completes the proof that we for level ℓ can find a value of P−T1
∈ [0, 1]

such that p4 = 2−4, hence the proof that the distribution tree described in Section 2.3.4 exists,
hashing all keys 4-independently.

2.3.6 Expected Query Time

We will now study the expected query cost for our designated query key q. We only consider the
cost in the event that the S2 collection is applied at the query node at some level ℓ ∈ [23 lg2 t,

5
6 lg2 t].

Assume that this happened. Then S2 has not been applied previously on the query path, so the
event can only happen once with a given distribution (no over-counting). By Lemma 7, our query
node has n/2ℓ±3

√

n/2ℓ keys. With probability 1/2, these all go to the query child which represents
an interval of length t/2ℓ+1. Since n = 2t/3, we conclude that the query child gets overloaded by
almost a factor 4/3. By Lemma 6, the expected cost of searching q is then Ω(n/2ℓ). This assumed
the event that S2 collection was applied to the query path on level ℓ and not on any level i < ℓ.
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On the query path on every level i ≤ ℓ, we know that the probability of applying S2 provided
that S2 has not already been applied is Θ(1/m) where m = Θ(n/2i) by Lemma 7. The probability
of applying S2 on level ℓ ∈ [23 lg2 t,

5
6 lg2 t] is therefore (1 −∑ℓ−1

i=0 O(2i/n))Θ(2ℓ/n) = Θ(2ℓ/n), so
the expected search cost from this level is Θ(1). Since our event can only happen on one level for
a given distribution, we sum this cost over the Ω(lg n) levels in [23 lg2 t,

5
6 lg2 t]. We conclude that

with our 4-independent scheme, the expected cost of searching the designated key is Ω(lg n). Thus
we have proved

Theorem 8 For any set of n given keys plus a distinct query key, there exists a 4-independent
hashing scheme such that if it is used to insert the n keys in a linear probing table of size t = 2n,
then the query takes Ω(log n) time.

3 Minwise Independence via k-Independence

Recall that a hash function h is ε-minwise independent if for any key set S and distinct query key
q 6∈ S, we have Prh[h(q) < minh(S)] = 1±ε

|S|+1 .

Indyk [16] proved that O(lg 1
ε )-independent hash functions are ε-minwise independent. His

proof is not based on moments but uses another standard tool enabled by k-independence: the
inclusion-exclusion principle. Say we want to bound the probability that at least one of n events
A0, . . . , An−1 occurs. Define p(k) =

∑

S⊆[n],|S|=kPr
[
⋂

i∈S Ai

]

. The probability that at least one

event occurs is, by inclusion-exclusion, Pr
[

⋃

i∈[n]Ai

]

= p(1)−p(2)+p(3)−p(4)+ . . . , and if k ≤ n

is odd, then Pr
[

⋃

i∈[n]Ai

]

∈
[

∑k−1
j=1(−1)j−1p(j),

∑k
j=1(−1)j−1p(j)

]

. The gap between the bounds

is p(k). If the events A0, . . . , An−1 are k-independent, then p(1), .., p(k) have exactly the same
values as in the fully independent case. Thus, k-independence achieves bounds exponentially close
to those with full independence, whenever probabilities can be computed by inclusion-exclusion
and p(k) decays exponentially in k. This turns out to be the case for minwise independence: we
can express the probability that at least some key in S is below q by inclusion-exclusion.

In this paper, we show that, for any ε > 0, there exist Ω(lg 1
ε )-independent hash functions that

are no better than ε-minwise independent. Indyk’s [16] simple analysis via inclusion-exclusion is
therefore tight: ε-minwise independence requires Ω(lg 1

ε )-independence.
To prove the result for a given k, our goal is to construct a k-independent distribution of hash

values for n regular keys and a distinct query key q, such that the probability that q gets the
minimal hash value is

(

1 + 2−O(k)
)

/(n+ 1).
We assume that k is even and divides n. Each hash value will be uniformly distributed in the

unit interval [0, 1). Discretizing this continuous interval does not affect any of the calculations
below, as long as precision 2 lg n or more is used (making the probability of a non-unique minimum
vanishingly small).

For our construction, we divide the unit interval into n
k subintervals of the form

[

i kn , (i+ 1) kn
)

.
The regular keys are distributed totally randomly between these subintervals. Each subinterval I
gets k regular keys in expectation. We say that I is exact if it gets exactly k regular keys. Whenever
I is not exact, the regular keys are placed totally randomly within it.

The distribution inside an exact interval I is dictated by a parity parameter P ∈ {0, 1}. We
break I into two equal halves, and distribute the k keys into these halves randomly, conditioned on
the parity in the first half being P . Within its half, each key gets an independent random value.
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If P is fixed, this process is (k − 1)-independent. Indeed, one can always deduce the half of a key
x based on knowledge of k− 1 keys, but the location of x is totally uniform if we only know about
k − 2 keys. If the parity parameter P is uniform in {0, 1} (but possibly dependent among exact
intervals), the overall distribution is still k-independent.

The query is generated uniformly and independent of the distribution of regular keys into
intervals. For each exact interval I, if the query is inside it, we set its parity parameter PI = 0.
If I is exact but the query is outside it, we toss a biased coin to determine the parity, with
Pr[PI = 0] = (12 − k

n)/(1 − k
n). Any fixed exact interval receives the query with probability k

n ,
so overall the distribution of PI is uniform. It is only via these parity parameters that the query
effects the distribution of the regular keys within the intervals.

We claim that the overall process is k-independent. Uniformity of PI implies that the distri-
bution of regular keys is k-independent. In the case of q and k − 1 regular keys, we also have full
independence, since the distribution in an interval is (k − 1)-independent even conditioned on P .

It remains to calculate the probability of q being the minimum under this distribution. First
we assume that the query landed in an exact interval I, and calculate pmin, the probability that q
takes the minimum value within I. Define the random variable X as the number of regular keys in
the first half. By our process, X is always even.

If X = x > 0, q is the minimum only if it lands in the first half (probability 1
2) and is smaller

than the x keys already there (probability 1
x+1). If X = 0, q is the minimum either if it lands in

the first half (probability 1
2), or if it lands in the second half, but is smaller than everybody there

(probability 1
2(k+1)). Thus,

pmin = Pr[X = 0] ·
(

1
2 +

1
2(k+1)

)

+
∑

x=2,4,..,k

Pr[X = x] · 1
2(x+1)

To compute Pr[X = x], we can think of the distribution into halves as a two step process: first
k− 1 keys are distributed randomly; then, the last key is placed to make the parity of the first half
even. Thus, X = x if either x or x−1 of the first k−1 keys landed in the first half. In other words:

Pr[X = x] =
(k−1

x

)

/2k−1 +
(k−1
x−1
)

/2k−1 =
(k
x

)

/2k−1

No keys are placed in the first half iff none of the first k − 1 keys land there; thus Pr[X = 0] =
1/2k−1. We obtain:

pmin =
1

2k(k + 1)
+

1

2k

∑

x=0,2,..,k

1

x+ 1

(

k

x

)

But 1
x+1

(

k
x

)

= 1
k+1

(

k+1
x+1

)

. Since k + 1 is odd, the sum over all odd binomial coefficients is exactly

2k+1/2 (it is equal to the sum over even binomial coefficients, and half the total). Thus, pmin =
1

2k(k+1)
+ 1

k+1 , i.e. q is the minimum with a probability that is too large by a factor of 1 + 2−k.
We are now almost done. For q to be the minimum of all keys, it has to be in the minimum non-

empty interval. If this interval is exact, our distribution increases the chance that q is minimum by
a factor 1+ 2−k; otherwise, our distribution is completely random in the interval, so q is minimum
with its fair probability. Let Z be the number of regular keys in q’s interval, and let E be the event
that q’s interval is the minimum non-empty interval. If the distribution were truly random, then q
would be minimum with probability:

1

n+ 1
=
∑

z

Pr[Z = z] · Pr[E | Z = z] · 1

z + 1
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In our tweaked distribution, q is minimum with probability:

∑

z 6=k

Pr[Z = z] · Pr[E | Z = z] · 1

z + 1
+ Pr[Z = k] · Pr[E | Z = k] · 1 + 2−k

k + 1

=
1

n+ 1
+ Pr[Z = k] · Pr[E | Z = k] · 2−k

k + 1

But Z is a binomial distribution with n trials and mean k; thus Pr[Z = k] = Ω(1/
√
k).

Furthermore, Pr[E | Z = k] ≥ k
n , since q’s interval is the very first with probability k

n (and there
is also a nonzero chance that it is not the first, but all interval before are empty). Thus, the

probability is off by an additive term Ω(2−k/
√
k)

n . This translates into a multiplicative factor of

1 + 2−O(k). Thus we have proved

Theorem 9 For any set S of n given keys plus a query key q 6∈ S, there exists a k-independent
scheme h such that Prh[h(q) < minh(S)] = (1 + 1/2O(h))/(n + 1).

4 Multiply-Shift hashing

We will now show that the simplest and fastest known universal [11] and 2-independent [10] hashing
schemes have bad expected performance when used for linear probing and minwise hashing on some
of the most common structured data; namely a set of consecutive numbers. This is a nice contrast
to the result of Mitzenmacher and Vadhan [22] that any 2-independent hashing scheme works if
the input data has enough entropy.

4.1 Linear probing

Our result is inspired by negative experimental findings from [33]. The essential form of the schemes
considered have the following basic form: we want to hash ℓin-bit keys into ℓout-bit indices. Here
ℓin ≥ ℓout, and the indices are used for the linear probing array. For the typical case of a half full
table, we have 2ℓout = t ≈ 2n. In particular, t > n.

Depending on details of the scheme, for some ℓ ≥ ℓin, ℓout, we pick a random multiplier a ∈ [2ℓ],
and compute

ha(x) = ⌊(ax mod 2ℓ)/2ℓ−ℓout⌋. (5)

We are going to show that if we use this scheme for a linear probing table of size t = 2ℓout = 2n,
and if we try to insert the keys in [n] = {0, . . . , n− 1}, then the expected average insertion time is
Ω(log n).

We refer to the scheme in (5) as the basic multiply-shift scheme. The mod-operation is easy,
as we just have to discard overflowing bits. If ℓ ∈ {8, 16, 32, 64}, this is done automatically in a
programming language like C [19]. The division with rounding is just a right shift by s = ℓ− ℓout,
so in C we get the simple code (a*x)>>s and the cost is dominated by a single multiplication. For
the plain universal hashing in [11], it suffices that ℓ ≥ ℓin but then the multiplier a should be odd.
For 2-independent hashing as in [10], we need ℓ ≥ ℓin + ℓout − 1. Also we need to add a random
number b, but as we shall discuss in the end, these details have no essential impact on our analysis.
However, our lower bounds for linear probing do assume that the last shift takes out at least one
bit, hence that

ℓ > ℓout. (6)
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Figure 1: Case where ‖h↓a(5)‖ ≤ ε.

It is instructive to compare (5) with the corresponding classic scheme ((ax + b) mod p) mod 2ℓout

for some large enough prime p. For this classic scheme, [23] already proved an Ω(log n) lower bound
on the average insertion time but with a different bad instance. The first mod-operation in the
classic scheme is with a prime instead of the power of two (5). The second mod-operation in the
classic scheme limits the range to ℓout-bit integers by saving the ℓout least significant bits whereas
the corresponding division in (5) saves the ℓout most significant bits. These differences both lead
to a quite different mathematical analysis.

As mentioned, our basic bad example will be where the keys form the interval [n]. However, the
problem will not go away if this interval is shifted or not totally full, or replaced by an arithmetic
progression.

When analyzing the scheme, it is convenient to view both the multiplier and the hash value
before the division as fractions in the unit interval [0, 1), defining a↓ = a/2ℓ, and

h↓a(x) = (ax mod 2ℓ)/2ℓ = a↓x mod 1.

Then ha(x) = ⌊h↓a(x)2ℓout⌋. We think of the unit interval as circular, and for any x ∈ [0, 1), we
define

‖x‖ = min{x mod 1,−x mod 1}.
This is the distance from 0 in the circular unit interval.

Lemma 10 Let the multiplier a be given and suppose for some x ∈ {1, . . . , n − 1} that ‖h↓a(x)‖ ≤
1/(2t). Then, when we use ha to hash [n] into a linear probing table, the average cost per key is
Ω(n/x).

Proof The case studied is illustrated in Figure 1. We can assume that n/x ≥ 8 since the cost
of inserting a key is always at least a constant. For each k ∈ [x], consider the set [n]xk = {y ∈
[n] | y mod x = k}. The keys in [n]xk are only 1/(2t) apart since for every y, h↓a(y+x)−h↓a(y) = h↓a(x).
Therefore the q ≥ ⌊n/x⌋ ≥ 8 keys from [n]xk map to an interval of length (q− 1)/(2t), which means
that ha distributes [n]xk on at most ⌈q/2⌉ + 1 < 3q/4 consecutive array locations. Linear probing
will have to spread [n]xk on q locations, so on the average, the keys in [n]xk get a displacement of
Ω(q) = Ω(n/x). This analysis applies to every equivalence class modulo x, so we get an average
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insertion cost of Ω(n/x) over all the keys. The above average costs only measures the interaction
among keys from the same equivalence class modulo x. If the ranges of hash values from different
classes overlap, the cost will be bigger.

Note that ‖h↓a(x)‖ ≤ 1/(2t) implies that h↓a(x) is contained in an interval of size 1/t around 0. From
the universality arguments of [11, 10] we know that the probability of this event is roughly 1/t (we
shall return with an exact statement and proof later). We would like to conclude that the expected
average cost is

∑n
x=1Ω(n/x)/t = Ω(lg n). The answer is correct, but the calculation cheats in the

sense that for a single multiplier a, we may have many different x such that ‖h↓a(x)‖ ≤ 1/(2t), and
the associated costs should not all be added up.

To get a proper lower bound, for any given multiplier a, we let µa denote the minimal positive
value such that ‖h↓a(µa)‖ ≤ 1/(2t). We note that there cannot be any x < y < µa at distance at

most 1/(2t), for then we would have ‖h↓a(y − x)‖ = ‖h↓a(y)− h↓a(x)‖ ≤ 1/(2t).
If µa < n, then by Lemma 10, the average insertion cost over keys is Ω(n/µa). Therefore, if a is

random over some probability distribution (to be played with as we go along), the expected (over
a) average (over keys) insertion cost is lower bounded by

Ω

(

n
∑

x=1

Pr
a
[µa = x]n/x

)

. (7)

Lemma 11 For a given multiplier a, consider any x < n such that ‖h↓a(x)‖ ≤ 1/(2t). Then x 6= µa

if and only if for some prime factor p of x, ‖h↓a(x/p)‖ ≤ 1/(2pt).

Proof The “if” part is trivial. By minimality of µa, we have x > µa.
Since ‖h↓a(µa)‖ ≤ 1/(2t), for any integer i < t, we have ‖h↓a(iµa)‖ = i‖h↓a(µa)‖. Suppose now

that x = jµa. Then 1 < j ≤ x < n < t, so for any i ≤ j, we have ‖h↓a(iµa)‖ ≤ ‖h↓a(x)‖ ≤ 1/(2t).

We can therefore take any prime factor p of j, and conclude that ‖h↓a(x/p)‖ ≤ ‖h↓a(x)‖ ≤ 1/(2t).
Since p is also a prime factor of x, this proves the lemma if x is a multiple of µa.

To complete the proof we will argue that x has to be a multiple of µa. Consider any y such
that ‖h↓a(y)‖ ≤ 1/(2t) where y is not a multiple of µa. Then h↓a maps {0, . . . , y + µa − 1} to points
in the cyclic unit interval that are at most 1/(2t) apart (c.f., Figure 1). It follows that y ≥ 2t−µa.
However, we have µa < x < n < t, which implies that x < 2t− µa ≤ y. It follows that x has to be
a multiple of µa.

To illustrate the basic accounting idea, assume for simplicity that we have a perfect distribution U
on a that for any fixed x > 0 distributes h↓a(x) uniformly in the unit interval. Then for any x and
ε < 1/2,

Pr
a←U

[‖h↓a(x)‖ ≤ ε] = 2ε. (8)
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Then by Lemma 11,

Pr
a←U

[µa = x] ≥ Pr
a←U

[‖h↓a(x)‖ ≤ 1/(2t)] −
∑

p prime factor of x

Pr
a←U

[‖h↓a(x/p)‖ ≤ 1/(2pt)]

= 1/t−
∑

p prime factor of x

1/(pt)

=



1−
∑

p prime factor of x

1/p



 /t (9)

We note that the lower-bound (9) may be negative since there are values of x for which
∑

p prime factor of x 1/p = Θ(lg lg x). Nevertheless (9) suffices with an appropriate reordering of
terms. From (7) we get that the expected average insertion cost is lower bounded within a constant
factor by:

n
∑

x=1

Pr
a←U

[µa = x]n/x ≥
n
∑

x=1



1−
∑

prime factor p of x

1/p



 n/(xt)

>
n
∑

x=1



1−
∑

prime p=2,3,5,..

1/p2



n/(xt)

Above we simply moved terms of the form −n/(xmp) where p is a prime factor of x to x′ = x/p
in the form −n/(x′mp2). Conservatively, we include −n/(x′mp2) for all primes p even if px′ > n.
Since

∑

prime p=2,3,5,.. 1/p
2 < 0.453, we get an expected average insertion cost of

Ω

(

n
∑

x=1

Pr
a←U

[µa = x]n/x

)

= Ω

(

n
∑

x=1

0.547n/(xt)

)

= Ω((n/t) lg n).

We would now be done if we had the perfect distribution U on a so that the equality (8) was
satisfied. Instead we will use the weaker statements of the following lemma:

Lemma 12 Let O be the uniform distribution on odd ℓ-bit numbers. For any odd x < n and
ε < 1/2,

Pr
a←O

[‖h↓a(x)‖ ≤ ε] ≤ 4ε (10)

However, if ε is an integer multiple of 1/2ℓ, then

Pr
a←O

[‖h↓a(x)‖ ≤ ε] ≥ 2ε. (11)

Proof When x is odd and a is a uniformly distributed odd ℓ-bit number, then ax mod 2ℓ is
uniformly distributed odd ℓ-bit number. To get h↓a(x), we divide by 2ℓ, and then we have a uniform

distribution on the 2ℓ−1 odd multiples of 1/2ℓ. Therefore Pra←O[‖h↓a(x)‖ ≤ ε]/ε is maximized when

ε = 1/2ℓ, in which case Pra←O[‖h↓a(x)‖ ≤ 1/2ℓ] = 2/2ℓ−1 = 42ℓ, matching the upper bound in (10).
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When ε = i/2ℓ for some integer i, we minimize Pra←O[‖h↓a(x)‖ ≤ ε]/ε when i is even, in which

case we get Pra←O[‖h↓a(x)‖ ≤ i/2ℓ] = i/2ℓ−1 = 2i/2ℓ, matching the lower bound in (11).

We are now ready to prove our lower bound for the performance of linear probing with the basic
multiply-shift scheme with an odd multiplier.

Theorem 13 Suppose ℓout < ℓ and that the multiplier a is a uniformly distributed odd ℓ-bit number.
If we use ha to insert [n] in a linear probing table, then the expected average insertion cost is Ω(lg n).

Proof By assumption 1/(2t) = 1/2ℓout+1 is a multiple of 1/2ℓ, so for odd x < n, (11) implies

Pr
a←O

[‖h↓a(x)‖ ≤ 1/(2t)] ≥ 1/t. (12)

By Lemma 11 combined with (10) and (12), we get for any given odd x that

Pr
a←O

[µa = x] ≥ Pr
a←O

[‖h↓a(x)‖ ≤ 1/(2t)] −
∑

p prime factor of x

Pr
a←O

[‖h↓a(x/p)‖ ≤ 1/(2pt)]

≥ 1/t−
∑

p prime factor of x

2/(pt) (13)

From (7) we get that the expected average insertion cost is lower bounded within a constant factor
by:

n
∑

odd x=1

Pr
a←O

[µa = x]n/x ≥
n
∑

odd x=1



1− 2
∑

prime factor p of x

1/p



 n/(xt)

>

n
∑

odd x=1



1− 2
∑

prime p=3,5,..

1/p2



n/(xt)

>
n
∑

odd x=1

0.594n/(xt)

> 0.298(n/t)Hn. (14)

Above we again moved terms of the form −n/(xmp) where p is a prime factor of x to x′ = x/p in
the form −n/(x′mp2). Since x is odd, we only have to consider odd primes factors p, and then we
used that

∑

prime p=3,5,.. 1/p
2 < 0.203. This completes the proof of Theorem 13.

We note that the plain universal hashing from [11] also assumes an odd multiplier, so Theorem 13
applies directly if ℓout < ℓ. The condition ℓout < ℓ is, in fact, necessary for bad performance. If
ℓout = ℓ, then ha is a permutation for any odd a, and then linear probing works perfectly.

For the 2-independent hashing in [10] there are two differences. One is that the multiplier may
also be even, but restricting it to be odd can at most double the cost. The other difference is that
we add an additional ℓ-bit parameter b, yielding a scheme of the form:

ha,b(x) = ⌊((ax+ b) mod 2ℓ)/2ℓ−ℓout⌋.

The only effect of b is a cyclic shift of the double full buckets, and this has no effect on the linear
probing cost. For the 2-independent hashing, we have ℓ ≥ ℓin + ℓout − 1, so ℓ < ℓout if ℓin > 1.
Hence again we have an expected average linear probing cost of Ω((n/t) lg n).
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Finally, we sketch some variations of our bad input. Currently, we just considered the set [n] of
input keys, but it makes no essential difference if instead for some integer constants α and β, we
consider the arithmetic sequence α[n] + β = {αi + β | i ∈ [n]}. The β just adds a cyclic shift like
the b in 2-independent hashing. If α is odd, then it is absorbed in the random multiplier a. What
we get now is that if for some x ∈ [n], we have ‖h↓a(αx)‖ ≤ 1/(2t), then again we get an average
cost Ω(n/x). A consequence is that no odd multiplier a is universally safe because there always
exists an inverse α (with aα mod 2ℓ = 1) leading to a linear cost if ha is used to insert α[n] + β.
It not hard to also construct bad examples for even α. If α is an odd multiple of 2i, we just have
to strengthen the condition ℓout < ℓ to ℓout < ℓ − i to get the expected average insertion cost of
Ω((n/t) lg n). This kind of arithmetic sequences could be a true practical problem. For example, in
some denial-of-service attacks, one often just change some bits in the middle of a header key, and
this gives an arithmetic sequence.

Another more practical concern is if the input set X is an ε-fraction of [n]. As long as ε > 2/3,

the above proof works almost unchanged. For smaller ε, our bad case is if ‖h↓a(x)‖ ≤ ε/(2t). In
that case, for each k ∈ [x], the q = ⌊n/x⌋ potential keys y from [n] with y mod x = k would map
to an interval of length ε(q − 1)/(2t). This means that ha spreads these potential keys on at most
⌈εq/2⌉+1 consecutive array locations. A ε-fraction of these keys are real, so on the average, these
intervals become double full, leading to an average cost of Ω(εn/x). Strengthening ℓout < ℓ to
ε ≥ 2ℓout−ℓ, we essentially get that all probabilities are reduced by ε. Thus we end with a cost of
Ω(ε2(n/t) lg n) = Ω(ε(|X|/t) lg n).

4.2 Minwise Independence

We will now demonstrate the lack of minwise independence with a hashing scheme of the form

ha,b(x) = (ax+ b) mod 2ℓ.

Here ℓ is an integer and a, b, and x are all ℓ-bit integers. Restricting the random parameter a to be
odd, it is relatively prime to 2ℓ, and then ha,b is a permutation. We also note that here, for minwise
hashing, we need the random parameter b; for with b = 0, we always have ha,0(0) = 0, which is
the unique smallest hash value. We are going to prove that this kind of scheme is Ω(log n)-minwise
independent. More precisely,

Theorem 14 Suppose the multiplier a is a uniformly distributed odd ℓ-bit number and that b is
uniformly distributed ℓ-bit number. Let n ∈ [2ℓ−1] and n ≤ u ∈ [2ℓ]. Then for a uniformly
distributed query key in [u] \ [n], we have Pr[ha,b(q) < minha,b([n])] = Ω((log n)/n).

Before proving the theorem, we discuss its implications. First note that for u = n + 1, the query
key is fixed as q = n. In this case, the same lower bound is proved in [5] when the hash function
is computed modulo a prime instead of a power of two. Multiplication modulo a power of two is
much faster, and the mathematical analysis is different.

The interesting point in u ≫ n is that it corresponds to the case of a random outlier q versus
the dense set [n]. By Theorem 14, such an outlier is disproportionally likely to get the smallest
hash value.

Having universe size u ≪ 2ℓ means that even if we try using far more random bits ℓ than
required for the key universe [u], then this does not resolve the problem that a uniform query q is
disproportionally likely to get the smallest hash value.
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Theorem 14 implies bad minwise performance for many variants of the scheme. First, if we
remove the restriction that a is odd, it can at most halve the probability that ha,b(q) < minha,b([n])
so we would still have Pr[ha,b(q) < minha,b([n])] = Ω((log n)/n). Moreover, this could introduce
collisions, and then we are more concerned with the event ha,b(q) ≤ minha,b([n]) since ties might
be broken adversarially. Also, as in Section 4.1, if we only want an ℓout < ℓ bits in the hash
value, we can shift out the ℓ− ℓout least significant bits, but this can only increase the chance that
ha,b(q) ≤ minha,b([n]).

Proof of Theorem 14 As in Section 4.1, it is convenient to divide ℓ-bit numbers by 2ℓ to get
fractions in the cyclic unit interval. We define a↓ = a/2ℓ, b↓ = b/2ℓ, and

h↓a,b(x) = ha,b(x)/2
ℓ = (a↓x+ b↓) mod 1.

We note that h↓a,0 = h↓a from Section 4.1. In our analysis, we are first going to pick a, and study how

h↓a maps [n] and the random query q. This analysis will reuse many of the elements from Section 4.1
illustrated in Figure 1. Later, we will pick the random b, which corresponds to a random cyclic
rotation by b↓, so that 0 ends up in what was position 1− b↓ in the image under h↓a

Let t be the smallest power of two not smaller than n. Then n ≤ t ≤ 2ℓ/2. As in Section 4.1,

for any a, we define µa > 0 to be the smallest number such that ‖h↓a(µa)‖ ≤ 1/(2t). We are only
interested in the case where µa < n/4.

In our cyclic unit interval, we generally view values in (0, 1/2) as positive and values in (1/2, 1)
as negative. Also, a value is between two other values, it is on the short side between them. Positive
is clockwise.

For simplicity, we assume that h↓a(µa) is positive and let εa = h↓a(µa). We now claim that the

points in h↓a([µa]) are almost equidistant. More precisely,

Lemma 15 Considering the points h↓a([µa]) in the cyclic unit interval, the distance between neigh-
bors is 1/µa ± εa.

Proof Let a′ = a↓− εa/µa. Then a′µa mod 1 = 0. We claim that the µa points in a′[µa] mod 1
have distance exactly 1/µa between neighbors. Assume for a contradiction, that this is not the case.

Then there should to be some distinct x, y ∈ [µa] with (h↓a(y) − h↓a(x)) mod 1 = ∆ < 1/µa. Let
z = (y − x) mod µa. Then a′z mod 1 = ∆. Therefore, for every i = 0, ..., µa, we have a′iz mod 1 =
i∆ < 1, and these are µa +1 distinct values. However, a′iz mod 1 = a′(iz mod µa) mod 1, so there
can only be µa distinct values, hence the desired contradiction.

We now know that the points in a′[µa] mod 1 have distance exactly 1/µa between neighbors,
and for every x ∈ [µa], we have h↓(x) = a′x+ εx/µa mod 1 where εx/µa < ε. Hence follows that

distance between any neighbors in h↓a([µa]) is 1/µa ± εa.

Points from h↓a([µa]) divide the cyclic unit interval into µa “slices”. By Lemma 15, each slice is of
length at least 1/µa − εa. Consider some k ∈ [µa]. The keys x = k, k + µa, k + 2µa, . . ., map to

h↓a(k), h
↓
a(k) + εa, h

↓
a(k) + 2εa, .... We call this the “thread” from h↓a(k). Thus, for x ≥ µa, h

↓
a(x) is

the successor at distance εa from h↓a(x− µa) in the thread from h↓a(x mod µa).

We now consider the image by h↓a of our set [n]. For each k ∈ [µa], the set [n]µa

k = {x ∈
[n] | x mod µa = k} has d ≤ ⌈n/µa⌉ keys that fall in the interval [h↓a(k), (h

↓
a(k) + dεa)] of length
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(d−1)εa < (n/µa)εa ≤ 1/(2µa). We call this the “filled” part of the slice, the rest is “empty”. The
empty part of any slice is bigger than (1/µa − εa)− 1/(2µa) = 1/(2µa)− εa.

We are will study the “good” event that h↓a(q) and 1 − b↓ land strictly inside the empty part
of the same slice, for then with ha,b, there is no key from [n] that hash between 0 and hash of the

query key. If in addition 1 − b↓ is before h↓a(q), then ha,b(q) < minha,b([n]). Otherwise, we shall
refer to a symmetric case.

Lemma 16 With µa ≤ n/4, the probability that 1− b↓ hash to the empty part of a given slice is at
least 1/(4µa).

Proof We know from above that the empty part of any slice is bigger than 1/(2µa)−εa. However,
both 1− b↓ and the end-points of the empty interval fall on multiples of 1/2ℓ, and we want 1− b↓

to fall strictly between the end-points. Since 1 − b↓ is uniformly distributed on multiples of 1/2ℓ,
we get that it falls strictly inside with probability at least 1/(2µa)− εa − 1/2ℓ.

Our parameters are chosen such that εa ≤ 1/(2t) ≤ 1/2ℓ, n ≤ t, and µa ≤ n/4, so
1/(2µa)− εa − 1/2ℓ ≥ 1/(4µa).

Lemma 17 For any value u ∈ (n, 2ℓ), at least half the keys in [u] \ [n] hash to the empty part of
some slice.

Proof We now consider the potential values of the query key q = n, ..., 2ℓ − 1. First, let µ∗a ∈
[n, 2ℓ − 1) be the smallest value such that ‖ha(µ∗a)‖ < εa. For now we assume that such a key µ∗a
exists. We note that ha(µ

∗
a) must be negative, for if it was positive, then ha(µ

∗
a−µa) = ha(µ

∗
a)−εa,

would also satisfy the condition. We also note that ha(µ
∗
a) cannot be zero since h↓a is a permutation.

Thus we must have Thus ha(µ
∗
a) ∈ (2ℓ − εa, 2

ℓ].
By definition, all points in ha([µ

∗
a]) are at least εa apart, so µ∗a ≥ 2ℓ/εa ≤ 2n. On the other

hand, ha([µ
∗
a, µ
∗
a +µa − 1]) provides a predecessor at distance ε∗a < εa to every point in ha([µa]), so

in ha([µ
∗
a + µa]), every point has a predecessor at distance at most εa, so µ∗a + µa > 2n.

For each k ∈ [µa], the thread of keys from [µ∗a + µa]
µa

k = {x ∈ [µ∗a + µa] | x = k mod µa}
terminates at distance ε∗a from the successor of h↓a(k) in h↓a([µa]), so the thread stays in the same
slice. This means all keys except those in [n] land in the empty part of their slice. The same will
be the case if we reach the final key 2ℓ − 1 a key µ∗a with ‖ha(µ∗a)‖ < εa.

The keys from [µ∗a + µa] form period 0. Generally, a period i > 0, starts from a key zi hashing
to (0, εa), e.g., period 1 starts at z1 = µ∗a + µa, and it continues until we reach key 2ℓ − 1, or till

just before we get to new key zi+1 with h↓a(zi+1) ∈ (0, εa). This implies that [zi, zi+1) like [µ∗a +µa]

divides intro threads, each staying within a slice between neighboring points from h↓a[µa].
Since h↓(zi) ∈ (0, εa), for every integer x, we have h↓(zi+x) ∈ (h↓(x), h↓(x+µa)). This implies

that only the first n − µa elements from [zi, zi+1) land between consecutive thread elements from
[n]. All other elements land in the empty part of their slice. It also follows that zi+1 ≥ zi + µ∗a,
since (h↓(µ∗a), h

↓(µ∗a + µa)) is the first interval containing 0. Hence zi+1 − zi ≥ 2n − µa.
Thus, in the sequence of keys n, ..., 2ℓ − 1, we first have at least n keys landing in empty parts.

Next comes periods, first with n − µa keys landing in filled parts, and then at least 2n − µa keys
landing in empty parts. Eventually we get to a last period i, that finishes in key 2ℓ − 1 before
reaching a key zi+1 ∈ (0, εa). No matter which key u < 2ℓ − 1, we stop at, we have that at least
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half the keys in [n, u) land in empty parts of slices.

By Lemma 17 we know that when q is picked randomly from [n, u), then h↓a(q) lands in the empty
part of some slice with probability at least 1/2. By Lemma 16, we get 1− b↓ in the empty part of
the same slice with probability at least 1/(4µa), and this is exactly our good event. For fixed a but
random b and q, it happened with probability 1/(8µa). Based on this, we will prove

Lemma 18 For any given γ ≤ n/4, uniform odd a ∈ [2ℓ], uniform b ∈ [2ℓ], and uniform q ∈ [u]\[n],

Pr[ha,b(q) < minha,b([n]) | µa = γ] = 1/(16γ)

Proof We first note that each parameter pair (a, b) has a symmetric twin (2ℓ − a, 2ℓ − b) such
that for every key x, h2ℓ−a,2ℓ−b(x) = 2ℓ − ha,b(x). Note that a odd implies that 2ℓ − a is also odd,
as required. The symmetry implies that µ2ℓ−a = µa while ε2ℓ−a = 1− εa. In particular this implies
that if we pick a uniformly odd a with µa = γ, then εa is positive with probability exactly 1/2.

Let us assume as we did earlier that εa is positive. Let us further assume our good event that
1−b↓ and h↓a(q) land strictly inside the empty part of the same slice, hence that we get no hashes from
ha,b([n]) between 0 and ha,b(q). If 0 is before ha,b(q), we get ha,b(q) < minha,b([n]), but otherwise, by
symmetry, we get h2ℓ−a,2ℓ−b(q) < minh2ℓ−a,2ℓ−b([n]). Thus we have a 1-1 correspondence between
the parameter choices of two events:

• parameters a, b, q such that µa = γ, εa is positive, and 1 − b↓ and h↓a(q) land strictly inside
the empty part of the same slice.

• parameters a′, b′, q such that µa′ = γ, and ha′,b′(q) < minha′,b′([n]).

In the correspondence, depending on q, we will either have (a′, b′) = (a, b) or (a′, b′) = (2ℓ−a, 2ℓ−b).
The two events above are thus equally likely.

Conditioned on µa = γ, we already saw that εa was positive with probability 1/2, and con-
ditioned on that, we got our good event with probability 1/(8µa), for an overall probability of
1/(16µa). Conditioned on µa′ = γ, this is then also the probability that ha′,b′(q) < minha′,b′([n]).

We are now ready to reuse the calculations from Section 4.1 that also defined µa as the smallest
positive number such that ‖h↓a(µa)‖ ≤ 1/(2t). From (13), for any given odd γ and uniform odd
a ∈ [2ℓ],

Pr[µa = γ] ≥ 1/t−
∑

p prime factor of x

2/(pt).

Using Lemma 18, we can now do essentially the same calculations as in (14). For uniform odd
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a ∈ [2ℓ], uniform b ∈ [2ℓ], and uniform q ∈ [u] \ [n], we get

Pr[ha,b(q) < minha,b([n])] ≥
n/4
∑

odd γ=1

Pr[µa = γ] Pr[ha,b(q) < minha,b([n]) | µa = γ]

≥
n/4
∑

odd x=1



1− 2
∑

prime factor p of x

1/p



 /(16γ t)

>

n/4
∑

odd γ=1



1− 2
∑

prime p=3,5,..

1/p2



 /(16γ t)

>

n/4
∑

odd γ=1

0.594 /(16γ t)

> Hn/4/(128n) = Ω((log n)/n).

This completes the proof of Theorem 14.
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