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A Logical Analysis of Commitment Dynamics

Emiliano Lorini

Université de Toulouse, IRIT-CNRS, France

Abstract. The aim of this work is to propose a model-theoretic semantics and a
complete logic for the dynamics of commitments. In the first part of the article,
a formalization of the concept of social commitment in STIT logic is presented.
STIT is one of the most prominent formal accounts of agency. It is the logic of
constructions of the form “agent i sees to it that ϕ”. In the second part, the ar-
ticle presents an extension of STIT logic by dynamic operators which enable to
describe two basic operations on commitment: commitment creation and com-
mitment cancelation. The logic is used to develop an axiomatic and semantic
analysis of commitment change in multi-agent systems.

1 Introduction

Social commitment is a fundamental concept for understanding normative relationships
between individuals in a society. It has become a valuable abstraction for the design of
multi-agent systems since it can be used to model a variety of interactive situations like
contracts, agreements, negotiation, dialogue, and argumentation.

Although formal analysis of commitment are available in the literature (see, e.g.,
[27, 23, 6]) and commitments have been extensively used for applications in the area
of multi-agent systems (see, e.g., [11] for an application of commitment to business
protocols), there is still no formal approach which provides at the same time a model-
theoretic semantics, and a sound and complete logic for the dynamics of commitments.
I agree indeed with Singh [23, pp. 176] when he says that “...it was a sensible research
strategy to first establish that commitments were a useful concept. However, now that
the case for commitments has been made well, further progress is hampered by the lack
of a clear model-theoretic semantics.”

The aim of this article is to fill this existing gap in the literature on commitments by
providing a model-theoretic semantics, and sound and complete logic for the dynamics
of commitments. In order to formalize commitments STIT logic is used. STIT (the
logic of Seeing to it That) is a logic of agency that has been developed in the 90ies in
the domain of philosophy of action by Belnap, Horty and colleagues (see, e.g., [5, 15]).
It is the logic of constructions of the form “agent i sees to it that ϕ”.

In this article STIT logic is extended by modal operators which enable to express
what is true according to the regulation of a given institution. With STIT logic aug-
mented with these modal operators, I define commitments in institutional contexts. In
particular, I define the concept of ‘agent i’s commitment towards agent j in the context
of institution x to ensure a certain state of affairs ϕ’ by the fact that, according to the
regulation of institution x, if agent i does not see to it that ϕ then then agent j will be
wronged by i.



The rest of the article is organized as follows. In Section 2, the STIT-based logi-
cal framework for the analysis of commitments is introduced. A formalization of the
concept of social commitment is given in Section 3. In Section 4 an extension of the
logic of Section 2 by dynamic operators is presented. These dynamic operators enable
to describe two basic operations on commitment: commitment creation and commitment
cancelation. The proposed logic is used to develop an axiomatic and semantic analysis
of commitment change in multi-agent systems.

2 A logic of actions and institutions

In order to be able to reason about actions of agents and about pragmatic commitments
in institutional contexts, I introduce here STIT logic extended by modal operators which
enable to express what is true according to the regulation of a given institution. STIT
logic (the logic of Seeing to it That) [5, 15] is one of the most prominent formal accounts
of agency. It is the logic of constructions of the form “agent i sees to it that ϕ”. STIT
has a non-standard semantics based on the concepts of moment and history. However,
as shown by Balbiani et al. [2], the basic STIT language without temporal operators
axiomatized by Xu in [28] and [5, Chap. 17] can be ‘simulated’ in a standard Kripke
semantics. Similarly to Balbiani et al., I use here a Kripke semantics for interpreting
STIT modal operators.

Xu mainly focuses on Chellas’s STIT operators named after his proponent [9]. As
pointed out in [28, 15], so-called deliberative STIT operators and Chellas’s STIT oper-
ators are interdefinable and just differ in the choice of primitive operators. Following
Xu, I focus here on Chellas’s STIT operators and I take them as primitive.

2.1 Syntax

Assume a countable set of atomic propositions denoting facts Atm = {p, q, . . .}, a
finite set of agents Agt = {i1, . . . , i|Agt|} and a finite set of institutional contexts
Inst = {x1, . . . , x|Inst|}. In order to be able to define social commitment in Section 3,
let me add to the language special atoms as in the reduction of deontic logic to alethic
logic [1]. In particular, let me introduce atoms of the form wri,j,x in Lindhal’s style [19]
one for every i, j ∈ Agt such that i 6= j and x ∈ Inst . I call Wr the corresponding set,
that is,

Wr = {wri,j,x|i, j ∈ Agt and i 6= j and x ∈ Inst}.
In the semantics, special atoms wri,j,x are used to identify those states in which, ac-
cording to the regulation of a given institution x, an agent i wrongs (or gives offence
to) another agent j. An atom wri,j,x has to be read ‘agent j is wronged by agent i in the
context of institution x’. I denote Atm+ = Atm∪Wr the extended set of propositional
atoms. I write α, β, . . . the elements in Atm+.

The language L of the logic L is the set of formulas defined by the following BNF:

ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | �ϕ | Dxϕ

where α ranges over Atm+, i ranges over Agt and x ranges over Inst . The other
Boolean constructions >, ⊥, ∨, → and ↔ are defined from ¬ and ∧ in the standard
way.



Operators [i] are Chellas’s STIT operators. Formula [i]ϕ captures the fact that ϕ is
guaranteed by a present choice of agent i, and has to be read ‘agent i sees to it that ϕ
regardless of what the other agents do’. I shorten the reading of [i]ϕ to ‘agent i sees to
it that ϕ’. I define the dual of the operator [i] as follows: 〈i〉ϕ def

= ¬[i]¬ϕ.
�ϕ stands for ‘ϕ is settled true regardless of what every agent does’ or simply ‘ϕ is

settled true’. I define the dual of � as follows: ♦ϕ def
= ¬�¬ϕ. Note that the operators

[i] and ♦ can be combined in order to express what agents can do: ♦[i]ϕ means ‘agent i
can see to it that ϕ’. Moreover, the operators [i] and � can be combined in order define
the deliberative STIT operators [i dstit : ] studied in [15]: [i dstit : ϕ] def

= [i]ϕ ∧ ¬�ϕ.
Finally, modal operators Dx enable to describe what is true according to the regu-

lation of a given institution. In particular, formula Dxϕ has the following reading ‘ϕ is
true, according to the regulation of the institution x’ or more simply ‘ϕ is true, accord-
ing to the institution x’. For example, if the meaning of formula ϕ is that two persons
are married and x denotes a certain State, formula Dxϕ means that, according to the
regulation of this State, these persons are considered as two legally married persons.
However, it may happen that with respect to the regulation of another State y they are
not married. I define the dual of the operator Dx as follows: D̂xϕ

def
= ¬Dx¬ϕ. Formula

D̂xϕ has the following reading ‘the regulation of the institution x admits a situation in
which ϕ is true’ or more simply ‘the regulation of the institution x admits ϕ’.

This kind of modal operators were introduced for the first time by Jones & Sergot
[16]. Similar operators were recently studied by Grossi et al. [13]. It has to be noted that
Jones & Sergot’s operators and Grossi et al.’s operators have slightly different proper-
ties. While the former satisfy the system KD and are interpreted by means of standard
accessibility relations between worlds in a model, the latter are K45 operators which are
interpreted by taking subsets of the set of worlds in a model. In this article, I adopt Jones
& Sergot’s solution by supposing that every Dx is a KD operator and by interpreting it
by means of standard accessibility relations (see Section 2.3 below).

2.2 Semantics

I use a standard possible worlds semantics. Possible worlds are understood as in the
logics of knowledge and of belief.

Definition 1 (L-model). L-models are tuples M = 〈W,R�, {Ri|i ∈ Agt}, {Dx|x ∈
Inst},V〉 where:

– W is a nonempty set of possible worlds or states;
– R� is an equivalence relation between worlds in W ;
– for every i ∈ Agt ,Ri is an equivalence relations between worlds in W such that:

(C1) Ri ⊆ R�,
(C2) for all w ∈W , for all (wj)j∈Agt ∈ R�(w)

n,
⋂
j∈Agt Rj(wj) 6= ∅;

– for every x ∈ Inst , Dx is a serial relation between worlds in W such that:
(C3) if (w, v) ∈ Dx and (v, u) ∈ R� then (w, u) ∈ Dx;

– V : Atm+ −→ 2W is a valuation function.



For every w ∈W , I write |w| = {α ∈ Atm+|w ∈ V(α)}.
As in the previous Constraint C2, accessibility relations on W can be viewed as

functions from W to 2W . Therefore, I write Ri(w) = {v|(w, v) ∈ Ri}, R�(w) =
{v|(w, v) ∈ R�} and Dx(w) = {v|(w, v) ∈ Dx}. For every world w ∈ W and for
every agent i ∈ Agt , Ri(w) is the set of worlds that agent i brings about at world w
or the set of outcomes of the action chosen by agent i at w. Ri(w) can also be called
the outcome state of agent i at world w. R� is the relation over all possible outcomes.
If v ∈ R�(w) then v is a possible outcome at w. R�(w) is therefore called the set
of possible outcomes at world w. If v ∈ R�(w), we can also say that v is a possible
alternative of world w.

Thus, Constraint C1 in Definition 1 just means that all outcomes brought about by
an agent i are possible outcomes. Constraint C2 expresses a so-called assumption of
independence of agents: if w1, . . . , wn are possible outcomes at w then the intersection
of the set of outcomes that agent 1 brings about at w1, and the set of outcomes that
agent 2 brings about at w2,..., and the set of outcomes that agent n brings about at wn
is not empty. More intuitively, this means that agents can never be deprived of choices
due to the choices made by other agents.

Just as in epistemic logic an information state of an agent i is the set of worlds that
agent i considers possible, the setDx(w) is the regulation state of institution x at world
w, that is, the set of worlds which are admitted by institution x’s regulation at w. For
example, suppose that x is a certain State and world v corresponds to the situation in
which a couple {i1, i2} applies for a divorce in x, and i1 and i2 are x’s citizens, that
is, {citizensi1,i2,x, divorcei1,i2,x} ⊆ |v|. Then, v ∈ Dx(w) just means that world v,
in which a couple {i1, i2} applies for a divorce in x and i1 and i2 are x’s citizens, is
admitted by State x’s regulation at w.

Hence, Constraint C3 in Definition 1 just means that: if v is in the regulation state
of an institution x at a world w then, all possible alternatives of v are worlds which are
in the regulation state of institution x at world w.

Given a model M , a world w and a formula ϕ, we write M,w |= ϕ to mean that ϕ
is true at world w in M . The truth conditions of formulas are defined as follows:

– M,w |= α iff w ∈ V(α);
– M,w |= ¬ϕ iff not M,w |= ϕ;
– M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ;
– M,w |= �ϕ iff M, v |= ϕ for all v such that v ∈ R�(w);
– M,w |= [i]ϕ iff M,v |= ϕ for all v such that v ∈ Ri(w);
– M,w |= Dxϕ iff M,v |= ϕ for all v such that v ∈ Dx(w).

I write |=L ϕ if ϕ is valid in L (ϕ is true in all L-models).

2.3 Axiomatization

Fig. 1 contains a complete axiomatization of the logic L. We have all all principles
of the normal modal logic S5 for every operator [i] and for the operator �, and all
principles of the normal modal logic KD for every operator Dx. (� → i) and (AIAk)
are the two central principles in Xu’s axiomatization of the Chellas’s STIT operators [i]



PC All principles of classical propositional calculus

S5(i) All S5-principles for the operators [i]

S5(�) All S5-principles for the operator �

KD(x) All KD-principles for the operators Dx

(� → i) �ϕ→ [i]ϕ

(AIAk) (♦[1]ϕ1 ∧ . . . ∧ ♦[k]ϕk) → ♦([1]ϕ1 ∧ . . . ∧ [k]ϕk)

(x→ x�) Dxϕ→ Dx�ϕ

Fig. 1. Axiomatization of L

[28]. According to Axiom (�→ i), if ϕ is settled true then every agent sees to it that ϕ.
In other words, an agent brings about those facts that are inevitable. (AIAk) is a family
of axiom schemes for independence of agents that is parameterized by the integer k. As
noted in [5], (AIAk+1) implies (AIAk). Therefore, as Agt is finite, the family of axiom
schemas can be replaced by the single (AIA|Agt|). Finally, Axiom (x→ x�) relates the
modal operator � with the institution operators Dx. It says that if ϕ holds according to
the institution x then, according to the institution x, ϕ is settled true.

I call L the logic axiomatized by the principles given in Fig. 1. I write `L ϕ if ϕ is
a L-theorem.

Theorem 1. The logic L is completely axiomatized by the principles in Fig. 1.

Proof. It is a routine task to check that the axioms of the logic L correspond one-to-one
to their semantic counterparts on the models. In particular, S5(�) and S5(i) correspond
to the fact thatR� and everyRi are equivalence relations, while KD(x) corresponds to
the seriality of everyDx. Axiom (�→ i) corresponds to the Constraint C1 in Definition
1, while Axiom (x→ x�) corresponds to the Constraint C3. Finally, as noted in Section
2.3, since Agt is finite, the family of axiom schemas (AIAk) can be replaced by the
single (AIA|Agt|). The latter corresponds to the Constraint C2 in Definition 1.

It is routine, too, to check that all axioms of the logic L are in the Sahlqvist class.
This means that the axioms are all expressible as first-order conditions on models and
that they are complete with respect to the defined model classes, cf. [7, Th. 2.42].

3 Commitments in institutional contexts: a formalization

According to [22, 8] a social commitment is a kind of normative relationship between
a debtor and a creditor in a given context. The contexts in which commitments are
undertaken and established are often institutional contexts. For instance, after signing a
contract in the presence of a public notary, a person becomes committed in front of the
State to carry out her part of the contract.

In this article, I only consider pragmatic commitments and I leave aside proposi-
tional commitments (also called dialectical commitments). Pragmatic commitments are
about what is to be done whereas propositional commitments are about what is true.
Pragmatic commitments concern promises from a debtor to a creditor to perform a



given action, while propositional commitments are about positions taken during a dia-
logue. For example, if i tells to j: “I will lend you my car for the weekend!” then, he
takes a pragmatic commitment towards j. On the contrary, if i tells to j: “Tomorrow,
will be sunny. I am sure!” then, he takes a propositional commitment towards j.

In order to define the concept of social commitment, I use the special atoms wri,j,x
denoting that ‘an agent j is wronged by another agent i in the context of institution x’. I
say that agent i is committed to agent j in the context of institution x to ensure ϕ (noted
Ci:j:xϕ) if and only if, according to the institution x if i does not see to it that ϕ then j
will be wronged by i in x, and the institution x admits a situation in which i does not
see to it that ϕ. For every i, j ∈ Agt and x ∈ Inst I define:

Ci:j:xϕ
def
= Dx(¬[i]ϕ→ wri,j,x) ∧ D̂x¬[i]ϕ.

The component D̂x¬[i]ϕ expresses that i is committed to j in the context of institution
x to ensure ϕ, only if the situation in which i does not see to it that ϕ (and j is therefore
wronged by j) is compatible with the institution x’s regulation. It has also to be noted
that a commitment of agent i to agent j to ensure ϕ in the context of institution x can
be conceived as a kind of directed obligation from a bearer to a counterparty in a given
institutional context (see, e.g., [12, 14, 17, 19, 21] for some analysis of the notion of
directed obligation in deontic logic).1

Example 1. Agent i2 is the program chair of a given conference. Agent i2 asks agent i1,
a member of the program committee, to review some articles submitted to the confer-
ence. Agent i1 accepts agent’s i2 request by sending a confirmation e-mail (we suppose
that the communication between i1 and i2 is made through the Easychair system). Con-
sequently, according to the program committee of the conference, agent i1 is committed
to i2 to review the articles: Ci1:i2:PC review . This means that, according to the program
committee, if i1 does not review the articles then i2 will be wronged by i1. Moreover,
the program committee admits a situation in which i1 does not accomplish his duty to
review the articles:

DPC (¬[i1]review → wri1,i2,PC ) ∧ D̂PC¬[i1]review .

Let me generalize the previous definition to conditional commitments. I say that
agent i is committed to agent j in the context of institution x to ensure ϕ under condition
ψ (noted Ci:j:x(ψ,ϕ)) if and only if, according to the institution x, if i does not see to it
that ϕ and ψ is true then j will be wronged by i, and the institution x admits a situation
in which ψ is true and agent i does not see to it that ϕ. For every i, j ∈ Agt and x ∈ Inst
I define:

Ci:j:x(ψ,ϕ)
def
= Dx((ψ ∧ ¬[i]ϕ)→ wri,j,x) ∧ D̂x(ψ ∧ ¬[i]ϕ).

Again the formula D̂x(ψ ∧ ¬[i]ϕ) expresses that i is committed to j in the context of
institution x to ensure ϕ under condition ψ, only if the situation in which ψ is true and
i does not see to it that ϕ is compatible with the institution x’s regulation. Note also

1 In legal theory it is typically assumed that a directed obligation for i towards j to ensure ϕ
correlates to a right for j towards i that ϕ is brought about by i.



that Dx¬ψ implies ¬Ci:j:x(ψ,ϕ) for every formula ϕ and for every couple of agents
i and j. That is, if the institution x does not admit a situation in which ψ is true then,
for every formula ϕ and for every couple of agents i and j, there is no commitment of
i towards j in the context of institution x to ensure ϕ under condition ψ.

Example 2. Agent i1 and agent i2 have concluded a contract in front of a notary of a
certain State x. Agent i1 has declared in front of the notary that he will sell to i2 a
certain property if i2 will pay him 10K Euros. Consequently, according to the State x,
i1 is conditionally committed to i2 to sell to i2 the property under the condition that i2
pays him 10K Euros:

Ci1:i2:x([i2]pay10K i1 ,sellProperty i2).
This means that, according to the State x, if i1 does not sell to i2 the property when i2
pays him 10K Euros then i2 will be wronged by i2, and the State x admits a situation
in which i1 does not sell to i2 the property while i2 pays him 10K Euros:

Dx(([i2]pay10K i1 ∧ ¬[i1]sellProperty i2)→ wri1,i2,x)∧
D̂x([i2]pay10K i1 ∧ ¬[i1]sellProperty i2).

As the following L-theorem highlights in the present approach unconditional com-
mitments are special cases of conditional commitments where the antecedent is true:

(1) `L Ci:j:xϕ↔ Ci:j:x(>,ϕ).

It is also interesting to note that the previous definition satisfies some intuitive prop-
erties of conditional commitments. For every i, j ∈ Agt and for every x ∈ Inst we
have:

`L Dxϕ→ ¬Ci:j:x(ψ,ϕ)(2)
`L (Ci:j:x(ψ,ϕ) ∧Dxψ)→ Ci:j:xϕ(3)
`L (Ci:j:x(ψ,ϕ) ∧Ci:j:x(χ,ϕ))→ Ci:j:x(ψ ∨ χ,ϕ)(4)
`L (Ci:j:x(ψ,ϕ) ∧Ci:j:x(ψ,χ))→ Ci:j:x(ψ,ϕ ∧ χ)(5)
`L (Ci:j:x(ψ,ϕ ∧ χ) ∧Dxχ)→ Ci:j:x(ψ,ϕ)(6)

Proof. We prove L-theorem 5 as an example.

1. `L (Ci:j:x(ψ,ϕ) ∧Ci:j:x(ψ,χ))↔
(Dx((ψ ∧ ¬[i]ϕ)→ wri,j,x) ∧Dx((ψ ∧ ¬[i]χ)→ wri,j,x))

2. `L (Dx((ψ ∧ ¬[i]ϕ)→ wri,j,x) ∧Dx((ψ ∧ ¬[i]χ)→ wri,j,x))→
Dx((ψ ∧ (¬[i]ϕ ∨ ¬[i]χ))→ wri,j,x) by standard modal principles for Dx

3. `L Dx((ψ ∧ (¬[i]ϕ ∨ ¬[i]χ)) → wri,j,x) → Dx((ψ ∧ ¬[i](ϕ ∧ χ)) → wri,j,x)
by standard modal principles for [i] and Dx, and necessitation for Dx

4. `L (Ci:j:x(ψ,ϕ) ∧Ci:j:x(ψ,χ))→ (D̂x(ψ ∧ 〈i〉¬ϕ) ∧ D̂x(ψ ∧ 〈i〉¬χ))
5. `L (D̂x(ψ ∧ 〈i〉¬ϕ) ∧ D̂x(ψ ∧ 〈i〉¬χ))→ D̂x(ψ ∧ 〈i〉(¬ϕ ∨ ¬χ))

by standard modal principles for [i] and Dx

6. `L D̂x(ψ ∧ 〈i〉(¬ϕ ∨ ¬χ))→ D̂x(ψ ∧ ¬[i](ϕ ∧ χ))
7. `L (Ci:j:x(ψ,ϕ) ∧Ci:j:x(ψ,χ))→

(Dx((ψ ∧ ¬[i](ϕ ∧ χ))→ wri,j,x) ∧ D̂x(ψ ∧ ¬[i](ϕ ∧ χ))) from 1-3 and 4-6



8. `L (Ci:j:x(ψ,ϕ) ∧Ci:j:x(ψ,χ))→ Ci:j:x(ψ,ϕ ∧ χ) from 7

L-theorem 2 is a discharge principle for commitment: if according to institution x
ϕ is true, then i’s commitment towards j in x to ensure ϕ is discharged and is no longer
active. In the logic L Dxϕ is equivalent to Dx[i]ϕ (by Axiom (x → x�) and Axiom
T for [i]). Therefore, L-theorem 2 can be written in the following equivalent form:
Dx[i]ϕ→ ¬Ci:j:x(ψ,ϕ). Note also that L-theorem 2 and the L-theorem Dx> together
imply ¬Ci:j:x(ψ,>): an agent i cannot be committed to bring about tautologies.

L-theorem 3 is a detachment principle: if i is conditionally committed to j in x
to ensure ϕ if ψ holds and, according to institution x, ψ holds then, an unconditional
commitment of i to j in x to ensure ϕ comes into being. A similar detachment principle
for conditional obligations has been discussed by Bartha [4].

L-theorems 4 and 5 are respectively a disjunction of the antecedents principle and a
conjunction of the consequents principle for commitment. Similar properties have been
isolated in [23]. According to L-theorem 4, if i is committed to j in x to ensure ϕ if
ψ holds and to ensure ϕ if χ holds then, i is committed to j in x to ensure ϕ if ψ ∨ χ
holds. According to L-theorem 5, if i is committed to j in x to ensure ϕ if ψ holds and
to ensure χ if ψ holds then, i is committed to j in x to ensure ϕ ∧ χ if ψ holds.

L-theorem 6 is a weakening principle for commitment: if agent i is committed to
agent j in x to ensure ϕ∧χ if ψ holds and, according to the institution x, χ is true, then
i is committed to j to ensure ϕ if ψ holds. So, if an agent is committed to ensure two
states of affairs ϕ and χ and his commitment to ensure χ is discharged, then the agent
is committed to ensure ϕ. Note indeed that, as highlighted by L-theorem 2, Dxχ is the
discharge condition for the commitment Ci:j:x(ψ,χ).

Before concluding, let me consider how the previous definition of commitment be-
haves in the case of Moore-like sentences of the form ϕ ∧ ¬[i]ϕ. The following L-
theorem 7 clarifies this point: an agent is committed to ensure that ϕ is true and that
he does not see to it that ϕ if and only if, the agent is committed to do something
inconsistent.

(7) `L Ci:j:x(ϕ ∧ ¬[i]ϕ)↔ Ci:j:x⊥.

4 From static to dynamic commitments

I here extend the logic L of Section 1 by dynamic operators which enable to describe the
dynamics of social commitments. I call Ldyn the extended logic. I consider two basic
operations on commitment: commitment creation and commitment cancelation. These
two kinds of operations have also been studied in [22] and [27] in which commitments
are operationalized as being in a certain number of states and operations of commit-
ment creation and commitment cancelation are responsible for changing the state of a
commitment from passive to active and viceversa. The main contribution of this section
is to provide a comprehensive logical approach to the dynamics of commitments and,
in particular, a model-theoretic semantics and a complete modal logic for commitment
dynamics.

Operations of commitment creation are of the form i:j:x+(ψ,ϕ), operations of
commitment cancelation are of the form i:j:x−(ψ,ϕ). In particular, i:j:x+(ψ,ϕ) is the



event ‘the commitment of agent i towards agent j to ensure ϕ if ψ holds is created in
the institution x’ whereas i:j:x−(ψ,ϕ) is the event ‘the commitment of agent i towards
agent j to ensure ϕ if ψ holds is canceled from the institution x’.

4.1 Commitment creation

The first extension of the logic L is by formulas [i:j:x+(ψ,ϕ)]χ where i, j ranges
over Agt and x ranges over Inst . Formula [i:j:x+(ψ,ϕ)]χ describes the effects of the
creation in institution x of i’s commitment towards j to ensure ϕ if ψ holds. More
precisely, [i:j:x+(ψ,ϕ)]χ has to be read ‘χ holds, after the creation in the institution x
of agent i’s commitment towards agent j to ensure ϕ if ψ holds’.

Semantics In order to give semantics to the operators [i:j:x+(ψ,ϕ)] I need to define
the model M i:j:x+(ψ,ϕ) which results from the occurrence of the event i:j:x+(ψ,ϕ) in
the model M . The elements of the model M i:j:x+(ψ,ϕ) are defined as follows:

Definition 2 (Updated model M i:j:x+(ψ,ϕ)). For every L-model M , M i:j:x+(ψ,ϕ) is
the corresponding updated model with:

W i:j:x+(ψ,ϕ) ={wx|w ∈W} ∪ {w∼x|w ∈W};

Di:j:x+(ψ,ϕ)
x ={(wx, vx)|(w, v) ∈ Dx} ∪ {(w∼x, v∼x)|(w, v) ∈ Dx};

If y 6= x then, Di:j:x+(ψ,ϕ)
y ={(wx, v∼x)|(w, v) ∈ Dy} ∪ {(w∼x, v∼x)|(w, v) ∈ Dy};

Ri:j:x+(ψ,ϕ)
� ={(wx, vx)|(w, v) ∈ R�} ∪ {(w∼x, v∼x)|(w, v) ∈ R�};

For z ∈ Agt , Ri:j:x+(ψ,ϕ)
z ={(wx, vx)|(w, v) ∈ Rz} ∪ {(w∼x, v∼x)|(w, v) ∈ Rz};

Vi:j:x+(ψ,ϕ)(wri,j,x) ={wx|M,w |= wri,j,x ∨ (ψ ∧ ¬[i]ϕ)}∪
{w∼x|M,w |= wri,j,x};

For α 6= wri,j,x, Vi:j:x+(ψ,ϕ)(α) ={wx|M,w |= α} ∪ {w∼x|M,w |= α}.

M i:j:x+(ψ,ϕ) is obtained by creating two copies of each world w of the original model
M : a copy wx for the regulation state of institution x, also called ‘x-copy’ of world w;
a copy w∼x for the regulation states of every institution y different from x, also called
‘∼x-copy’ of world w. World wx is the copy of w which is affected by the occurrence
of the normative event i:j:x+(ψ,ϕ), whereas w∼x is the copy of w in which nothing
changes. In particular, in wx the truth value of the atom wri,j,x (‘agent j is wronged by
agent i in x’) is set to true if and only if, wri,j,x is already true at w, or at w ψ is true
and i does not see to it that ϕ (i.e. ψ ∧ ¬[i]ϕ). Moreover, for every copy wx and for
every copy w∼x:

– the regulation state of institution x at wx are the ‘x-copies’ of worlds that were in
the regulation state of x at w before the event i:j:x+(ψ,ϕ);

– the regulation state of every institution y different from x at wx are the ‘∼x-copies’
of worlds that were in the regulation state of y at w before the event i:j:x+(ψ,ϕ);

– the regulation state of every institution y at w∼x are the ‘∼x-copies’ of worlds that
were in the regulation state of y at w before the event i:j:x+(ψ,ϕ);



– the outcome state of every agent i (resp. the set of possible states) at wx are the
‘x-copies’ of worlds that were in the outcome state of i (resp. in the set of possible
states) at w before the event i:j:x+(ψ,ϕ);

– the outcome state of every agent i (resp. the set of possible states) at w∼x are the
‘∼x-copies’ of worlds that were in the outcome state of i (resp. in the set of possible
states) at w before the event i:j:x+(ψ,ϕ).

As the following proposition highlights the operation of commitment creation is
well-defined.

Proposition 1. If M is a L-model then M i:j:x+(ψ,ϕ) is a L-model.

Proof. It is just straightforward to show thatRi:j:x+(ψ,ϕ)
� and everyRi:j:x+(ψ,ϕ)

z (with
z ∈ Agt) are equivalence relations, and that every Di:j:x+(ψ,ϕ)

x (with x ∈ Inst) is a
serial relation. It is also a routine to check that the operation i:j:x+(ψ,ϕ) preserves
Constraints C1 and C2 in Definition 1.

Let me prove that the operation i:j:x+(ψ,ϕ) also preserves Constraint C3. Sup-
pose that (wx, vx) ∈ Di:j:x+(ψ,ϕ)

x and (vx, ux) ∈ Ri:j:x+(ψ,ϕ)
� . Then, we have (w, v) ∈

Dx and (v, u) ∈ R�. By Constraint C3 on L-models, it follows that (w, u) ∈ Dx.
Consequently, we have (wx, ux) ∈ Di:j:x+(ψ,ϕ)

x . In a similar way we can prove that
if (w∼x, v∼x) ∈ Di:j:x+(ψ,ϕ)

x and (v∼x, u∼x) ∈ Ri:j:x+(ψ,ϕ)
� then (w∼x, u∼x) ∈

Di:j:x+(ψ,ϕ)
x .

Now consider the case y 6= x and suppose that (wx, v∼x) ∈ Di:j:x+(ψ,ϕ)
y and

(v∼x, u∼x) ∈ Ri:j:x+(ψ,ϕ)
� . Then, we have (w, v) ∈ Dy and (v, u) ∈ R�. By Con-

straint C3 on L-models, it follows that (w, u) ∈ Dy . Consequently, we have (wx, u∼x) ∈
Di:j:x+(ψ,ϕ)
y . In a similar way we can prove that if (w∼x, v∼x) ∈ Di:j:x+(ψ,ϕ)

y and
(v∼x, u∼x) ∈ Ri:j:x+(ψ,ϕ)

� then (w∼x, u∼x) ∈ Di:j:x+(ψ,ϕ)
y .

The truth conditions of the operators [i:j:x+(ψ,ϕ)] are the following:

M,w |= [i:j:x+(ψ,ϕ)]χ iff M i:j:x+(ψ,ϕ), wx |= χ.

Thus, at world w of model M it is the case that χ holds, after the creation in the institu-
tion x of i’s commitment towards j to ensure ϕ if ψ holds if and only if, χ holds at the
x-copy wx of world w in the updated model M i:j:x+(ψ,ϕ).

Example 3. Fig. 2 illustrates by means of an example the semantics of the operation of
commitment creation. Formulas C1:2:xq and C1:2:yq are true at world w in the initial
model (at w agent 1 is committed to agent 2 to ensure q both in the context of institution
x and in the context of institution y), whereas formulas C1:2:xp and C1:2:yp are both
false at w (at w 1 is not committed to agent 2 to ensure p). The operation 1:2:x+(>, p)
results in an updated model in which 1 becomes committed to 2 in x to ensure p and
in which 1 remains committed to 2 in x to ensure q. On the contrary, 1’s commitments
towards 2 in the context of institution y do not change. Indeed, C1:2:xp, C1:2:xq and
C1:2:yq are true at world wx in the updated model, whereas C1:2:yp is false at wx.

Note that the updated model is nothing else than the duplication of the initial model.
The left copy is the ‘x-copy’ which is affected by the event 1:2:x+(>, p), whereas the
right copy is the ‘∼x-copy’ in which nothing changes.
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Fig. 2. Example of commitment creation. The left side and the right side of the picture respec-
tively represent the model before the operation of commitment creation 1:2:x+(>, p) and the
model resulting from this operation (the updated model). Vertical circles in the two models rep-
resent the regulation states of institution x and of institution y. For instance in the initial model,
institution x and institution y have the same regulation state at world w. Inside each regulation
state, there are two sets of possible outcomes (the two dotted grids). The rows in each grid are the
outcome states of agent 1, whereas the columns are the outcome states of agent 2.

Axiomatization The following lemma is fundamental in order to prove Theorem 2
below and can be easily proved by induction on the structure of χ.

Lemma 1. Take a L-model M . Then, for every w∼x ∈W i:j:x+(ψ,ϕ), we have:
M i:j:x+(ψ,ϕ), w∼x |= χ iff M,w |= χ.

As the following theorem highlights, there are reduction axioms for the operators
[i:j:x+(ψ,ϕ)]. They are called reduction axioms because, read from left to right, they
reduce the complexity of those operators in a formula.

Theorem 2. The following equivalences are valid:

R1. [i:j:x+(ψ,ϕ)]wri,j,x ↔ (wri,j,x ∨ (ψ ∧ ¬[i]ϕ))
R2. [i:j:x+(ψ,ϕ)]α↔ α if α 6= wri,j,x

R3. [i:j:x+(ψ,ϕ)]¬χ↔ ¬[i:j:x+(ψ,ϕ)]χ

R4. [i:j:x+(ψ,ϕ)](χ1 ∧ χ2)↔ ([i:j:x+(ψ,ϕ)]χ1 ∧ [i:j:x+(ψ,ϕ)]χ2)

R5. [i:j:x+(ψ,ϕ)]Dxχ↔ Dx[i:j:x+(ψ,ϕ)]χ

R6. [i:j:x+(ψ,ϕ)]Dyχ↔ Dyχ if y 6= x

R7. [i:j:x+(ψ,ϕ)][i]χ↔ [i][i:j:x+(ψ,ϕ)]χ

R8. [i:j:x+(ψ,ϕ)]�χ↔ �[i:j:x+(ψ,ϕ)]χ



Proof. We just prove R5 and R6 as examples.
(R5) M,w |= [i:j:x+(ψ,ϕ)]Dxχ,
⇔M i:j:x+(ψ,ϕ), wx |= Dxχ,
⇔ for all vx ∈ Dx(wx), M i:j:x+(ψ,ϕ), vx |= χ,
⇔ for all v ∈ Dx(w), M, v |= [i:j:x+(ψ,ϕ)]χ,
⇔M,w |= Dx[i:j:x+(ψ,ϕ)]χ.
(R6) Suppose y 6= x. Then:
M,w |= [i:j:x+(ψ,ϕ)]Dyχ,
⇔M i:j:x+(ψ,ϕ), wx |= Dyχ,
⇔ for all v∼x ∈ Dx(wx), M i:j:x+(ψ,ϕ), v∼x |= χ,
⇔ for all v ∈ Dx(w), M, v |= χ (by Lemma 1),
⇔M,w |= Dxχ.

Some properties The following are examples of valid properties of commitment cre-
ation, with i, j, h, k ∈ Agt , p, q ∈ Atm , and x, y ∈ Inst :

D̂x(q ∧ ¬[i]p)↔ [i:j:x+(q, p)]Ci:j:x(q,p)(8)
Ch:k:x(q,p)→ [i:j:x+(ψ,ϕ)]Ch:k:x(q,p)(9)
¬Ch:k:x(q,p)→ [i:j:x+(ψ,ϕ)]¬Ch:k:x(q,p) if h 6= i or k 6= j(10)
Ch:k:y(γ,χ)→ [i:j:x+(ψ,ϕ)]Ch:k:y(γ,χ) if y 6= x(11)
¬Ch:k:y(γ,χ)→ [i:j:x+(ψ,ϕ)]¬Ch:k:y(γ,χ) if y 6= x(12)

Proof. We prove Ldyn -theorem 8 as an example by applying the reduction axioms of
Theorem 2 together with the rule of replacement of proved equivalence.
[i:j:x+(q, p)]Ci:j:x(q,p)
⇔ [i:j:x+(q, p)]Dx((q ∧ ¬[i]p)→ wri,j,x)∧ [i:j:x+(q, p)]¬Dx(q → [i]p)
(by R4),
⇔Dx[i:j:x+(q, p)]((q ∧ ¬[i]p)→ wri,j,x)∧ ¬Dx[i:j:x+(q, p)](q → [i]p)
(by R3),
⇔Dx[i:j:x+(q, p)]((q ∧ ¬[i]p)→ wri,j,x)∧ ¬Dx¬[i:j:x+(q, p)](q ∧ ¬[i]p)
(by R3),
⇔Dx[i:j:x+(q, p)]((q ∧ ¬[i]p)→ wri,j,x)∧
¬Dx¬([i:j:x+(q, p)]q ∧ [i:j:x+(q, p)]¬[i]p)
(by R4),
⇔Dx[i:j:x+(q, p)]((q ∧ ¬[i]p)→ wri,j,x)∧ ¬Dx¬(q ∧ ¬[i:j:x+(q, p)][i]p)
(by R2 and R3),
⇔Dx[i:j:x+(q, p)]((q ∧ ¬[i]p)→ wri,j,x)∧ ¬Dx¬(q ∧ ¬[i][i:j:x+(q, p)]p)
(by R7),
⇔Dx[i:j:x+(q, p)]((q ∧ ¬[i]p)→ wri,j,x)∧ ¬Dx¬(q ∧ ¬[i]p)
(by R2),
⇔Dx[i:j:x+(q, p)]((q ∧ ¬[i]p)→ wri,j,x)∧ ¬Dx(q → [i]p),
⇔Dx¬[i:j:x+(q, p)]((q ∧ ¬[i]p) ∧ ¬wri,j,x)∧ ¬Dx(q → [i]p)
(by R3),
⇔Dx¬([i:j:x+(q, p)](q ∧ ¬[i]p) ∧ [i:j:x+(q, p)]¬wri,j,x)∧ ¬Dx(q → [i]p)
(by R4),



⇔Dx([i:j:x+(q, p)](q → [i]p) ∨ [i:j:x+(q, p)]wri,j,x)∧ ¬Dx(q → [i]p)
(by R3 and the valid equivalence [i:j:x+(q, p)]ϕ↔ ¬[i:j:x+(q, p)]¬ϕ),
⇔Dx([i:j:x+(q, p)](q → [i]p) ∨ wri,j,x ∨ (q ∧ ¬[i]p))∧ ¬Dx(q → [i]p)
(by R7),
⇔Dx((q → [i]p) ∨ wri,j,x ∨ (q ∧ ¬[i]p))∧ ¬Dx(q → [i]p)
(by R2, R3, R4, R7),
⇔Dx>∧ ¬Dx(q → [i]p),
⇔¬Dx(q → [i]p),
⇔ D̂x(q ∧ ¬[i]p).

Ldyn -theorem 8 highlights that the operator of commitment creation is well-defined
since it captures the desired commitment dynamics. Suppose p and q are propositional
atoms in Atm . If the institution x admits a situation in which q is true and agent i does
not see to it that p then, after the creation in x of i’s commitment towards j to ensure p
if q holds, i will be committed to j in x to ensure p if q holds, and viceversa.

According to theorem 9, the operation of creating a commitment in a given in-
stitution x does not cancel pre-existing commitments about propositions in the same
institution. In other words, the operation of commitment creation is conservative. Note
that this property is due to the fact that in the model resulting from the operation of
commitment creation, if wri,j,x is true at world w in the original model then wri,j,x is
set to true at wx in the updated model. Consequently, the set of worlds in the ‘x-copy’
of the original model in which wri,j,x is true is larger than the set of worlds in the orig-
inal model in which wri,j,x is true. According to theorem 10, the operation of creating
a new commitment about propositions from a debtor i to a creditor j in a given institu-
tion x does not create additional commitments in the same institution from a debtor h
to a creditor k, if either h and i are different debtors or k and j are different creditors.
Finally, theorems 11 and 12 highlight some locality aspects of commitment creation,
where locality means that the process of creating a commitment in an institution x does
not change the commitments in an institution different from x.

REMARK. Note that the following formula is also valid in the logic Ldyn for every
p, q ∈ Atm:

[i:j:x+(q, p)]�(¬[i](q → [i]p)→ wri,j,x).
This means, after the creation in institution x of agent i’s commitment towards agent j
to ensure p if q holds, it is settled that, if i does not see to it that if ψ then he sees to it
that ϕ, then j will be wronged by i in x. In other words, the normative consequences of
an operation of commitment creation are necessarily true facts.

4.2 Commitment cancelation

The second extension of the logic L is by formulas [i:j:x−(ψ,ϕ)]χ, where i, j ranges
over Agt and x ranges over Inst . Formula [i:j:x−(ψ,ϕ)]χ has to be read ‘χ holds,
after the cancelation from the institution x of agent i’s commitment towards agent j to
ensure ϕ if ψ holds’.



Semantics In order to give semantics to the operators [i:j:x−(ψ,ϕ)] let me define
the model M i:j:x−(ψ,ϕ) which results from the cancelation from the institution x of i’s
commitment towards j to ensure ϕ if ψ holds.

Definition 3 (Updated model M i:j:x−(ψ,ϕ)). For every L-model M , M i:j:x−(ψ,ϕ) is
the corresponding updated model with:

W i:j:x−(ψ,ϕ) ={wx|w ∈W} ∪ {w∼x|w ∈W};

Di:j:x−(ψ,ϕ)
x ={(wx, vx)|(w, v) ∈ Dx} ∪ {(w∼x, v∼x)|(w, v) ∈ Dx};

If y 6= x then, Di:j:x−(ψ,ϕ)
y ={(wx, v∼x)|(w, v) ∈ Dy} ∪ {(w∼x, v∼x)|(w, v) ∈ Dy};

Ri:j:x−(ψ,ϕ)
� ={(wx, vx)|(w, v) ∈ R�} ∪ {(w∼x, v∼x)|(w, v) ∈ R�};

For z ∈ Agt , Ri:j:x−(ψ,ϕ)
z ={(wx, vx)|(w, v) ∈ Rz} ∪ {(w∼x, v∼x)|(w, v) ∈ Rz};

Vi:j:x−(ψ,ϕ)(wri,j,x) ={wx|M,w |= wri,j,x ∧ (ψ → [i]ϕ)}∪
{w∼x|M,w |= wri,j,x};

For α 6= wri,j,x, Vi:j:x−(ψ,ϕ)(α) ={wx|M,w |= α} ∪ {w∼x|M,w |= α}.

M i:j:x−(ψ,ϕ) is also obtained by creating two copies of each world w of the original
model M . Again, world wx (the ‘x-copy’) is the copy of w which is affected by the
occurrence of the event i:j:x−(ψ,ϕ), whereas w∼x (the ‘∼ x-copy’) is the copy in
which nothing happens. In particular, in wx the truth value of the atom wri,j,x is set to
true if and only if, at w wri,j,x is true and if ψ is true then i sees to it that ϕ (i.e. ψ →
[i]ϕ). For the rest, modelM i:j:x−(ψ,ϕ) has the same structure as the modelM i:j:x+(ψ,ϕ)

defined in Section 4.1.

Proposition 2. If M is a L-model then M i:j:x−(ψ,ϕ) is a L-model.

The truth condition of [i:j:x−(ψ,ϕ)]χ is the following:

M,w |= [i:j:x−(ψ,ϕ)]χ iff M i:j:x−(ψ,ϕ), wx |= χ.

Axiomatization The following Lemma 2 is symmetrical to Lemma 1 for commitment
creation and is used to prove Theorem 3 below.

Lemma 2. Take a L-model M . Then, for every w∼x ∈W i:j:x−(ψ,ϕ), we have:
M i:j:x−(ψ,ϕ), w∼x |= χ iff M,w |= χ.

There are reduction axioms for commitment cancelation which are symmetrical to the
reduction axioms for commitment creation.



Theorem 3. The following equivalences are valid:

T1. [i:j:x−(ψ,ϕ)]wri,j,x ↔ (wri,j,x ∧ (ψ → [i]ϕ))

T2. [i:j:x−(ψ,ϕ)]α↔ α if α 6= wri,j,x

T3. [i:j:x−(ψ,ϕ)]¬χ↔ ¬[i:j:x−(ψ,ϕ)]χ
T4. [i:j:x−(ψ,ϕ)](χ1 ∧ χ2)↔ ([i:j:x−(ψ,ϕ)]χ1 ∧ [i:j:x−(ψ,ϕ)]χ2)

T5. [i:j:x−(ψ,ϕ)]Dxχ↔ Dx[i:j:x−(ψ,ϕ)]χ
T6. [i:j:x−(ψ,ϕ)]Dyχ↔ Dyχ if y 6= x

T7. [i:j:x−(ψ,ϕ)][i]χ↔ [i][i:j:x−(ψ,ϕ)]χ
T8. [i:j:x−(ψ,ϕ)]�χ↔ �[i:j:x−(ψ,ϕ)]χ

Some properties The following are examples of valid properties of commitment can-
celation, with i, j, h, k ∈ Agt , p, q ∈ Atm , and x, y ∈ Inst :

[i:j:x−(q, p)]¬Ci:j:x(q,p)(13)
¬Ch:k:x(q,p)→ [i:j:x−(ψ,ϕ)]¬Ch:k:x(q,p)(14)
Ch:k:x(q,p)→ [i:j:x−(ψ,ϕ)]Ch:k:x(q,p) if h 6= i or k 6= j(15)
Ch:k:y(γ,χ)→ [i:j:x−(ψ,ϕ)]Ch:k:y(γ,χ) if y 6= x(16)
¬Ch:k:y(γ,χ)→ [i:j:x−(ψ,ϕ)]¬Ch:k:y(γ,χ) if y 6= x(17)

Ldyn -theorem 13 highlights that the operators of commitment cancelation are also well-
defined. Suppose p and q are propositional atoms in Atm . Then, after the cancelation
from institution x of i’s commitment towards j to ensure p if q holds, i will not be
committed to j in x to ensure p if q holds. According to theorem 14, the operation of
canceling a commitment from a given institution x does not create new commitments
about propositions in the same institution. Note that this property is due to the fact that
in the model resulting from the operation of commitment cancelation, the atom wri,j,x
is set to true at a world wx only if wri,j,x was already true at w in the original model.
Consequently, the set of worlds in the ‘x-copy’ of the original model in which wri,j,x
is true is smaller than the set of worlds in the original model in which wri,j,x is true.
According to theorem 15, the operation of canceling a commitment about propositions
from a debtor i to a creditor j in a given institution x does not cancel a pre-existent
commitment in the same institution from a debtor h to a creditor k, if either h and i are
different debtors or k and j are different creditors. Similarly to commitment creation,
theorems 16 and 17 highlight some locality aspects of commitment cancelation, where
locality means that the process of canceling a commitment from an institution x does
not change the commitments in an institution different from x.

4.3 Completeness

I call Ldyn the logic axiomatized by the principles of the logic L plus the axiom
schemata of Theorems 2 and 3 and the rule of replacement of proved equivalence. I
write `Ldyn ϕ if ϕ is a Ldyn -theorem. In order to prove that the logic Ldyn is complete
we need first an expressiveness result.



Proposition 3. For every Ldyn -formula ϕ there exists an L-formula ϕ′ such that
`Ldyn ϕ↔ ϕ′.

Proof. By means of the principles R1-R8 in Theorem 2 and T1-T8 in Theorem 3, it is
straightforward to prove that for every Ldyn formula there is an equivalent L formula. In
fact, each reduction axiom R3-R8 and T3-T8, when applied from the left to the right by
means of the rule of replacement of proved equivalence, yields a simpler formula, where
‘simpler’ roughly speaking means that the dynamic operators are pushed inwards. Once
the dynamic operators attain an atom they are eliminated by one of the equivalences R1-
R2 and T1-T2.

Theorem 4. The logic Ldyn is complete.

Proof. The theorem is a straightforward consequence of Theorem 1 and Proposition 3,
together with the fact that the logic Ldyn is a conservative extension of the logic L.

5 Related works and perspectives

The formal semantics for commitment creation and commitment cancelation proposed
in Section 4 can be seen as an application of the logical theory of assignments [26,
24] that has been recently applied to model knowledge and intention dynamics (see,
e.g., [25, 20]). It has also to be noted that the semantics of Section 4 corresponds to a
two-event action model à la Baltag, Moss and Solecki (BMS) [3].

Several formal approaches to commitment have been recently proposed in the area
of multi-agent systems and in the area of deontic logic. For instance, in [29] condi-
tional commitments are modeled as unconditional commitments combined with strict
(non material) implication. Bentahar et al. [6] provide an analysis of (propositional)
dialectical and practical commitments in the context of conversation using a formal
language based on an extended version of CTL (Computational Tree Logic) and on
dynamic logic. A part of their work is devoted to discuss some intuitive reasoning pos-
tulates for commitment. Khan & Lésperance [18] propose a rich formal analysis of
conditional commitment. They use the term ‘intention’ and ‘commitment’ interchange-
ably since, they argue, the logical structure of the two is similar enough. Their account
is set within a framework for modeling communicating agents based on the Situation
Calculus. Verdicchio & Colombetti [27] also formalize commitments in a variant of
CTL. They formally define the concepts of fulfilled commitment, violated commitment
and pending commitment. However, all these approaches do not provide a sound and
complete logic for the analysis of the static and dynamics aspects of commitments.

A different approach is proposed by Singh [23] who takes seriously the issue of
providing a model theory, and a sound and complete set of reasoning postulates for
commitment. Singh focuses on dialectical (propositional) commitments and on practi-
cal commitments. However, its logical framework only applies to the static aspect of
commitment and does not consider the dynamic dimension which is the main focus of
the present contribution.

In this article I only considered unilateral commitments of an agent i towards an-
other agent j. My main objective of future research is to extend the present analysis to



bilateral commitments in order to capture interesting social notions such as the notion
of agreement and the notion of contract. In fact, as a first approximation, an agreement
can be defined as a bilateral commitment among the agents in a group. In more for-
mal terms, two agents i1 and i2 have an agreement in the context of institution x to
ensure respectively ϕ1 if ψ1 holds and ϕ2 if ψ2 holds if and only if, i1 is committed to
i2 to ensure ϕ1 if ψ1 holds, and i2 is committed to i1 to ensure ϕ2 if ψ2 holds, that is:
Ci1:i2:x(ψ1,ϕ1)∧Ci2:i1:x(ψ2,ϕ2). Another aspect I intend to investigate in the future is
a generalization of the present framework to commitments of an agent towards a group,
and to commitments of a group towards an agent (or towards a group).

I also postpone to future work an extension of the logic L and of its dynamic variant
Ldyn by a temporal modal operator of the form F, where Fϕ means “ϕ will be true
at some point in the future”. This extension will enable to redefine the commitment
modality Ci:j:xϕ introduced in Section 3 by the formula Dx(¬F[i]ϕ → wri,j,x) ∧
D̂x¬F[i]ϕ which makes explicit the temporal aspect of commitment. According to this
definition, an agent i is committed to agent j in the context of institution x to ensure ϕ
if and only if, i has a duty towards j in the context of institution x to ensure ϕ at some
point in the future. This temporal variant of the notion of commitment is analogous to
the notion of achievement goal proposed in the domain of BDI logics (see, e.g., [10]).
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