Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6175))

Abstract

The past few years have seen significant progress in algorithms and heuristics for both SAT and symmetry detection. Additionally, the thesis that some of SAT’s intractability can be explained by the presence of symmetry, and that it can be addressed by the introduction of symmetry-breaking constraints, was tested, albeit only to a rather limited extent. In this paper we explore further connections between symmetry and satisfiability and demonstrate the existence of intractable SAT instances that exhibit few or no symmetries. Specifically, we describe a highly scalable symmetry detection algorithm based on a decision tree that combines elements of group-theoretic computation and SAT-inspired backtracking search, and provide results of its application on the SAT 2009 competition benchmarks. For SAT instances with significant symmetry we also compare SAT runtimes with and without the addition of symmetry-breaking constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Shatter: Efficient symmetry-breaking for boolean satisfiability. In: Proc. 40th IEEE/ACM Design Automation Conference (DAC), Anaheim, California, pp. 836–839 (2003)

    Google Scholar 

  3. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult instances of boolean satisfiability in the presence of symmetry. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 22(9), 1117–1137 (2003)

    Article  Google Scholar 

  4. Aloul, F.A., Sakallah, K.A., MarkovEfficient, I.L.: symmetry breaking for boolean satisfiability. In: Proc. 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp. 271–282 (2003)

    Google Scholar 

  5. Crawford, J.: A theoretical analysis of reasoning by symmetry in first-order logic (extended abstract). In: AAAI 1992 Workshop on Tractable Reasoning, San Jose, CA, pp. 17–22 (1992)

    Google Scholar 

  6. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for search problems. In: Principles of Knowledge Representation and Reasoning (KR 1996), pp. 148–159 (1996)

    Google Scholar 

  7. Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure in symmetry detection for CNF. In: Proc. 41st IEEE/ACM Design Automation Conference (DAC), San Diego, California, pp. 530–534 (2004)

    Google Scholar 

  8. Darga, P.T., Sakallah, K.A., Markov, I.L.: Faster symmetry discovery using sparsity of symmetries. In: Proc. 45th IEEE/ACM Design Automation Conference (DAC), Anaheim, California, pp. 149–154 (2008)

    Google Scholar 

  9. Fraleigh, J.B.: A First Course in Abstract Algebra, 6th edn. Addison Wesley Longman, Reading (2000)

    MATH  Google Scholar 

  10. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse graphs. In: Ninth Workshop on Algorithm Engineering and Experiments (ALENEX 2007), New Orleans, LA (2007)

    Google Scholar 

  11. McKay, B.D.: Nauty user’s guide (version 2.2), http://cs.anu.edu.au/~bdm/nauty/nug.pdf

  12. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)

    MathSciNet  MATH  Google Scholar 

  13. Schaafsma, B., Heule, M.J., Maaren, H.: Dynamic symmetry breaking by simulating Zykov contraction. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 223–236. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Katebi, H., Sakallah, K.A., Markov, I.L. (2010). Symmetry and Satisfiability: An Update. In: Strichman, O., Szeider, S. (eds) Theory and Applications of Satisfiability Testing – SAT 2010. SAT 2010. Lecture Notes in Computer Science, vol 6175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14186-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14186-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14185-0

  • Online ISBN: 978-3-642-14186-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics