
An Exact Algorithm for the Boolean Connectivity

Problem for k-CNFI

Kazuhisa Makino

Graduate School of Information Science and Technology, University of Tokyo

Suguru Tamaki

Graduate School of Informatics, Kyoto University

Masaki Yamamoto

Dept. of Informatics, Kwansei-Gakuin University

Abstract

We present an exact algorithm for a PSPACE-complete problem, denoted
by CONNkSAT, which asks if the solution space for a given k-CNF formula
is connected on the n-dimensional hypercube. The problem is known to be
PSPACE-complete for k ≥ 3, and polynomial solvable for k ≤ 2 [6]. We show
that CONNkSAT for k ≥ 3 is solvable in time O((2− εk)

n) for some constant
εk > 0, where εk depends only on k, but not on n. This result is considered to
be interesting due to the following fact shown by [5]: QBF-3-SAT, which is
a typical PSPACE-complete problem, is not solvable in time O((2 − ε)n) for
any constant ε > 0, provided that the SAT problem (with no restriction to
the clause length) is not solvable in time O((2− ε)n) for any constant ε > 0.

Keywords:
exponential-time algorithms, Boolean connectivity, CNF satisfiability

IA preliminary version of this paper appeared in the Proceedings of the 13th Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT 2010), LNCS
6302, pp. 172–180, 2010.

Email addresses: makino@mist.i.u-tokyo.ac.jp (Kazuhisa Makino),
tamak@kuis.kyoto-u.ac.jp (Suguru Tamaki), masaki.yamamoto@kwansei.ac.jp
(Masaki Yamamoto)

Preprint submitted to Theoretical Computer Science March 30, 2011

1. Introduction

There are so many NP-hard problems around the world, which are con-
sidered to be intractable. To deal with those intractable problems, efficient
algorithms with good approximation ratio or working well on average, have
been proposed. Another approach to dealing with intractable problems is
to develop algorithms that exactly solve the problems, so-called exact algo-
rithms, where exact algorithms usually run in super-polynomial time, but
exponentially faster than trivial ones. See [20, 17] for surveys on this topic.
A number of exact algorithms for typical NP-hard problems have been pro-
posed, and novel techniques for bounding the running time have been found:
E.g., [1, 7, 2] for the traveling salesman problem, [4, 9, 3] for graph parti-
tioning problems such as the graph coloring problem, and [14, 13, 16, 8, 15]
for the satisfiability problem.

Viewing this approach in terms of computational complexity, we are con-
cerned with the following question: Given an NP-hard problem of solution
length n or witness length n, (for example, n denotes the number of vertices
of a graph for the traveling salesman problem, or the number of variables
of a formula for the satisfiability problem) is there an exact algorithm for
the problem in time O(2n), or O((2 − ε)n) for some constant ε > 0 ? Here,
we assume that the length of instances with solution length n or witness
length n is bounded by a polynomial in n. Moreover, as usual, we omit the
polynomial factor in the O-notation when concerning with an upper bound
of exponential-time.

The oldest result for this kind of questions is for the traveling salesman
problem by Bellman [1] and by Held and Karp [7]. Given an undirected graph
G = (V,E) and a length function ` : E → R+, the problem asks for finding
a shortest Hamilton cycle. It is easy to see that the problem is solvable in
time O(n!). However, it is indeed not so easy to see that it is solvable in time
O(2n). These two papers [1, 7] gave an affirmative answer to this question.
There are several results that give such an affirmative answer: for example,
[4, 9] for the k-coloring problem showed that it is solvable in time O(2n) for
any k (not necessarily constant) while it is trivially solvable in time O(kn),
and [19] for the maximum satisfiability problem where the clause length of
an instance is at most two showed that it is solvable in time O(1.731n) while
it is trivially solvable in time O(2n).

One of the most notable questions of this kind, which are still open, is for
the satisfiability problem (SAT). This problem asks if there is a satisfying

2

assignment for a given conjunctive normal form (CNF) formula ϕ with no
restriction to the clause length. It is clear that the problem is solvable in time
O(2n). However, it is still open whether it is solvable in time O((2− ε)n) for
some constant ε > 0. Another well-known open question is to ask whether the
traveling salesman problem is solvable in time O((2− ε)n) for some constant
ε > 0.

While developing exact algorithms for NP-complete problems and their
optimization problems, we rarely see exact algorithms for decision problems
in complexity classes beyond NP, such as the second and higher levels of PH,
PSPACE, EXP, etc. There is one exceptional problem as far as we know:
the quantified Boolean formula (QBF) problem, that is a typical PSPACE-
complete problem, even if given Boolean formulas are restricted to 3-CNF.
Williams [18] proposed an exact algorithm for this problem. However, he
analyzed the running time with respect to the number of clauses, but not
the number of variables. (Apart from decision problems, there are several
problems solvable in time O((2 − ε)n), e.g., #k-SAT problem, which is #P-
complete for k ≥ 2. For this problem, we easily obtain an O((2 − ε))n-time
exact algorithm, by using a simple backtracking algorithm for k-SAT. The
best upper bound for #3-SAT, for example, can be found in [10].)

In this paper, we show that the following PSPACE-complete problem,
denoted by CONNkSAT, is solvable in time O((2 − ε)n) for n variables:
given a k-CNF formula ϕ over n variables, decide whether the solution space
of ϕ is connected on the n-dimensional hypercube. (See the next section
for the precise definition.) This problem was proposed by Gopalan, Kolaitis,
Maneva, and Papadimitriou to investigate connectivity properties on Boolean
formulas. It is known that the problem is PSPACE-complete for k ≥ 3, while
it is in P for k ≤ 2 [6]. Moreover, it is known to be coNP-complete, if given
formulas are restricted to Horn 3-CNF [12]. We show that CONNkSAT for
k ≥ 3 is solvable in time O((2 − εk)

n) for some constant εk > 0, where εk

depends only on k, but not on n. It seems to be the first nontrivial result
that gives an O((2 − ε)n)-time algorithm for a certain PSPACE-complete
problem in terms of the number of variables. Furthermore, this result is
considered to be interesting because Calabro, Impagliazzo, and Paturi [5]
recently showed the following fact on Π2-3-SAT: this problem, which is a
typical ΠP

2 -complete problem, is the QBF problem over 3-CNF formulas,
where the quantifier starts with ∀, and the number of changes between two
types of consecutive quantifiers is at most one. They showed that Π2-3-SAT
is not solvable in time O((2 − ε)n) for any constant ε > 0, provided that the

3

SAT problem (with no restriction to the clause length) is not solvable in time
O((2− ε)n) for any constant ε > 0. It means that the (general) QBF over 3-
CNF formulas, which is a typical PSPACE-complete problem, is not solvable
in time O((2 − ε)n) for any constant ε > 0 under the same assumption.

2. Preliminaries

In this paper, we deal with k-CNF formulas, where the length of each
clause of a formula is at most k. Let X = {x1, . . . , xn} be a set of Boolean
variables. An assignment to X is an element of {0, 1}n. A partial assign-
ment to X is an element of {0, 1, ∗}n, where we regard a variable assigned
∗ as unassigned. We alternately express partial assignments by pulling out
coordinates assigned 0 or 1, e.g., a partial assignment (x1 = 1, x2 = ∗, x3 =
0, x4 = ∗, . . . , xn = ∗) ∈ {0, 1, ∗}n is denoted by (x1 = 1, x3 = 0). For two
assignments t1, t2 ∈ {0, 1}n to X, the Hamming distance d between t1 and
t2 is d(t1, t2) = |{i ∈ [n] : t1(i) 6= t2(i)}|. We extend this notion to partial
assignments as follows 1: for two partial assignments t1, t2 ∈ {0, 1, ∗}n, the
Hamming distance d between t1 and t2 is

d(t1, t2)
def
=

∣∣∣∣{i ∈ [n] :
t1(i) 6= ∗, t2(i) 6= ∗, and
t1(i) 6= t2(i)

}∣∣∣∣ .

Given a partial assignment t, we simplify ϕ in the standard way, that is,
eliminating any clause from ϕ if a literal of the clause is assigned 1 under
t, and eliminating any literal from ϕ if the literal is assigned 0 under t.
The resulting formula is denoted by ϕ|t. For later use, we present a typical
algorithm for k-SAT, denoted by simple-sat, in Fig. 1 below.

Proposition 2.1. Given a k-CNF formula ϕ, the running time of simple-sat(ϕ)
is O(βn

k) for some constant βk < 2 depending only on k.

As shown in section 2 of [11], βk is the largest real number x > 0 that
satisfies xk − xk−1 − · · · − x2 − x − 1 = 0. (For example, β3 = 1.840.)

We slightly modify this algorithm for our purpose. First, we omit the
second “return YES” from the algorithm, that is, we just run simple-sat(ϕ|t)
for each partial assignment t ∈ S. Second, we therefore omit the second

1It might be better to give it another term since the extension is no longer “distance”:
it does not satisfy the triangle inequality.

4

simple-sat(ϕ) // ϕ is a k-CNF formula

if ∅ ∈ ϕ (i.e., ϕ 6∈ SAT), return NO

if ϕ = {} (i.e., ϕ ∈ SAT), return YES

Choose a clause (`1 ∨ · · · ∨ `k′) ∈ ϕ arbitrarily (k′ ≤ k)
Let S = {(`1 = 0, . . . , `i−1 = 0, `i = 1) : 1 ≤ i ≤ k′}
⊂ {0, 1, ∗}k′

for each partial assignment t ∈ S
if simple-sat(ϕ|t) returns YES, then return YES

end-for-each

return NO

Figure 1: A simple backtracking algorithm for k-SAT

“return NO” from the algorithm. Note that Proposition 2.1 also holds for
this modified algorithm. This modification comes from our strategies for
solving CONNkSAT: we enumerate all satisfying partial assignments. In
what follows, we call this modified algorithm simple-sat.

Given a k-CNF formula, a binary decision diagram is constructed by the
execution of simple-sat(ϕ). It is viewed as a rooted binary tree shown in
Fig. 2: we only depict one part of the binary tree, where a recursive call of
simple-sat(ϕ|t) with t = (l1 = 0, . . . , lk′−1 = 0, lk′ = 1) for some k′ ≤ k is
executed. In such a binary tree, each non-leaf vertex represents a variable,
and each edge is labelled with 0 or 1. Alternatively, in such a representation,
every vertex can be viewed as a partial assignment. The depth of a vertex v
in a binary tree is the number of ancestors of v.

Given a k-CNF formula, let Tϕ be the rooted binary tree obtained by
running simple-sat(ϕ). Let SATϕ be the set of leaves of Tϕ that satisfy ϕ.
We alternatively view SATϕ as the set of partial satisfying assignments. For
simplicity, we assume that every leaf of Tϕ corresponds to a partial satisfying
assignment so that SATϕ is exactly the set of leaves of Tϕ. This is because
such a tree is constructed by erasing from Tϕ all sub-trees every leaf of which
are not satisfying assignments. Moreover, this construction is done in time
O(βn

k), where βk ≤ 2 − εk for our target bound O((2 − εk)
n). Then, we note

the following two facts about SATϕ.

5

l1 = 1

l1 = 0, l2 = 1

l1 = 0, l2 = 0, l3 = 1

l1 = 0, ..., l -1= 0, l = 1k’k’

1 0

1 0

1

1

l1

l2

l3

lk’

Figure 2: A binary tree

Note 2.2. For any pair of distinct vertices u, v ∈ SATϕ, d(u, v) ≥ 1.

Note 2.3. The vertex set SATϕ is a partition of the set of all satisfying
assignments of ϕ, that is, for any satisfying assignment t ∈ {0, 1}n of ϕ,
there is a unique vertex v ∈ SATϕ (i.e., v is a satisfying partial assignment)
such that d(t, v) = 0.

Given a k-CNF formula ϕ over n variables, let SATϕ be as above, and
let Hϕ be the graph induced from the n dimensional hypercube by SATϕ.
The solution space induced by S ⊂ SATϕ is the graph induced from Hϕ by
S, that is, by {t ∈ {0, 1}n : ∃s ∈ S[d(s, t) = 0]}. We here note the following
two facts, which are easily shown.

Note 2.4. The solution space induced by a single vertex of SATϕ is connected.

Note 2.5. Let v1, v2 be distinct vertices of SATϕ. Suppose that d(v1, v2) = 1.
Then, the solution space induced by {v1, v2} is connected.

Given a k-CNF formula ϕ over n variables, the connectivity problem
which we study, denoted by CONNkSAT, is to ask if the graph Hϕ is con-
nected.

Theorem 2.6 (Gopalan et al. [6]). CONNkSAT is PSPACE-complete for
k ≥ 3. On the other hand, CONNkSAT is in P for k ≤ 2.

6

3. An Exact Algorithm for CONNkSAT

We present an exact algorithm for CONNkSAT, and show the running
time is O((2 − εk)

n) for some constant εk > 0. The algorithm, denoted by
conn-sat(ϕ) given a k-CNF formula ϕ, is shown in Fig. 3, where βk is the
constant specified in the preliminary section.

conn-sat(ϕ) // parameter α is a real number that satisfies
(2βk)

αn = βn
k

Run simple-sat(ϕ)
Let Tϕ and SATϕ be as defined above
Let Vϕ = V (Tϕ) be the set of vertices of Tϕ,

Let Eϕ = ∅
Construct an undirected graph GSAT = (SATϕ, Eϕ)
as follows:
(1) for each pair of vertices u, v ∈ SATϕ with depth
at most (1 − α)n

if d(u, v) = 1, then add (u, v) to Eϕ

(2) for each u ∈ SATϕ with depth more than (1 − α)n
Visit v ∈ Vϕ in the depth-first search manner
starting from the root of Tϕ so that

if d(u, v) ≥ 2, then do not visit vertices
which are descendants of v any longer

else if v ∈ SATϕ and v 6= u, then add (u, v)
to Eϕ

if GSAT = (SATϕ, Eϕ) is connected, output YES,
else output NO

Figure 3: An exact algorithm for CONNkSAT

The idea of this algorithm is to enumerate all satisfying partial assign-
ments using simple-sat, and to construct a graph over those assignments
such that there is an edge between two satisfying partial assignments if and
only if the Hamming distance between them is exactly one. (Recall Note 2.2
that d(u, v) ≥ 1 for any pair of distinct vertices u, v ∈ SATϕ.) Then, we can

7

easily check the connectivity of the graph in linear time with respect to its
size, i.e., the number of vertices and edges of the graph.

Before proceeding to the formal analysis of the algorithm, we shall give
intuition on how to upper-bound the running time. The crucial point is to
show that the size of the constructed graph is at most O((2 − ε)n) for some
constant ε > 0. We can see that the number of vertices is at most O(βn

k) by
Proposition 2.1 since the set of vertices consists of leaves in the tree obtained
by running simple-sat. However, it is not obvious to bound the number of
edges. One trivial upper bound, the square of the number of vertices, may
exceed 2n. (For example, (βn

3)2 > 3.385n.) Another trivial upper bound,
the sum of the degree of the vertices, may also exceed 2n since each vertex
corresponds to a partial assignment and can have exponentially large degree
(up to 2s where s is the number of ∗’s in the assignment).

Our key observation is the following two facts; (i) the number of “shallow”
vertices is small and (ii) the degree of “deep” vertices is small. Here shallow
and deep mean the depth of a vertex in the tree associated with the execution
of simple-sat. Fact (i) essentially follows from Proposition 2.1 and fact (ii)
holds since a deep vertex corresponds to an assignment with few ∗’s. Then
we classify edges into two types, (shallow, shallow) and (deep,any). The
number of the former and the latter types can be bounded by O((2 − ε)n)
using the square of the number of the shallow vertices and the sum of the
degree of the deep vertices, respectively.

Now we proceed to the formal analysis.

Lemma 3.1. Given a k-CNF formula ϕ, let GSAT = (SATϕ, Eϕ) be the final
GSAT obtained by constructing Eϕ. Let v1, v2 ∈ SATϕ be distinct vertices.
Then,

d(v1, v2) = 1 ⇐⇒ (v1, v2) ∈ Eϕ.

Proof. Note first that d(v1, v2) ≥ 1, which comes from Note 2.2. It is easy
to see that (u, v) ∈ Eϕ implies d(u, v) = 1 since our algorithm adds an edge
(u, v) to Eϕ only if d(u, v) = 1.

Suppose that d(u, v) = 1. We see that it means our algorithm adds an
edge (u, v) to Eϕ because of the following observation: if d(u, v) = 1, then
d(u,w) ≤ 1 for any ancestor w of v.

Lemma 3.2. Given a k-CNF formula ϕ, let GSAT = (SATϕ, Eϕ) be the
final GSAT obtained by constructing Eϕ. Then,

ϕ ∈ CONNkSAT ⇐⇒ GSAT is connected.

8

Proof. We first consider the case of |SATϕ| ≤ 1. In this case, it is obvious
that GSAT = (SATϕ, Eϕ) is connected. Moreover, ϕ ∈ CONNkSAT holds
because of Note 2.4. Thus, this lemma holds for |SATϕ| ≤ 1.

Next, we assume that |SATϕ| ≥ 2. Suppose that GSAT is connected.
We will show that any pair of two satisfying assignments of ϕ is connected
on Hϕ. Let t1, t2 ∈ {0, 1}n be distinct satisfying assignments of ϕ. Let
v1 ∈ SATϕ (resp. v2 ∈ SATϕ) be a vertex of GSAT corresponding to t1 (resp.
t2), that is, d(v1, t1) = 0 (resp. d(v2, t2) = 0). From Note 2.3, there is such
a vertex which is unique. We may assume v1 6= v2 since otherwise it is the
same as the case of |SATϕ| ≤ 1. Since GSAT is connected, there is a path
between v1 and v2 (on GSAT). Consider any pair of adjacent vertices on
the path, say, u1, u2 ∈ SATϕ, From the previous lemma, d(u1, u2) = 1 since
(u1, u2) ∈ Eϕ. Moreover, from Note 2.5, the solution space of Hϕ induced
by {u1, u2} is connected. Applying this argument repeatedly to every pair of
adjacent vertices on the path, we see that the solution space of Hϕ induced
by all vertices on the path is connected, and hence t1 and t2 are connected
on Hϕ. This holds for any pair of two satisfying assignments of ϕ. Thus, we
conclude ϕ ∈ CONNkSAT.

Suppose that ϕ ∈ CONNkSAT. We will show that any pair of two vertices
of SATϕ is connected on GSAT. Let v1, v2 ∈ SATϕ be distinct vertices of
GSAT. Let t1 (resp. t2) be an arbitrary satisfying assignment of ϕ such
that d(t1, v1) = 0 (resp. d(t2, v2) = 0). Since ϕ ∈ CONNkSAT, there exists
a path t1 = a0 → a1 → . . . → a` = t2 on Hϕ. Consider any pair of ai

and ai+1. There are two cases: (1) there is a vertex u ∈ SATϕ such that
d(ai, u) = d(ai+1, u) = 0, and (2) there are distinct vertices u1, u2 ∈ SATϕ

such that d(ai, u1) = d(ai+1, u2) = 0. Consider the second case. (We do
not need to care for the first case.) Since d(ai, ai+1) = 1, we must have
d(u1, u2) = 1. (We do not have d(u1, u2) = 0 since u1 6= u2.) From the
previous lemma, it means (u1, u2) ∈ Eϕ. Applying this argument repeatedly
to every pair of adjacent vertices on the path, we see that v1 and v2 are
connected on GSAT. This holds for any pair of two vertices of SATϕ. Thus,
we conclude that Gϕ is connected.

From this lemma, we conclude that the output of conn-sat(ϕ) is correct
for any ϕ. It remains to show the upper bound on the running time of
conn-sat(ϕ).

Lemma 3.3. The running time of conn-sat(ϕ) is O((2 − εk)
n) for some

constant εk > 0 depending only on k.

9

Proof. Given a k-CNF formula ϕ, let Tϕ be the rooted binary tree obtained
by running simple-sat(ϕ). Let GSAT = (SATϕ, Eϕ) be the final GSAT
obtained by constructing Eϕ. Note here that the running time of constructing
Tϕ is O(βn

k), where βk is the constant specified in the preliminary section.
For showing the worst-case running time, it suffices to estimate an upper
bound of |Eϕ|. For any α : 0 ≤ α ≤ 1, let

U
def
= {u ∈ SATϕ : depth(u) ≤ (1 − α)n},

W
def
= {w ∈ SATϕ : depth(w) > (1 − α)n},

where depth(u) is the depth of u in Tϕ. Then,

|Eϕ| = |E1| + |E2|, where

{
E1 = Eϕ ∩ (U × U),
E2 = (Eϕ ∩ (U × W)) ∪ (Eϕ ∩ (W × W)) .

Claim 3.4. For any α : 0 ≤ α ≤ 1,

1. |E1| ≤
(
β

(1−α)n
k

)2 (
= β

2(1−α)n
k

)
,

2. |E2| ≤
∑

0≤t≤αn

βn−t
k

(
(n − t)2t

) (
≤ n2 · 2αn · β(1−α)n

k

)
.

Proof. The first inequality comes from the fact that the number of vertices
of Tϕ with depth at most (1 − α)n is at most β

(1−α)n
k .

Fix t with 0 ≤ t ≤ αn arbitrarily. Consider an arbitrary vertex w ∈ W
with depth n− t. We will estimate the possible number of edges (w, v) ∈ Eϕ

where v ∈ SATϕ. Let ri be the ancestor of w at depth i (0 ≤ i < n − t).
Let r′i be the child vertex of ri that is not an ancestor of w. Let Tw,i be the
sub-tree of Tϕ rooted at r′i. Then, the number of assignments (not necessarily
satisfying ones) a ∈ {0, 1}n such that d(r′i, a) = 0 and d(w, a) ≤ 1 is exactly
2t since the number of variables assigned ∗ under w is t. Let A ⊂ {0, 1}n

be the set of those assignments. Then, the number of leaves v of Tw,i such
that d(w, v) ≤ 1 is at most 2t since each assignment a ∈ A corresponds to
a unique leaf v if a is a satisfying assignment. Thus, for any w ∈ W with
depth n− t, the number of leaves v such that d(w, v) ≤ 1 is at most (n− t)2t.
Since the number of vertices w ∈ W with depth n − t is at most βn−t

k , the
second inequality holds.

From this claim, we have |Eϕ| ≤ β
2(1−α)n
k + n22αnβ

(1−α)n
k for any 0 ≤

α ≤ 1. By fixing α to a constant satisfying β
2(1−α)n
k = 2αnβ

(1−α)n
k , which is

10

equivalent to (2βk)
αn = βn

k , we obtain an upper bound on |Eϕ| as follows:

|Eϕ| ≤ 2 · poly(n) · 2αnβ
(1−α)n
k .

We see that the formula on the right-hand-side is O((2 − εk)
n) for some

constant εk > 0 (depending only on k) since βk is a constant less than 2.

From Lemma 3.2, we see that our algorithm solves CONNkSAT. From
Lemma 3.3, we see that our algorithm runs in time O((2 − εk)

n) for some
constant εk > 0. Therefore, we obtain the following theorem:

Theorem 3.5. The problem CONNkSAT is solvable in time O((2−εk)
n) for

some constant εk > 0 depending only on k. (For example, it is O(1.914n) for
k = 3.)

Lemma 3.2 actually shows that the number of connected components in
Hφ is same as that in GSAT. Thus, we have:

Corollary 3.6. Given a k-CNF formula ϕ over n variables, the number of
connected components in Hϕ can be computed in time O((2 − εk)

n) for the
constant εk given in Theorem 3.5.

4. Conclusion

We have presented an O(2 − εk)
n-time exact algorithm for CONNkSAT.

One of our future work is to improve the analysis of the running time of our
algorithm, and to obtain the upper bound O(βn

k) which is same as the run-
ning time of simple-sat: our bound is slightly worse than O(βn

k). Instead
of doing that, we may be able to reduce the running time just by replac-
ing simple-sat with a more sophisticated backtrack-type algorithm A that
satisfies the following: all leaves of the rooted binary tree constructed by A
constitute a partition of all satisfying assignments. However, we encounter
the same problem as above: we cannot derive the running time as much as
that of A from our analysis.

References

[1] R. Bellman, “Dynamic programming treatment of the travelling sales-
man problem,” Journal of the ACM, 9(1):61–63, 1962.

11

[2] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, “The travelling
salesman problem in bounded degree graphs,” In Proc. ICALP 2008
part I, pp. 198–209, 2008.

[3] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, “Fourier meets
Möbius: Fast subset convolution,” In Proc. STOC 2007, pp. 67–74, 2007.

[4] A. Björklund and T. Husfeldt, “Inclusion-exclusion algorithms for count-
ing set partitions,” In Proc. FOCS 2006, pp. 575–582, 2006.

[5] C. Calabro, “The exponential complexity of satisfiability problems,” Ph.
D. thesis, University of California, San Diego, 2009.

[6] P. Gopalan, P. G. Kolaitis, E. N. Maneva, and C. H. Papadimitriou,
“The connectivity of Boolean satisfiability: Computational and struc-
tural dichotomies,” SIAM J. Comput., 38(6):2330–2355, 2009.

[7] M. Held and R. M. Karp, “The traveling-salesman problem and mini-
mum spanning trees,” Operations Res., 18(6):1138–1162, 1970.

[8] K. Iwama and S. Tamaki, “Improved upper bounds for 3-SAT,” In
Proc. SODA 2004, pp. 328–329, 2004.

[9] M. Koivisto, “An O(2n) algorithm for graph coloring and other partition-
ing problems via inclusion-exclusion,” In Proc. FOCS 2006, pp. 583–590,
2006.

[10] K. Kutzkov, “New upper bound for the #3-SAT problem,” Inf. Pro-
cess. Lett., 105(1):1–5, 2007.

[11] B. Monien and E. Speckenmeyer, “Solving satisfiability in less than 2n

steps,” Discrete Applied Mathematics, 10:287–295, 1985.

[12] K. Makino, S. Tamaki, M. Yamamoto, “On the Boolean connectivity
problem for Horn relations,” Discrete Applied Mathematics, to appear.

[13] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane, “An improved
exponential-time algorithm for k-SAT,” J. ACM, 52(3):337–364, 2005.

[14] R. Paturi, P. Pudlák, and F. Zane, “Satisfiability coding lemma,”
Chicago J. Theor. Comput. Sci., 1999.

12

[15] D. Rolf, “Improved bound for the PPSZ/Schöning-algorithm for 3-SAT,”
JSAT, 1:111–122, 2006.

[16] U. Schöning, “A probabilistic algorithm for k-SAT based on limited local
search and restart,” Algorithmica, 32(4):615–623, 2002.

[17] U. Schöning, “Algorithmics in exponential time,” In Proc. STACS 2005,
pp. 36–43, 2005.

[18] R. Williams, “Algorithms for quantified Boolean formulas,” In
Proc. SODA 2002, pp. 299–307, 2002.

[19] R. Williams, “A new algorithm for optimal constraint satisfaction and
its implications,” In Proc. ICALP 2004, pp. 1227–1237, 2004.

[20] G. J. Woeginger, “Exact algorithms for NP-hard problems: a survey,”
In Combinatorial Optimization (Edmonds Festschrift), LNCS 2570,
pp. 185–207, 2003.

13

