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Abstract. Robustness and correctness are essential criteria for SAT and
QBF solvers. We develop automated testing and debugging techniques
designed and optimized for SAT and QBF solver development. Our fuzz
testing techniques are able to find critical solver defects that lead to
crashes, invalid satisfying assignments and incorrect satisfiability results.
Moreover, we show that sequential and concurrent delta debugging tech-
niques are highly effective in minimizing failure-inducing inputs.

1 Introduction

Satisfiability solving has been shown to be a competitive problem solving tech-
nique that is used in many different domains such as verification, test case gener-
ation, scheduling, computational biology and artificial intelligence. For a recent
survey on satisfiability solving we refer the reader to [8]. Recent advances of
propositional satisfiability (SAT) solvers and quantified boolean formula (QBF)
solvers are driven by competitions and real industrial applications such as formal
hardware and software verification.

Essential criteria of satisfiability solvers are robustness and correctness. SAT
and QBF solvers are used as core decision engines and the clients heavily de-
pend on these important criteria. For instance, an incorrect SAT solver used as
decision engine in a formal verification framework may lead to incorrect veri-
fication results, i.e. either the system may be spuriously proven to be correct
or the verification framework generates a spurious counter-example. Moreover,
wrong satisfying assignments (models) may be mapped to spurious verification
counter-examples that hinder the overall verification process.

While a large part of current research focuses on speeding up SAT and QBF
solving with various techniques such as improved decision heuristics and low-
level optimizations, there are, to the best of our knowledge, no rigorous sci-
entific publications about automated testing and debugging techniques for SAT
and QBF solvers. This paper tries to improve this situation by introducing auto-
mated state-of-the-art testing and (multi-threaded) delta debugging techniques,
designed and optimized for SAT and QBF solvers. Our experimental results are
available at http://fmv.jku.at/brummayer/fuzz-dd-sat-qbf.tar.7z. Every
tool is available at http://fmv.jku.at/software/.



2 Fuzzing

Fuzzing is an automated negative testing technique, typically used in software
security and quality assurance [45,46]. The original idea is to treat software as
a black-box and repeatedly “attack” it with random inputs in order to find
critical defects, e.g. buffer overflows. Fuzz testing methods such as “monkey
testing” were already used around 1980 [46]. Miller, one of the fuzzing pioneers,
demonstrated that fuzz testing could find many critical defects in UNIX applica-
tions [36]. The lack of a formal model and the brute force nature of the approach
lead to the situation that papers about fuzz testing were often offended. Miller
simply responded that he was just trying to find bugs [46], which is also exactly
what we want to achieve with our fuzzing techniques, explicitly designed and
optimized for SAT and QBF solvers.

The goal of previous work on random generation of SAT and QBF instances
was to study the phase transition phenomenon [22,40,23,16] and to generate
hard instances [27,48,1]. However, our work focuses on generating random in-
stances in order to find defects in current state-of-the-art solver implementations.
We propose to use grammar-based black-box fuzzing in order to test SAT and
QBF solvers. A fuzzer repeatedly generates syntactically valid inputs. Solvers
are treated as black-boxes, which makes our approach highly flexible. They are
run on the generated inputs in order to detect critical defects such as segmenta-
tion faults and aborts. Moreover, reported satisfiability results are validated in
order to find defects that lead to incorrect results and models.

One of the main success factors of fuzz testing is a high test throughput,
e.g. testing a solver with five instances per hour is unlikely to be successful.
Therefore, generating hard instances solely is counter-productive. On the other
hand, trivial instances are unlikely to trigger interesting defects. Ideally, a fuzzer
should be able to generate a variety of different inputs that lead to the execution
of different paths in the tested solver. The majority of the generated instances
should be easy to solve in order to maintain a sufficiently high test throughput.
The combination of automation, diversity and high throughput makes fuzz test-
ing an effective negative testing technique. Our experiments in section 2.3 show
that this technique can be successfully applied to SAT and QBF solvers.

In the following we describe our novel fuzzing techniques for SAT and QBF
solvers, implemented in our fuzzers CNFuzz, FuzzSAT and QBFuzz. Due to the
probabilistic nature of fuzzing, our fuzzers use magic constants found through
direct experimentation. All fuzzing approaches use a random number generator.
We assume that picks during fuzzing are performed uniformly at random.

2.1 SAT Fuzzing

3SATGen Easy to solve instances do not exercise solvers enough. Therefore,
it is unlikely to find interesting defects with easy instances alone. However, as
research [22] on the phase transition in random 3-SAT suggests, it is straight-
forward to write a random CNF generator that generates reasonable hard in-
stances. In our view, this is an important application of [22].



Our 3SAT generator 3SATGen is based on this technique and works as follows.
First, the number of variablesm is picked, typically between 10 and 400 variables.
The next step is to determine a clause variable ratio r, which should be around
the hardness threshold, typically between 3 and 5. Finally, m · r random ternary
clauses are generated, where each literal is picked uniformly.

CNFuzz Random 3-SAT formulas are lacking structure. However, the success
of SAT solvers in industry seems to rely on their ability to use structure, at least
implicitly, even though we do not actually know how to describe this connection
in a more formal way. This rather vague argument implies that 3SAT does not
exercise all the interesting features of an industrial SAT solver. Therefore, we
were looking for other ways to generate ”more structured“ instances. Our fuzzer
CNFuzz enforces certain locality restrictions and thus generates instances that
contain more internal structure than the simple 3SAT approach.

The CNF generated by CNFuzz consists of l ∈ [1, 20] layers of maximum width
w ∈ [10, 70]. Both numbers are picked randomly within these ranges. The i-th
layer with i ∈ [1, l] introduces ni ∈ [10, w] new variables, again chosen randomly.
Each layer is associated with a separately ”picked-clause-variable-ratio“ ri ∈
[3, 4.5] from which the number ci = riwi of clauses in layer i is calculated. Clauses
are at least ternary, and with exponentially decreasing probability longer: 2/3
are expected to be ternary, 1/3 · 2/3 of length 4, (1/3)2 · 2/3 of length 5, etc.
Variables are picked either from the same or from smaller layers. The layer from
which a variable is picked is determined in a similar way as the length of clauses.
A variable from layer i is picked with probability 1/2, from layer i − 1 with
probability 1/4, from layer i − 2 with probability 1/8, etc., down to the first
layer, which accumulates the remaining probabilities. As a further refinement of
the iterative clause generation process, variables that have not been selected are
preferred within the same layer.

FuzzSAT The even more structured approach of FuzzSAT is based on the trans-
lation of boolean circuits into CNF. To be more precise, a directed acyclic graph
(DAG) representation of a random boolean circuit is generated. The generated
DAG is converted into CNF by using the Tseitin transformation [47] afterwards.

The boolean circuit DAG is constructed as follows. First, v ∈ [1, 100] boolean
input nodes are generated and inserted into a global set n, which is a container for
all nodes generated during the construction process. Then, in the core routine
of our DAG generation approach, we randomly select a boolean operator op
from the set of operators O ={AND, OR, XOR, IFF}. Moreover, we select two
operands o1 and o2 from n, negate each operand with probability 1/2, generate
the new operator node, and insert it into n. This process is repeated until each
original input variable is referenced at least t times, where t is usually 1.

Then, we take the set r of all boolean roots, i.e. generated operators that
are not referenced by other operators, and combine them to one boolean root
as follows. We select a boolean operator op from O, select two operands r1 and
r2 from r, negate each of them with probability 1/2, remove r1 and r2 from r,



generate the new root, and insert it into r. This process is repeated until there
is only one root left. Then, we perform the Tseitin transformation on this root.

Let c be the number of clauses generated so far and let p be a probability
∈ [0.01, 0.1]. Finally, c · p random clauses of varying size s ∈ [2, 6] are added to
the CNF in order to increase diversity. The size of the additional random clauses
is picked for each clause individually.

2.2 QBF Fuzzing

A quantified boolean formula (QBF) F = B1 . . . Bn. φ in prenex conjunctive
normal form (PCNF) consists of a propositional formula φ in CNF over a set of
variables V and a quantifier prefix B1 . . . Bn. The quantifier prefix is a linearly
ordered set of blocks Bi where B1 < . . . < Bn, forming a partition on V .

A block Bi is existential (q(Bi) = ∃) if it is associated with an existential
quantifier and universal (q(Bi) = ∀) otherwise. For two adjacent blocks Bi and
Bi+1 where 1 ≤ i < n, q(Bi) 6= q(Bi+1).

A clause C is forall-reduced [12] if for every literal l ∈ C with l ∈ Bi and
q(Bi) = ∀ there is a literal k ∈ C with k ∈ Bj and q(Bj) = ∃ and i < k.

In the following we describe two different approaches for QBF fuzz testing.
All generated formulas are in PCNF and contain forall-reduced clauses only.

Random QBF model We have implemented a QBF fuzzer BlocksQBF which
generates random QBFs in PCNF according to the model described in [14]. This
model is an extension of an approach originally introduced in [13], which was
further improved in [23].

The model [14] used in our fuzzer has the following parameters: the number
of clauses nc, the number of quantifier blocks nb in the prefix B1 . . . Bnb

, the
number of variables nv,1, . . . , nv,i, . . . , nv,nb

in each block Bi for 1 ≤ i ≤ nb and
the number of literals nl,1, . . . , nl,i, . . . , nl,nb

taken from a block Bi to appear in
each clause, where nl,i ≤ nv,i for 1 ≤ i ≤ nb. By convention, always q(Bnb

) = ∃,
i.e. all clauses are forall-reduced by construction and have the same length.

We generate exactly nc distinct clauses one after the other as follows. From
each block Bi for 1 ≤ i ≤ nb we select and negate exactly nl,i literals where nl,i ≤
nv,i. Different from the description given in [14], complementary or duplicate
literals in a clause are always discarded until a new literal is generated which
can be added to the clause. This is possible as we never add more literals from
a block Bi than there are variables in Bi (since nl,i ≤ nv,i for 1 ≤ i ≤ nb).

Newly generated clauses are added to the formula only if there is no dupli-
cate clause already present. Otherwise the new clause is discarded and another
attempt is carried out. This process continues until exactly nc distinct clauses
are generated, which is different from [14]. For improper parameter settings such
as big nc and very small nv,i it can be impossible to generate exactly nc distinct
clauses, but this was avoided in our experiments, where we used the following
settings: nc = 160, nb = 3 (i.e. quantifier prefix ∃∀∃), block sizes nv,1 = 15,
nv,2 = 10, nv,3 = 25 and nl,1 = nl,2 = 2, nl,3 = 1 literals taken from each block.



QBFuzz The second QBF fuzzer QBFuzz we used in our experiments generates
QBFs in PCNF which do not follow an exact model such as [13,23,14], leading
to a higher diversity. The following parameters are maximum values: number of
clauses nc, number of variables nv and number of blocks nb. Further, minimum
min and maximum number max of literals in a clause and the ratio r ∈ [0, 1] of
existential variables in the formulas and in each clause is specified.

Formulas according to the given setting are generated as follows: first a quan-
tifier prefix is selected according to values of nb, nv and r, where the number
of variables per block is selected at random. Next nc clauses are generated of
length len ∈ [min,max ] and each containing r.len existential variables. Different
from BlocksQBF, literals are selected from any block and are negated uniformly
at random. As described above, duplicate and complementary literals are dis-
carded. After generated clauses have been forall-reduced, duplicate clauses and
unused variables are removed from the formula. We used the following settings
in our experiments: nc = 80, nv = 40, nb = 15, min = 5, max = 15 and r = 0.4.

2.3 Experiments

In order to evaluate our fuzzing techniques, we performed fuzz testing experi-
ments with a selected subset of complete SAT solvers that participated in the
SAT competition 2007 and 2009. Moreover, we fuzz tested several state-of-the-
art QBF solvers. We ran our experiments under Ubuntu Linux on an Intel Core
2 Quad machine with 2.66 GHz and 8 GB RAM. Our fuzzing test framework
used each of the four cores. The results of our fuzzing experiments with SAT
solvers are shown in Tab. 1 and Tab. 2. The QBF results are shown in Tab. 3.

The results of our fuzz testing experiments with SAT solvers in Tab. 1 and
Tab. 2 clearly show the overall effectiveness of our fuzz testing techniques. We
were able to find serious defects such as segmentation faults, aborts, assertion
failures, invalid models and incorrect results. We classified the defects into the
following categories. Unexpected termination without providing a result was
classified as an error. Cases where solvers reported an incorrect satisfiability
status, i.e. a solver reported that an instance is unsatisfiable although the in-
stance is provably satisfiable, were classified as incorrect. Finally, providing the
correct satisfiability status but an invalid satisfying assignment was classified as
invalid model, labeled model in tables Tab. 1 and Tab. 2. Notice that multiple
observable failures may be caused by the same solver defect.

We used our tool PrecoCheck to validate models. Cases where we could not
fully decide which satisfiability status is correct, e.g. some solvers claim that the
instance is unsatisfiable and some others claim that instance is satisfiable, but
provide an invalid model, did not occur. If all solvers agreed that the current
instance is unsatisfiable, we did not further validate the unsatisfiability status
as it is highly unlikely that all solvers are wrong.

We were able to find six defective solvers that participated in the SAT com-
petition 2007. Notice that we did not test all solvers. We selected only a subset
of the most competitive complete SAT solvers in order to demonstrate the effec-
tiveness of our fuzzing techniques. Moreover, in order to keep our set of solvers



small, we did not test incomplete and portfolio-based solvers. Notice that our
fuzz testing and delta debugging techniques can be applied to any kind of solver.

Five of the six SAT competition 2007 solvers shown in Tab. 1 have defects that
lead to incorrect results, which we consider as the worst case that can happen.
Incorrect results reported by the multi-threaded SAT solver MiraXTv3 are non-
deterministic. Depending on the thread scheduling and the actual utilization
of the individual processing cores, MiraXTv3 either reports that an instance is
satisfiable or unsatisfiable. Moreover, our fuzzers detected that two SAT solvers
generate invalid models. Notice that RSat respectively PicoSAT, were ranked
first respectively second in the industrial category (satisfiable and unsatisfiable
instances). Moreover, notice that March ks was the second best solver in the
random category (satisfiable and unsatisfiable instances).

Our fuzzing techniques were able to find three defective solvers that partic-
ipated in the SAT competition 2009. We found critical defects causing segmen-
tation faults in MiniSat-9z, the winner of the MiniSat hack track. Moreover, we
found non-deterministic crashes in ManySat, which was the winner of the paral-
lel solver application track. Finally, our fuzzer FuzzSAT was able to reveal that
Mirch hi, second best solver (SAT + UNSAT) and best solver (UNSAT) in the
random track, sometimes generates invalid models.

None of the fuzzing techniques is clearly superior to the others, except that
CNFuzz and FuzzSAT were able to find more varying defects as the simple 3SAT
generator 3SATGen. The restriction to 3SAT CNF instances may miss failures
that occur if the input contains clauses of arbitrary size. Nevertheless, the 3SAT
generator was still able to find defects in three of the six solvers, which is rather
surprising as SAT solvers are typically tested with 3SAT instances. Interestingly,
while CNFuzz was the only fuzzer that found defects in Barcelogic-fixed and
incorrect results of Barcelogic, FuzzSAT was the only fuzzer that was able to
generate instances on which PicoSAT reports an incorrect satisfiability status.
Moreover, the Barcelogic errors found by CNFuzz and FuzzSAT are different.
Additionally, FuzzSAT was able to find an assertion failure of March ks, which the
other fuzzers were not able find. Our experimental results suggest that a portfolio
of fuzzers should be used in order to find different solver defects. Notice that we
listed the defects that each of our fuzzers were able to find in only one hour,
which shows the impressing effectiveness of fuzz testing. Moreover, a portfolio of
fuzzers could be run on a cluster for days or even weeks, which would strongly
increase the probability of finding defects that could not be found so far.

The fuzz testing results for QBF solvers listed in Tab. 3 shows that also our
QBF fuzzing techniques were able to find many critical defects in state-of-the-art
QBF solvers. As validating QBF solver results is much harder than validating
SAT solvers, we used a majority voting in order to determine the correct result.
If at least 90% of the QBF solvers agreed on the satisfiability status, then all
solvers reporting the opposite were classified as incorrect.

Our QBF fuzzer QBFuzz is clearly superior to the QBF generator BlocksQBF.
The higher diversity of instances generated by QBFuzz enabled finding defects
that BlocksQBF was not able to detect.



Table 1. Experimental results of fuzz testing SAT solvers from SAT competition 2007.
The 3SAT generator 3SATGen and our fuzzers CNFuzz and FuzzSAT generated 10000
CNF instances, respectively. We fuzz tested Barcelogic [9] and Barcelogic-fixed [9],
CMUSAT [30], March ks [26], MiniSat [18], MiraXTv3 [34], MXC [10], PicoSAT [7],
RSat [41], Sat7 [32], SAT4J [4], Spear [2] and Tinisat [29]. All solver binaries were
taken from the SAT competition 2007. Only solvers for which defects have been found
are shown in the table. The testing time was about two hours for the 3SAT generator
and FuzzSAT, respectively, and one hour for CNFuzz. For each solver and each CNF
instance a time limit of thirty seconds was used.

3SATGen CNFuzz FuzzSAT

solver error incorrect model error incorrect model error incorrect model

Barcelogic 0 0 0 1 3 1 1 0 1
Barcelogic-fixed 0 0 0 0 1 1 0 0 0
March ks 24 2 0 5 0 0 2 2 0
MiraXTv3 26 7 0 91 13 0 286 2 0
PicoSAT 0 0 0 0 0 0 0 2 0
RSat 56 0 0 27 0 0 3 0 0

Table 2. Experimental results of fuzz testing SAT solvers from SAT competition
2009. The 3SAT generator 3SATGen and our fuzzers CNFuzz and FuzzSAT generated
10000 CNF instances, respectively. We fuzz tested CirCUs [5], Clasp [20], Cumr p [5],
Glucose [5], LySATi [5], ManySAT [25], March hi [26], MiniSat [18], MiniSat-9z [5],
MXC [5], PicoSAT [7], PrecoSAT [5], RSat [5], SApperloT-base [5], SAT4J [4] and
Varsat-industrial [28]. All solvers binaries were taken from the SAT competition 2009.
Only solvers for which defects have been found are shown in the table. No discrepancies
were found, i.e. all solvers agreed on the satisfiability status of each CNF instance. The
testing time was about two hours for the 3SAT generator, three hours for FuzzSAT and
one hour and thirty minutes for CNFuzz. For each solver and each instance a time limit
of thirty seconds was used.

3SATGen CNFuzz FuzzSAT

solver error model error model error model

ManySat 2 0 56 0 836 0
March hi 0 0 0 0 0 24
MiniSat-9z 2 0 58 0 852 0



Table 3. Experimental results of fuzz testing QBF solvers with BlocksQBF and QBFuzz.
Both generated 10000 CNF instances, respectively. We fuzz tested an internal version
of DepQBF [35], MiniQBF-090608 [43], QMRES [39], Quantor-3.0 [6], QuBE6.0 [24],
QuBE6.5 [24], QuBE6.6 [24], Semprop-010604 [33], sKizzo-0.8.2 [3], SQBF-1.0 [44],
Squolem-1.03 [31] and yQuaffle-021006 [53]. The fuzz testing time was one hour and
fifteen minutes for QBFuzz and one hour and twenty minutes for BlocksQBF. Only
solvers for which defects have been found are shown in the table. For each solver and
each instance a time limit of thirty seconds was used.

BlocksQBF QBFuzz

solver error incorrect error incorrect

Quantor 0 0 1 0
QuBE 6.0 0 684 5 7
QuBE 6.5 0 0 4 0
sKizzo 0 0 2 29
SQBF 0 0 35 0
yQuaffle 0 0 94 0

3 Delta Debugging

The overall goal of delta debugging [51,50,15,37] is to minimize failure-inducing
inputs. Typically, minimized inputs simplify the debugging process as irrelevant
input parts have been removed. In principle, delta debugging SAT and QBF
solvers works as follows. First, the delta debugger runs the solver on the origi-
nal failure-inducing input in order to observe the failure induced by the original
input, e.g. the solver crashes or reports an incorrect satisfiability status. Then,
the delta debugger repeatedly tries to simplify the failure-inducing input. After
each simplification, the delta debugger runs the solver on the simplified input.
If the solver shows the same observable behavior, the delta debugger treats the
simplification as success and continues simplifying the reduced input. Otherwise,
the delta debugger undoes the last simplification, and continues with other sim-
plifications. The delta debugger repeats this process until a given time limit or
fix-point is reached.

In general, it is not guaranteed that delta debugging generates a minimal
failure-inducing input. However, this feature is rarely needed in practice. Instead,
greedy minimization techniques are used to simplify the input as much and as
fast as possible in order to generate a small failure-inducing input that can be
used for effective debugging. In the following we present our delta debugging
techniques for SAT and QBF.

3.1 SAT Delta Debugging

Our first CNF delta-debugger cnfdd is based on a variant of the algorithm de-
scribed in [50]. With increasing granularity it iteratively tries to remove subsets
of the whole clause set, without changing the exit code of the solver on the



reduced formula. Eventually the delta-debugger will try to remove individual
clauses. Thus cnfdd applied to solving an unsatisfiable instance, using a sound
SAT solver of course, simply simulates a binary search for minimal unsatisfiable
cores. In contrast to [50], complements of subsets are not considered to be re-
moved, and cnfdd is also not restarted after a successful removal of a subset
of clauses. This makes cnfdd greedier than the original DDMIN approach [51].
These changes lead to a reduction of the actual number of calls to the SAT solver
during delta debugging, leading to improved performance.

However, and this is a key insight, only removing clauses, will just make the
formula easier to satisfy. This will rarely lead to sufficient overall reduction. It is
essential, to also strengthen the formula, of course without removing the failure.
Our current version tries to remove individual literal occurrences, which is rather
costly and an opportunity for future improvement. After this phase of removing
individual literals, and if at least one literal was removed, the delta debugger
tries to reduce the variable range, and the whole procedure is restarted.

There is also a multi-threaded version mtcnfdd which tries to remove clauses
and literals in parallel. In the clause removal phase all sets of clauses of the
current granularity are split into as many parts as threads are available. Each
thread checks in parallel whether some subsets of the clauses of its part can
be removed. For the clause removal phase, the worker threads are synchronized
after all subsets of the current granularity have been tried. Successful removals
are merged sequentially by the master thread, starting with the local view of
a thread that was able to remove the largest number of clauses. In the literal
removal phase, which is far less frequently successful than clause removal, clauses
are split among the threads as well. Successful literal removal attempts will be
tried to be merged immediately. They become permanent if the attempt of a
worker thread to merge its reduced local view with the global view succeeded.
Otherwise the global view takes precedence and is copied as local view.

3.2 QBF Delta Debugging

Our tool qbfdd is a highly configurable delta debugger for QBF instances in
PCNF. It supports different variants of delta debugging strategies such as the
original DDMIN [51] approach (default), DDMIN with complements only [50],
and a simple strategy based on one-by-one elimination. Similar to cnfdd, it tries
to remove subsets of the whole clause set. Then, it tries to remove individual
literals. Optionally, it can move variables between quantifier sets, which may en-
able further simplifications. If any simplification was possible, the delta debugger
continues with a new simplification round, and terminates otherwise.

3.3 Experiments

We ran our experiments on the same hardware as our fuzzing experiments. The
results of our delta debugging experiments for SAT solvers are shown in Tab. 4.



The experimental results clearly show the overall effectiveness of our delta de-
bugging techniques in shrinking failure-inducing CNF instances. With the ex-
ception of RSat, our delta debugger could eliminate huge parts of the original
failure-inducing parts. In the case of PicoSAT the delta debugger was able to
shrink the original failure-inducing CNF instances containing more than one
thousand clauses to a tiny CNF with only a few clauses as shown in Fig. 1. The
defects found for RSat, which are aborts and segmentation faults, could not be
minimized significantly. This in contrast to delta debugging crash-inducing in-
stances of other solvers. For instance, segmentation faults for MiniSat-9z could
be delta debugged efficiently with an average reduction of 98.8%. Therefore, we
suppose that the defects of RSat are non-trivial and cannot be triggered by a
small CNF easily. For example, the failures could need a minimum number of
unit propagations in order to occur.

During our experimental evaluation we observed that RSat and March hi
sometimes needed an unexpected long time (several hours) to solve instances
generated during delta debugging. For instance, March hi generated an invalid
solution for the original failure-inducing instance almost immediately, but it
needed hours to solve simplified instances proposed by the delta debugger. In
order to speed up delta debugging, we used a time limit as proposed in [11]. We
used a time limit of ten seconds to each call to Rsat and March hi during delta
debugging. If the solver exceeds the limit the delta debugger simply treats this
case as if the current failure-inducing input does not lead to the same observable
failure as the original input, i.e. the current simplification was not successful.

Our multi-threaded delta debugger mtcnfdd clearly outperforms our single-
threaded delta debugger cnfdd. It is significantly faster on the failure-inducing
instances of Barcelogic, Barcelogic-fixed, March hi and RSat. Moreover, mtcnfdd
tends to generate smaller instances than cnfdd.

Notice that we did not show experimental results of delta debugging failure-
inducing inputs for ManySAT and MiraXTv3 as they showed non-deterministic
behavior. For instance, MiraXTv3 reported different satisfiability results when
all four cores of our computer were utilized. Due to space constraints we omit
our preliminary results on delta debugging non-deterministic solvers.

In order to delta debug incorrect results, we used MiniSAT from SAT com-
petition 2009 for SAT and Qube6.6 for QBF as reference solvers. The delta
debugger calls a wrapper script instead of calling the incorrect solver directly.
The script calls the reference solver and the incorrect solver on the current in-
stance proposed by the delta debugger. If both solver agree on the satisfiability
status, the script returns 1, and 0 otherwise. The possibility of calling scripts
instead of solvers directly makes our delta debuggers highly flexible. Optionally,
satisfiability results could be validated with techniques as proposed in [21,52].

In order to illustrate the success of our delta debuggers, we show some se-
lected examples of minimized instances in Fig. 1. PicoSAT from SAT competition
2007 prints the solution 1 2 3 -4 for the first instance shown left, although it
is obviously unsatisfiable. March ks from SAT competition 2007 prints the so-
lution 1 2 3 for the second unsatisfiable example. Moreover, it claims that the



Table 4. Experimental results of delta debugging SAT solvers from SAT competition
2007 and 2009. We evaluated our single-threaded delta debugger cnfdd and our multi-
threaded delta debugger mtcnfdd, configured to use six threads. From left to right, the
table shows the solver name (solver), the number of failure-inducing files (files), the
number of bug classes (classes), the average delta debugging time (time) in seconds,
the average file size (size) of the reduced instances in bytes and the average file size
reduction (red) achieved by the delta debugger. Notice that the delta debugging time
includes the time needed for the solver calls. We used a time limit of three hours for
delta debugging each CNF instance. The delta debugger cnfdd exceeded this time limit
three times (one instance of march hi and two instances of RSat). The multi-threaded
delta debugger mtcnfdd exceeded the time limit two times (the same RSat instances
as cnfdd). Moreover, we used a time limit of ten seconds for each call to RSat and
March hi during delta debugging.

cnfdd mtcnfdd

solver files classes time size red time size red

Barcelogic 7 4 39 432 95.8% 20 378 96.4%
Barcelogic-fixed 2 2 41 361 99.0% 29 360 99.0%
March hi 24 1 638 1982 88.4% 277 2507 85.4%
March ks 35 3 4 147 97.8% 3 130 98.0%
MiniSat-9z 912 1 <1 10 98.8% <1 10 98.8%
PicoSAT 2 1 2 39 99.8% 2 40 99.8%
RSat 86 2 1478 17068 32.5% 762 16971 32.9%

solution has been verified, which shows the demand for external checking tools
such as [52] for the unsatisfiable case. The QBF solver yQuaffle aborts with an
assertion failure when run on the third instance. QuBE 6.0 claims that the fourth
instance (shown right) is satisfiable although it contains a universal unit clause.

c Picosat07 c March_ks07 c yQuaffle09 c QuBE6.0

p cnf 4 4 p cnf 3 5 p cnf 1 2 p cnf 2 2

-2 -1 0 1 0 e 1 a 1 0

-2 1 0 2 -1 -3 0 1 0 e 2 0

2 0 -2 -1 3 0 -1 0 2 0

-3 -4 0 -3 -2 0 1 0

3 2 0

Fig. 1. Examples of delta debugged failure-inducing inputs for SAT and QBF.

3.4 Related Work

The work most closely related is [11]. The authors showed that fuzz testing and
delta debugging techniques can be successfully applied to Satisfiability Modulo
Theories (SMT) solvers. In this paper, we introduce techniques that have been



Table 5. Experimental results of delta debugging QBF solvers. The columns have the
same meaning as in Tab. 4. The delta debugging time includes the time needed for the
solver calls. In order to effectively delta debug failure-inducing inputs on which SQBF
crashed almost immediately, we used a time limit of two seconds for each call to SQBF
during delta debugging.

qbfdd

solver files classes time size red

Quantor 1 1 35 446 83.0%
QuBE 6.0 696 2 150 33 99.0%
QuBE 6.5 4 1 84 363 83.8%
sKizzo 31 2 330 497 76.2%
SQBF 35 1 57 289 86.7%
yQuaffle 94 1 26 31 98.8%

explicitly designed and optimized for pure SAT and QBF. The SMT-LIB for-
mat [42] is much more complex than the DIMACS and QDIMACS format as it
supports specifying formulas in several fragments of first order logic. However, in
contrast to the flat CNF in SAT and QBF instances, the structural information
in SMT-LIB instances can be used to apply Hierarchical Delta Debugging [37]
(HDD), which is hardly possible in SAT as hierarchical information is typically
lost during the translation to CNF.

Freeman mentions in his thesis [19] that he uses a 3SAT generator to test
his SAT solver. However, to the best of our knowledge, there does not exist any
rigorous scientific publication about automated testing and debugging SAT and
QBF solvers. Nevertheless, there are a few publications that treat the problem
of validating solvers. For instance, in [21,52,49] the authors instrument DPLL-
based [17] solvers in order to verify unsatisfiability claims by checking traces.
Recent work focuses on QBF solver validation with the help of certificates [38,31].

4 Conclusion

Essential criteria of SAT and QBF solvers are robustness and correctness. We
have demonstrated that our fuzzing techniques were able to find critical defects
that lead to crashes, incorrect results and invalid models in state-of-the-art SAT
and QBF solvers. In particular, our fuzzers detected critical defects in top-ranked
solvers at the SAT competition 2007 and 2009. Therefore, we propose to use fuzz
testing in an extra qualification phase in SAT and QBF competitions in order
to increase the reliability of competition results. Moreover, we showed that our
delta debugging techniques are very effective in minimizing failure-inducing in-
puts for SAT and QBF solvers. All tools are available as open source and provide
support for automated testing and debugging of SAT and QBF solvers.
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31. T. Jussila, A. Biere, C. Sinz, D. Kröning, and C. Wintersteiger. A First Step
Towards a Unified Proof Checker for QBF. In SAT, 2007.

32. C. Kern, M. Khaleghi, S. Kugele, C. Schallhart, M. Tautschnig, and A. Weis. SAT
7 - Engineering a Modular SAT-Solver, 2007. SAT competition solver description.

33. R. Letz. Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas. In TABLEAUX, 2002.

34. M. Lewis, T. Schubert, and B. Becker. Multithreaded SAT Solving. In Asia and
South Pacific DAC, 2007.

35. F. Lonsing. DepQBF 0.1 Source Code, 2010. http://fmv.jku.at/depqbf/.
36. B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy, A.Natarajan, and J. Steidl.

Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and Services.
Technical Report CS-TR-1995-1268, University of Wisconsin, Madison, 1995.

37. G. Misherghi and Z. Su. HDD: Hierarchical Delta Debugging. In ICSE, pages
142–151. ACM, 2006.

38. M. Narizzano, C. Peschiera, L. Pulina, and A. Tacchella. Evaluating and Certifying
QBFs: A Comparison of State-of-the-Art Tools. AI Commun., 22, 2009.

39. G. Pan and M. Vardi. Symbolic Decision Procedures for QBF. In CP, 2004.
40. D. Pennock and Q. Stout. Exploiting a Theory of Phase Transitions in Three-

Satisfiability Problems. In AAAI/IAAI, Vol. 1, 1996.
41. K. Pipatsrisawat and A. Darwiche. RSat 2.0: SAT Solver Description. Technical

Report D–153, Automated Reasoning Group, CSD, UCLA, 2007.
42. S. Ranise and C. Tinelli. The SMT-LIB Standard: Version 1.2. Technical report,

Department of Computer Science, The University of Iowa, 2006.
43. H. Samulowitz. MiniQBF Solver, 2010. http://miniqbf.spaces.live.com/.
44. H. Samulowitz and F. Bacchus. Using SAT in QBF. In CP, 2005.
45. M. Sutton, A. Greene, and P. Amini. Fuzzing - Brute Force Vulnerability Discovery.

Pearson Ed., 2007.
46. A. Takanen, J. Demott, and C. Miller. Fuzzing for Software Security Testing and

Quality Assurance. Artech House, 2008.
47. G. Tseitin. On the Complexity of Proofs in Propositional Logics. Automation of

Reasoning: Classical Papers in Computational Logic 1967-1970, 2, 1983.
48. K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. A Simple Model to Generate

Hard Satisfiable Instances. CoRR, abs/cs/0509032, 2005.
49. Y. Yu and S. Malik. Validating the Result of a Quantified Boolean Formula (QBF)

Solver: Theory and Practice. In Asia and South Pacific DAC, 2005.
50. A. Zeller. Why Programs Fail. A Guide to Systematic Debugging. Morgan Kauf-

mann, 2005.
51. A. Zeller and R. Hildebrandt. Simplifying and Isolating Failure-Inducing Input.

IEEE Transactions on Software Engineering, 28(2):183–200, 2002.
52. L. Zhang and S. Malik. Validating SAT Solvers Using an Independent Resolution-

Based Checker: Practical Implementations and Other Applications. In DATE’03.
53. L. Zhang and S. Malik. Towards Symmetric Treatment of Conflicts And Satisfac-

tion in Quantified Boolean Satisfiability Solver. In CP, 2002.


