

A Metamodel for Software Requirement Patterns†

Xavier Franch
1
, Cristina Palomares

1
, Carme Quer

1
, Samuel Renault

2
, François De Lazzer

2

1Universitat Politècnica de Catalunya (UPC)

UPC – Campus Nord, Omega building, 08034 Barcelona (Spain)

{franch | cpalomares | cquer}@essi.upc.edu
2CITI, CRP Henri Tudor

29 avenue John F Kennedy, Luxembourg (Luxembourg)

{samuel.renault | francois.delazzer}@tudor.lu

Abstract. [Context and motivation] Software Requirement Patterns (SRP) are

a type of artifact that may be used during requirements elicitation that also

impact positively in other activities like documentation and validation. In our

experiences, SRP show a great percentage of reuse for the non-functional

requirements needed in call-for-tender requirement specifications. [Question /

problem] We are facing the need of formulating the accurate definition of SRP

for their use in call-for-tender processes to allow reasoning rigorously and

know more about their semantics and applicability. [Principal ideas / results]

In this paper we present a metamodel for SRP around three main concepts: 1)

the structure of SRP themselves; 2) the relationships among them; 3) the

classification criteria for grouping them. [Contribution] We provide a rigorous

definition that shows the concepts that are of interest when defining and

applying SRP.

Keywords: software requirement patterns, requirements reuse, metamodel.

1 Introduction

Reuse is a fundamental activity in all software development related processes. Of

course, requirements engineering is not an exception to this rule [1]. The reuse of

software requirements may help requirement engineers to elicit, validate and

document software requirements and as a consequence, obtain software requirement

specifications of better quality both in contents and syntax [2].

There are many approaches to reuse. Among them, patterns hold a prominent

position. According to their most classical definition, each pattern describes a

problem which occurs over and over again, and then describes the core of the solution

to that problem, in such a way that it can be used a million times over, without ever

doing it the same way twice [3]. Software engineers have adopted the notion of

pattern in several contexts, remarkably related with software design (e.g., software

design and architectural patterns), but also in other development phases, both earlier

† This work has been partially supported by the Spanish project TIN2007-64753.

2 Xavier Franch, Cristina Palomares, Carme Quer, Samuel Renault, François De Lazzer

and later. We are interested in the use of patterns for the software analysis stage,

namely Software Requirement Patterns (SRP).

As [4] shows, there are not much proposals for SRP in the literature, in fact their

exhaustive review lists just 4 catalogues out of 131, compared to 47 design catalogues

and 39 architecture catalogues. Our own literature review has found some more

approaches but still this unbalance is kept. The existing approaches differ in criteria

like the scope of the approach, the formalism used to write the patterns, the intended

main use of patterns and the existence of an explicit metamodel. Table 1 shows the

classification of these approaches with respect to the mentioned criteria. In the last

row we describe our own method as general-purpose, representing patterns in natural

language, aiming at writing sofware requirements specifications (SRS) and

metamodel-based.

About the two approaches that propose a metamodel, [8] focus on reuse of semi-

formal models (e.g., UML class diagrams and sequence diagrams), thus the kind of

concepts managed are quite different. Concerning [6], their focus is on variability

modeling for handling the different relationships that requirements may have. From

this point of view, it is a very powerful approach, but other aspects that we will tackle

here, like the existence of different forms that a pattern may take, or multiple

classification criteria, are not present in their metamodel.

Table 1. Comparison of approaches to software requirement patterns.

 Scope Notation Application Metamodel?

[5] General purpose Natural language Req. elicitation Just templates

[6] General purpose Object models Variability modeling Yes

[7] Business applications Event-Use case Identify patterns No

[8] General purpose Semi-formal models Writing req. models Yes

[9] Embedded systems Logic-based From informal to formal reqs. No

[10] Security requirements UML class diagrams Security goals elicitation No

[11] Security requirements Natural language Req. elicitation in SOC No

[12] General purpose Natural language Writing SRS Just template

[13] General purpose Problem frames + i* Knowledge management No

Ours General purpose Natural language Writing SRSs Yes

The idea of using SRP for reusing knowledge acquired during this stage arose from

the work of the CITI department of the Centre de Recherche Publique Henri Tudor

(CRPHT) on helping SME with no background in requirements engineering to handle

requirements analysis activities and to design SRS in order to conduct call-for-tender

processes for selecting Off-The-Shelf (OTS) solutions [14]. More than 40 projects ran

successfully following the CITI methodology, but the only technique of reuse they

applied was starting a new project by editing the most similar requirement book.

These techniques demonstrated their weaknesses especially in relation to mobility of

IT experts and consultants. It became necessary to provide better means to capitalize

requirements in a high-level manner by creating reusable artifacts like patterns,

supporting consultants’ need of creating new SRS.

As a response to this need, we built an SRP catalogue with 29 patterns. The

patterns were all about non-functional requirements since this type of requirements

are the less sensitive to changes in the problem domain. The research method used to

build this catalogue and the underlying metamodel was based on the study of SRS

A Metamodel for Software Requirement Patterns 3

from 7 call-for-tender real projects conducted by CITI; experts’ knowledge, being

these experts: IT consultants, CITI facilitators and UPC researchers; background on

requirements engineering literature and especially on requirement patterns. We

undertook then a first validation in two real projects. In this paper we focus on the

metamodel, that is, the structure of our proposed SRPs and its classification to

facilitate the selection of patterns. The PABRE process of application of SRP in the

context of CITI and the validation of our current SRP catalogue have been described

in [15], therefore neither the process nor the catalogue’s content are part of the

objectives of this paper.

2 Structure of a Requirement Pattern

The first fundamental question to answer is what the structure of a SRP is. Figure 1

shows an example of SRP that illustrates the most significant components. Note the

statement of the goal as a kind of problem-statement of the pattern; goals play a

crucial part in the PABRE method built on top of these patterns [15]. SRP metadata

(e.g., description, author) are not included for the sake of brevity.

Requirement Pattern Failure Alerts

Goal Satisfy the customer need of having a system that provides alerts when system failures occur

Template
The system shall trigger different types of alerts depending

on the type of failure
Fixed Part

Extended Parts

Constraint
multiplicity(Alerts for Failure Types) = 0..*

Template
The system shall trigger %alerts% alerts in case of

%failures% failures

Parameter Metric

alerts: non-empty set

of alert types

alerts: Set(AlertType)

AlertType: Domain of possible types of alerts

Requirement

Form

Heterogeneous

Failure Alerts

Extended

Part

Alerts for

Failure Types

 failures: non-empty

set of failure types

failures: Set(FailureType)

FailureType: Domain of possible types of failures

Template The system shall trigger an alert in case of failure.

Fixed Part Extended Parts

Constraint

multiplicity(AlertsTypes) = 0..1 and

multiplicity(Failure Types) = 0..1

Template The solution shall trigger %alerts% alerts in case of failure
Parameter Metric Extended Part

Alert Types alerts: non-empty set

of alert types

alerts: Set(AlertType)

AlertType: Domain of possible types of alerts

Template The system shall trigger alerts in case of %failures% failures
Parameter Metric

Requirement

Form

Homogeneous

Failure Alerts

Extended Part

Failure Types failures: non-empty

set of failure types

failures: Set(FailureType)

FailureType: Domain of possible types of failures

Fig. 1. An example of software requirement pattern (parameters appear among ‘%’)

4 Xavier Franch, Cristina Palomares, Carme Quer, Samuel Renault, François De Lazzer

Figure 2 shows the metamodel for SRP. It represents the metaclasses for the basic

concepts that appear in the example above and others introduced later. We may

observe that the concept represented by a Requirement Pattern may take different

Pattern Forms. Each form is applicable in a particular context, i.e. it is the most

appropriate form to achieve the pattern’s goal in a particular type of software project.

In the example of Fig. 1, the second form is more adequate if the types of alerts that

the client wants in the system will be the same for all types of failures, if not the first

form must be applied. Applying a SRP, then, means choosing and applying the most

suitable form.

At its turn, each form has a Fixed Part that characterizes it which is always applied

if the form is selected, together with zero or more Extended Parts that are optional

and help customizing the SRP in the particular project. In general, extended parts

must conform to some Constraint represented by means of a formula over some

predefined operators (e.g., for declaring multiplicities or dependencies among

extended parts, as excludes, requires). For instance, in the example we may see that

the first form allows repeated application of its single extended part, whilst the second

form allows one application at most of each of its extended parts (since in this form it

has not sense to state more than once the types of alerts and failures).

Both fixed and extended parts are atomic Pattern Items that cannot be further

decomposed. Each pattern item contains a template with the text that finally appears

in the SRS when applied. In this text, some variable information in the form of

Parameters may (and usually, do) appear. Parameters establish their Metric,

eventually a correctness condition inv, and also may be related to other parameters

(belonging to other patterns) such that they must have the same value; an example is

the parameter failures that also appears in some form of other SRP in the catalogue,

namely the pattern Recovery Procedures.

Fig. 2. The metamodel for software requirement patterns.

A Metamodel for Software Requirement Patterns 5

SRPs are not isolated units of knowledge, instead there are several types of

relationships among them. For instance, Withall structures his SRP catalogue using a

more detailed proposal of relationships, that may be purely structural like “has”,

“uses” and “is-a”, or with a semantic meaning like “displays” and “is across” [12].

Even generic (unlabelled) relationships are used. A thorough analysis of the SRS

written by CITI shows that relationships may appear at three different levels:

– Pattern Relationship. The most general relationship that implies all the forms

and all the forms’ parts of the related patterns.

– Form Relationship. A relationship at the level of forms implies all the parts of

the related forms.

– Part Relationship. The relationship only applies to these two parts.

In any case, if A is related to B and A is applied in the current project, the need of

applying or avoiding B must be explicitly addressed. The types of relationships are

not predetermined in the metamodel to make it more flexible. The superclass

Relationship includes an attribute to classify each relationship.

A fundamental issue when considering patterns as part of a catalogue is the need of

classifying them over some criteria for supporting their search. In fact, it is important

to observe that different contexts (organizations, projects, standards, etc.) may, and

usually do, define or require different classification schemas. History shows that

trying to impose a particular classification schema does not work, therefore we

decouple SRPs and Classifiers as shown in the metamodel. The catalogue is thus

considered as flat and the Classification Schemas just impose different structuring

schemas on top of it. Classifiers are organized into a hierarchy and then SRP are in

fact bound to Basic Classifiers, whilst Compound Classifiers just impose this

hierarchical structure. The use of aggregation avoids cycles without further integrity

constraints. Last, a derived class Root is introduced as a facilitation mechanism.

The metamodel shows that a SRP may be bound to several classification schemas,

and even to more than one classifier in a single classification schema (since no further

restrictions are declared). Also note that we do not impose unnecessary constraints

that could lead the catalogue to be rigid. For instance, we may mention that a

classification schema may not cover all existing SRP (i.e., some SRP may not be

classified). Although this situation could be thought as a kind of incompleteness, in

fact we are allowing having dedicated classification schemas for particular categories

of patterns, e.g. a performance classification schema, a classification schema just for

the non-technical criteria [16] and then allowing to compound them for having a

multi-source global classification schema. Also we remark that the PABRE method

[15] benefits from this existence of multiple classification schemas since nothing

prevents changing from one schema to another during catalogue browsing.

3 Conclusions and Future Work

In this paper we have presented a metamodel for software requirement patterns (SRP).

This metamodel is the natural evolution of the preliminary proposal of SRP presented

at [17] and shows the current concepts used by the PABRE method [15]. The

metamodel helps to fix the concepts behind our proposal of SRP, improving the

6 Xavier Franch, Cristina Palomares, Carme Quer, Samuel Renault, François De Lazzer

quality of the current SRP catalogue and process and has been be taken as starting

point of the data model of an ongoing support tool. The metamodel has been validated

with respect to several software requirement specifications (SRS) written by CITI-

CRPHT in the context of call-for-tender processes as well as in two processes

themselves. The contents of the catalogue have been validated as explained in [15];

the catalogue itself can be found at the website http://www.upc.edu/gessi/PABRE.

Future work spreads over three main directions. Concerning validation, we are

planning to run new case studies to debug all the PABRE components: metamodel,

catalogue contents and process. We intend to experiment deeper the application of the

SRP catalogue in several contexts (public IT procurement projects and Small- and

Medium-Sized companies’ projects). We also want to study the suitability of the

current presented metamodels for other types of requirement patterns, that is, patterns

for functional and non-technical requirements. Last, we will analyze the possibility of

converting the current metamodel of a SRP catalogue into a metamodel for a patterns

language which would eventually make possible the adoption of the approach in

contexts with different needs than those presented here. Although the idea is

appealing, it would require more engineering effort and thus needs careful analysis.

References

1. W. Lam, J. A. McDermid, A. J. Vickers. “Ten Steps Towards Systematic Requirements

Reuse”. REJ 2(2), Springer, 1997.

2. S. Roberson, J. Robertson. Mastering the Requirements Process (2nd ed.). Addison-

Wesley, 2006.

3. C. Alexander. The Timeless Way of Building. Oxford Books, 1979.

4. S. Henninger, V. Corrêa. “Software Pattern Communities: Current Practices and

Challenges”. PLoP 2007.

5. A. Durán, B. Bernárdez, A. Ruíz, M. Toro. “A Requirements Elicitation Approach Based in

Templates and Patterns”. WER 1999.

6. B. Moros, C. Vicente, A. Toval. “Metamodeling Variability to Enable Requirements

Reuse”. EMMSAD 2008.

7. S. Robertson. “Requirements Patterns Via Events/Use Cases”. PLoP 1996.

8 O. López, M.A. Laguna, F.J. García. “Metamodeling for Requirements Reuse”. WER 2002.

9. S. Konrad, B.H.C. Cheng. “Requirements Patterns for Embedded Systems”. RE 2002.

10. D. Matheson, I. Ray, I. Ray, S. H. Houmb. “Building Security Requirement Patterns for

Increased Effectiveness Early in the Development Process”. SREIS 2005.

11. A. Mahfouz, L. Barroca, R. C. Laney, B. Nuseibeh. “Patterns for Service-Oriented

Information Exchange Requirements”. PLoP, 2006.

12. J. Withall. Software Requirements Patterns. Microsoft Press, 2007.

13. J. Yang, L. Liu. “Modelling Requirements Patterns with a Goal and PF Integrated Analysis

Approach”. COMPSAC 2008.

14. M. Krystkowiak, B. Bucciarelli. “COTS Selection for SMEs: a Report on a Case Study and

on a Supporting Tool”. RECOTS 2003.

15. S. Renault, O. Méndez, X. Franch, C. Quer. “A Pattern-based Method for building

Requirements Documents in Call-for-tender Processes”. IJCSA 6(5), 2009.

16. J.P. Carvallo, X. Franch, C. Quer. “Managing Non-Technical Requirements in COTS

Components Selection”. RE 2006.

17. O. Méndez, X. Franch, C. Quer. “Requirements Patterns for COTS Systems”. ICCBSS

2008.

