
HAL Id: lirmm-00537334
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00537334

Submitted on 18 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Translations between RDF(S) and Conceptual Graphs
Jean-François Baget, Madalina Croitoru, Michel Leclère, Marie-Laure Mugnier

To cite this version:
Jean-François Baget, Madalina Croitoru, Michel Leclère, Marie-Laure Mugnier. Translations between
RDF(S) and Conceptual Graphs. ICCS: International Conference on Conceptual Structures, Jul 2010,
Kuching, Sarawak, Malaysia. pp.28-41. �lirmm-00537334�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00537334
https://hal.archives-ouvertes.fr


Translations between RDF(S) and Conceptual Graphs

Jean-François Baget, Madalina Croitoru, Alain Gutierrez, Michel Leclère and
Marie-Laure Mugnier

LIRMM (University of Montpellier II & CNRS), INRIA Sophia-Antipolis, France

Abstract. Though similarities between the Semantic Web language RDF(S) and
languages of the Conceptual Graphs family have often been pointed out, the dif-
ferences between these formalisms have been a source of difficulties while trying
to translate objets of a language into the other. In this paper, we present two such
transformations, that have been implemented into the CoGUI platform, and dis-
cuss their respective strengths and weaknesses.

1 Introduction
The scope of this paper is the problem of querying hybrid knowledge bases (KBs),
i.e. with several components that can be expressed in different formalisms (Conceptual
Graphs, RDF(S), OWL, relational model, etc.). The ontology itself can be described
using different formalisms, but we make the assumption that the ontological knowledge
it contains has the same meaning in all of the KBs considered (i.e. we do not address
ontology alignment or mapping problems).

More specifically, we will focus on transformations between Conceptual Graphs
(CGs) [10, 4] and the RDF(S) language [8], the standard for Semantic Web annota-
tions. Given the scope of the paper, a fundamental property of such transformations is
the preservation of the notion of semantic entailment (the basis for reasoning, hence
querying). Other desirable properties are the natural aspect of the transformation, i.e.
the conciseness and intuitiveness of the generated objects, as well as the preservation
of some algorithmic properties of the language to be translated. Developing these trans-
formations will not only provide a step towards querying hybrid KBs, but also benefit
certain tasks on the Semantic Web [7] where structural, graph based optimisations (ex-
tensively addressed for Conceptual Graphs [9][4]) are needed.

In the following we detail two proposed transformations and study their properties.
Both transformations preserve the semantic entailment, in a sense that we will precise,
but they behave differently with respect to conciseness and intuitiveness. Both trans-
formations are implemented in the tool CoGUI1. All graphs pictured in this paper are
screenshots from an example designed with CoGUI and available on CoGUI’s website.

2 Basic Conceptual Graphs: the core formalism of CoGUI
We recall in this section the main elements of the basic CG formalism. See [4] for details
and tools CoGUI and CoGITaNT2 for a faithful implementation of this framework.
Ontological knowledge is encoded by a structure called the vocabulary, while factual
knowledge is expressed by basic CGs.

1 http://www.lirmm.fr/cogui/
2 http://cogitant.sourceforge.net/



Fig. 1. Basic Conceptual Graphs (BG) Vocabulary

A vocabulary is basically a tuple V = (TC , TR = (T 1
R, . . . , T k

R), I) where TC is
a partially ordered set of concept types, each T i

R is a partially ordered set of relation
types of arity i, and I is a set of individual markers. All these sets are pairwise disjoint
and all partial orders are denoted by ≤. Other features may also appear in a vocabulary.
A conjunctive concept type over a vocabulary V is a set T = {t1, . . . , tp} of concept
types. If T = {t1, . . . , tp} and T ′ = {t′1, . . . , t′q} are two conjunctive concept types,
then we also note T ≤ T ′ ⇔ ∀t′i ∈ T ′,∃tj ∈ T such that tj ≤ t′i. The signature σ maps
each relation type of arity k to a k-tuple of conjunctive concept types, that encodes the
maximal type of its arguments. The signature has the covariance property, meaning that
if r2 ≤ r1, then the ith argument of r2 is a specialization of the ith argument of r1. It
is sometimes necessary, as in [1], to assert that an entity is an instance of several con-
cept types. Finally, the vocabulary can be extended by adding incompatibilities between
(two) types, i.e. asserting that a given conjunctive type is forbidden [6].

Fig. 1 depicts a hierarchy of relation types, their signature (e.g. σ(MotherOf) =
(HFemale, Human)), and a hierarchy of concept types. The “forbidden” symbol en-
codes incompatibility (e.g. Human, Attribute and Object are pairwise incompatible).

A basic conceptual graph (BG) on a vocabulary V = (TC , TR, I) is a bipartite
graph. The sets C and R contain respectively concept and relation nodes. A concept
node c ∈ C is labeled by a pair (type(c), marker(c)) where type(c) is a conjunctive
concept type built on TC and marker(c) is either an individual marker of I – in that case
c is said individual – or the generic marker ∗, possibly named by a variable, as in ∗x –
then c is said generic. A relation node r ∈ R is labeled by type(r) ∈ TR and is linked
to k concept nodes (its arguments), where k is the arity of type(r).



Fig. 2. BG Fact

Several concept nodes with the same individual marker or the same named generic
marker denote the same entity. A BG is said to be normal when no two distinct concept
nodes denote the same entity. Any BG can be transformed into a normal graph having
the same logical semantics, called its normal form, by merging nodes that represent the
same entity. The normal BG in Fig. 2, represents a fact stating that a child and its sister
are playing with a toy train, which is has the name of Thomas and is red.

Note that the additional features of the vocabulary (signature and forbidden types)
impose additional constraints on a BG. To respect the signature, the ith argument of a
relation typed r must be a specialization of the ith element of σ(r); to satisfy forbidden
types, no concept node can be of a type that is a specialization of a forbidden conjunctive
type. Implemented in CoGUI, these features are used to check the validity of a BG and
have no other impact on reasoning.

CGs can be translated into first-order logic by a mapping classically called Φ [10].
The BG fragment is equivalent to the existential positive conjunctive fragment of first-
order logic [4]. The fundamental deduction problem in this fragment is as follows: given
BGs F and Q defined over a vocabulary V , is the formula Φ(Q) the logical deduction
of the formulae Φ(F ) and Φ(V) (noted Φ(V), Φ(F ) ` Φ(Q))? This problem can be
recast as a query answering problem: is the conjunctive query Q deducible from the KB
composed of a set of facts F and a lightweight ontology V ?

The basic notion for reasoning with BGs is a graph homomorphism (“projection”
in the CG world). It provides a sound and complete reasoning mechanism:

Theorem 1. [10] [5] Let F and Q be BGs on a vocabulary V . Then Φ(V), Φ(F ) `
Φ(Q) iff there is a homomorphism from Q to the normal form of F .

Homomorphism checking (or deduction on BGs) is an NP-complete problem and
is polynomial in data complexity (i.e. with respect to the size of F ). Moreover, sev-
eral cases with lower complexity can be obtained, mainly based on the structure of Q.
Besides their interesting algorithmic properties, homomorphisms provide a visual way
to express answers to a query Q. To compute homomorphisms, CoGUI relies upon a
Client/Server architecture to communicate with the reasoning server CoGITaNT.

Apart from the vocabulary and the facts, CoGUI is also able to edit BG rules. These
rules express knowledge of the form: “if hypothesis then conclusion”, where the hy-
pothesis and the conclusion are two BGs. In this paper, we will only consider simple



Fig. 3. BG+: Rule Example

rules, which do not increase the complexity of querying, i.e., rules that only add rela-
tion nodes or specialize the type of concept nodes (they are special cases of the so-called
range-restricted rules in [3], [4]). See, for example, the rule in Fig. 3, where the relation
“linked to” is deemed symmetrical. We denote by BG+ the BG fragment added with
rules of the above mentioned form.

From now on, we simply note K ` Q for Φ(K) ` Φ(Q), where K is a BG(+) KB
(i.e. vocabulary, facts, and possibly rules) and Q is a BG on the same vocabulary.

3 The Semantic Web language RDF(S)

RDF (Resource Description Framework) and its extension RDFS (RDF Schema) is a
metadata model introduced by the W3C allowing the construction of semantic annota-
tions given by a set of triples of the form (subject, predicate, object). The RDF anno-
tations are generally stored either in XML or in N3 files3. Fig. 4 shows a set of RDF
triples in a simplified N3 notation, where names beginning with denote a blank, i.e.
an anonymous resource; this set “naturally” corresponds to the BG in Fig. 2 (see Sect.
4.3). A set of RDF triples can be also visualized as a graph.

<:Red> <rdf:type> <:Color>. _:b1 <:hasAttribute> <:Red>.
<:Thomas> <rdf:type> <:Name>. _:b1 <:hasAttribute> <:Thomas>.
_:b1 <rdf:type> <:Toy>. _:b2 <:playWith> _:b1.
_:b1 <rdf:type> <:Train>. _:b2 <:sisterOf> _:b3.
_:b2 <rdf:type> <:Girl>. _:b3 <:playWith> _:b1.
_:b3 <rdf:type> <:Child>.

Fig. 4. RDF Triples Corresponding to Fig. 2 Example

RDFS adds a lightweight ontological level structuring the vocabulary: it allows to
declare classes and properties (binary predicates), to structure them by a preorder (sub-
ClassOf and subPropertyOf relations) and to define the signatures of properties via the
notions of domain (domain) and co-domain (range). For instance, the following triples
(in (s,p,o) form) “naturally” translate part of the BG vocabulary of Fig. 1. (:Top,

3 The import / export tool of CoGUI uses the Jena (http://jena.sourceforge.net/) RDF parser for
reading and outputting three formats: RDF/XML, N3 and TURTLE.



rdf:type, rdfs:Class), (:Human, rdf:type, rdfs:Class) and (:Human,

rdfs:subClassOf, :Top) express that Top and Human are classes (concept types)
and that Human≤ Top; while triples (:MotherOf, rdf:type, rdf:Property),
(:MotherOf, rdfs:domain, :HFemale), (:MotherOf, rdfs:range, :Human)

express that MotherOf is a property (relation) with signature (HFemale, Human).
In this section, we define an RDF graph and three entailment relations of increasing

preciseness: `s (simple entailment), `rdf (RDF entailment, which takes the so-called
“RDF axiomatic triples” into account) and `rdfs (RDFS entailment, which moreover
takes the so-called “RDFS axiomatic triples” into account). Let us recall that ` is the
logical deduction in the BG fragment. The following definitions are reformulations of
the ones provided by [8].

3.1 A Simple RDF

We first introduce a simplified version of RDF. Though its syntax remains the same,
its semantics is weakened since no name is given any particular meaning. This RDF(S)
fragment will be used as the building block in our transformations. On the other hand,
we extend it to RDF∗, which allows to use variables/blanks as predicate names. This is
an important feature in the perspective of implementing the SPARQL query language,
whose basic graph patterns rely on such a possibility.

Syntax In what follows, we will consider 3 infinite pairwise disjoint sets of terms: the
set U of urirefs, the set L of literals, and the set B of blanks. Among literals, we make a
distinction between plain literals, and typed literals. A typed literal can be well-typed or
ill-typed. The value val(l) of a plain literal or an ill-typed literal l is the literal itself, and
the value of a well-typed literal is determined by its type. For example, the value of a
typed literal whose type is rdf:XMLLiteral is the XML value of that literal. The only
type that is currently taken into account in the RDF semantics is rdf:XMLLiteral. An
RDF vocabulary is a subset of U ∪ L.

Definition 1 (RDF triple, RDF graph). An RDF triple is an element of (U ∪B)×U ×
(U ∪B∪L). An RDF∗triple is an element of (U ∪B)× (U ∪B)× (U ∪B∪L). The first
element of a triple is called its subject, the second its predicate, and the third its object.
An RDF graph is a set of RDF triples. An RDF∗graph is a set of RDF∗triples.

Note that literals appearing as subject are classically forbidden both in RDF and
RDF∗. This can be a problem since such triples can appear in reasonings. All further
definitions and properties implicitly take that possibility in account.

If G is an RDF∗graph, we call U(G) (resp. B(G), L(G), T (G)) the set of urirefs
(resp. blanks, literals, terms) appearing in G. An RDF∗G graph admits a natural graph
representation: a node is assigned to each term appearing as a subject or object in G,
and a directed edge to each triple of G; this edge admits for origin the node assigned to
its subject, and for destination the node assign to its object.



Semantics In usual model-theoretic semantics, entities are mapped to elements of
the interpretation domain and relations to a set of tuples of elements of the domain.
Since RDF(S) does not consider a strict separation between entities and property names
(which is considered as a requirement for the web), such an interpretation would lead
to an important mathematical problem: an element of the domain could be asserted
equal to a set of tuples containing it. By encoding the extension of a property into the
interpretation structure, it is possible to lift that difficulty:

Definition 2 (Interpretation). An interpretation of an RDF vocabulary V is a triple
I = (∆, ι, ε) where ∆ is a set of resources called the interpretation domain, ι : (V ∩
U) → ∆ maps each uriref of the vocabulary to a resource, and ι : ∆ → 2∆×∆ maps
each resource d to a set of pairs of resources called the extension of d.

Definition 3 (Simple models). An interpretation I = (∆, ι, ε) of a vocabulary V is a
simple model of an RDF or RDF∗graph G iff there exists a mapping π : T (G) → ∆
that maps urirefs to their interpretation (∀u ∈ U ∩ V , π(u) = ι(u)); maps literals
to their value (∀l ∈ L ∩ V , π(l) = val(l)); and preserves triples (∀(s, p, o) ∈ G,
(π(s), π(o)) ∈ ε(π(p))).

Definition 4 (Simple Entailment). Let F and Q be RDF∗graphs. We say that F simply
entails Q and note F `s Q iff every simple model of F is a simple model of Q.

Theorem 2. Let F and Q be RDF or RDF∗graphs. Then F `s Q iff there exists a
mapping π : T (Q) → T (F ) that maps urirefs to themselves (∀u ∈ U(Q), π(t) = t);
maps literals to literals with same value (∀l ∈ L(Q), val(π(l)) = val(l)); and preserves
triples (∀(s, p, o) ∈ Q, (π(s), π(p), π(o)) ∈ F ).

3.2 RDF and RDFS axiomatic triples

RDF considers an infinite set Ardf of triples said axiomatic, i.e. true for any RDF
or RDF∗graph. In the same way, RDFS considers the axiomatic set Ardfs. Both sets
are infinite, due to the presence of an infinite set of properties rdf: i. We can con-
sider finite subsets by bounding the number of such properties allowed. If k is a pos-
itive integer, we denote by Ardf

k the finite subset of RDF axiomatic triples defined by
Ardf

k = Ardf \{(rdf: i, rdf:type, rdf:Property)|i > k}. The RDFS graphArdfs
k

is defined in a similar way. Furthermore, RDF and RDFS consider a set of semantic
conditions specifying the meaning embedded by special names of RDF(S).

RDF semantics We make here a simplification of RDFS semantics, since [8] modifies
the structure of an interpretation by introducing a mapping i′ : ∆ → ∆, used to define
the extension of a class. But this is a redundant information, since x ∈ i′(c) is defined
as equivalent to “x has type c”, that we can already encode in RDF interpretations.

Definition 5 (RDF and RDFS interpretations). An interpretation I = (∆, ι, ε) of a
vocabulary V is an RDF interpretation of V iff I is a simple model for every RDF
axiomatic triple, and I satisfies each RDF semantic rule. If, moreover, I is a simple
model for every RDFS axiomatic triple and satisfies each RDFS semantic condition,
then I is said an RDFS interpretation.



Before expliciting some of these semantic conditions, let us first define RDF and
RDFS entailments:

Definition 6 (RDF(S) Entailment). Let F and Q be RDF or RDF∗graphs. We say that
F RDF entails (resp. RDFS entails) Q and note F `rdf Q (resp. F `rdfs Q) iff every
RDF (resp. RDFS) interpretation that is a model of F is also a model of Q.

RDF semantic conditions An interpretation I = (∆, ι, ε) satisfies the RDF semantic
condition iff:

1. for every resource δ ∈ ∆ with ε(δ) 6= ∅, (δ, ι(rdf:Property)) ∈ ε(ι(rdf:type));
2. for every typed literal l whose type is rdf:XMLLiteral, l is well-typed iff

(val(l), ι(rdf:XMLLiteral)) ∈ ε(ι(rdf:type));

RDFS semantic rules In the same way, an RDFS interpretation must satisfy some se-
mantic conditions. A complete list of these conditions can be found in [8]. F.i., the two
following semantic conditions state 1) that if a property p has domain c and (s, p, o) is
asserted, then o has type c; and 2) that if x has type c and c is a subclass of c′, then x
has type c′.

1. if (p, c) ∈ ε(ι(rdfs : domain)) and (s, o) ∈ ε(p), then (s, c) ∈ ε(ι(rdf : type)).
2. if (x, c) ∈ ε(ι(rdf : type)) and (c, c′) ∈ ε(ι(rdfs : subClassOf)), then (x, c′) ∈

ε(ι(rdf : type)).

Computing RDF and RDFS entailment When we have to compute whether F `rdf

Q (or F `rdfs Q), we will add to F all necessary information to answer Q: first the
axiomatic triples (at least a finite subset of them), then enrich it with all information
that will force its simple model to be an RDF or RDFS interpretation. This can be done
with the semantic rules of [8] that are used to generate a graph that respects all semantic
conditions. A CG translation of one of these rules is presented in Fig. 7.

If G is an RDF or RDF∗graph, then its saturation Srdf
k (G) (or Srdfs

k (G)) is obtained
from G as follows:

1. make the union of G and Ardf
k (or Ardfs

k );
2. enrich the obtained graph with RDF or RDFS rules until a fixpoint is obtained.

The two previous conditions translating RDF semantics can be written as the fol-
lowing rules:

1. for each triple of form (s, p, o), add the triple (p, rdf:type, rdf:Property);
2. for each well-typed literal l of G whose type is rdf:XMLLiteral, add the triple

(l, rdf:type, rdf:XMLLiteral).

RDFS semantic conditions can be translated in the same way (that is indeed done in [8]),
and our two example semantic conditions can now be expressed as rules:

1. if there is a triple (p, rdfs:domain, c) and a triple (s, p, o) in the graph, then add
the triple (s, rdf:type, c).



2. if there is a triple (x, rdf:type, c) and a triple (c, rdfs:subClassOf, c′) in the
graph, then add the triple (x, rdf:type, c′).

Property 1 (Satisfiability). An RDF or RDF∗graph G is RDF-satisfiable (resp. RDFS-
satisfiable) iff Srdf

0 (G) (resp. Srdfs
0 (G)) does not contain any triple of form

(l, rdf:type, rdf:XMLLiteral), where l is an ill-typed literal whose type is
rdf:XMLLiteral.

Theorem 3 (RDF(S) Entailment Connection). Let F and Q be RDF or RDF∗graphs.
Then F `rdf Q (resp. F `rdfs Q) iff either F is not satisfiable or Srdf

k (F ) `s Q (resp.
Srdfs

k (F ) `s Q) where k ≥ 1 is the greater number such that rdf: k appears in F or
Q.

4 The RDF/BG Transformations

It was pointed out 4 that RDF and CGs share very similar characteristics. Fig. 5 summa-
rizes the main points of the “natural” correspondence between RDF(S) and BGs, along
with their logical translation. However, such an intuitive translation does not satisfy
our main evaluation criterion, which is the equivalence between reasonings in the two
formalisms.

RDFS Triple Equivalent BG Logical Translation
C rdf:type rdfs:Class C concept type C unary predicate
R rdf:type rdf:Property R binary relation type R binary predicate
C rdfs:subClassOf D C ≤ D ∀x(C(x) → D(x))

R rdfs:subPropertyOf S R ≤ S ∀x∀y(R(x, y) → S(x, y))

R rdfs:domain C σ(R) = (C,−) ∀x∀y(R(x, y) → C(x))

R rdfs:range D σ(R) = (−, D) ∀x∀y(R(x, y) → D(y))

Fig. 5. Correspondences between RDFS, BG and logic

4.1 Problems with the intuitive translation

Assume we want to encode the simple entailment in RDF or RDF∗ within the basic CG
fragment. Let us note Tbasic this transformation. An RDF graph G is encoded into a
BG Tbasic(G) in normal form as follows. For each term t that appears either as subject
or object in a triple of G, we create a concept node whose type is > and whose marker
is a named generic marker ∗t if t is a blank, the individual marker t if t is a uriref and
the individual marker val(t) if t is a literal. Then we merge literals that have the same
value. Finally, for every triple (s, p, o) ∈ G, we add a relation node whose label is p if p
is a uriref and >2 (with >2 being the maximal relation type for binary relations) if p is

4 http://www.w3.org/DesignIssues/CG.html



a blank, and whose arguments are respectively the node associated with s and the node
associated with o. The case where p is a blank can happen only in RDF∗.

The next theorem expresses that, even if RDF does not distinguish between entities
and relations, that does not prevent the BG homomorphism to be complete w.r.t. RDF
simple entailment.

Theorem 4. Let F and Q be RDF graphs. Then F `s Q iff Tbasic(F ) ` Tbasic(Q).

Things change when we consider the RDF∗language. Consider for instance the fol-
lowing triples and the translation of each of them into a BG:

1. tQ = (a, x, x), where x is a blank, translated into
Q = [> : a]-> (>2)-> [> : ∗x];

2. t1 = (a, b, c), translated into F1 = [> : a]-> (b)-> [> : c];
3. t2 = (a, b, b), translated into F2 = [> : a]-> (b)-> [> : b].

One has t2 `s tQ but not t1 `s tQ since models of t1 that map b and c to distinct
elements are not models of tQ. However, there is a BG homomorphism from Q to
both F1 and F2. The trouble is that the translation of tQ into a BG does not keep the
information that the object and the predicate of the triple have the same variable name.

We present here two solutions solving that problem: in the first, we change the
structure of the built BG, while in the second we restrict the domain of the translation
to a subset of RDF.

4.2 The RDF/BG “3-hypergraphs” Transformation

The transformation T3 described in this section relies on the work of [2]. It is sound and
complete w.r.t. RDF(S) semantics.

Let G be an RDF or RDF∗graph. T3 encodes G in a BG as follows. First, it assigns a
concept node to every term appearing in G, with its marker being the same as in Tbasic;
for now, we consider that its type is >. Then, for every triple (s, p, o) in G, it adds a
relation node typed by triple, whose arguments are respectively the concept nodes
assigned to s, p, and o.

It is immediate to check that an interpretation I is a simple model of an RDF or
RDF∗graph G if and only if this interpretation is a model (in the CG sense) of the BG
T3(G). This transformation indeed encodes exactly the semantics of the language RDF.
It follows that:

Theorem 5. Let F and Q be RDF or RDF∗graphs. Then F `s Q iff T3(F ) ` T3(Q).

Now, let us enhance this transformation by adding relevant types to the concept
nodes, thus translating the RDF vocabulary. The added hierarchy of concept types is
depicted in Fig. 6 (it is indeed the same for all RDF or RDF∗input graphs). Some se-
mantic rules require syntactic information in their hypothesis. This has to be taken into
account in our syntactic transformations, thus, nodes translating an RDF term are typed
according to the more specific syntactic category(ies).

To obtain the semantic completeness w.r.t. `rdf and `rdfs, we add the translation of
RDF(S) axiomatic triples as new facts, as well as the translation of the semantic rules



Fig. 6. TC depiction of RDF transformation T3

of RDF(S) as rules. For instance the RDFS “domain rule” presented previously can be
translated into the BG rule pictured in Fig. 7. Note that such a rule relies upon generic
concept nodes associated with a property, and thus uses the RDF∗language.

Fig. 7. BG+ depiction of an RDFS rule

Let us note Rrdf (resp. Rrdfs) the set of BG rules associated with RDF (resp.
RDFS) semantic rules. We can now express the equivalence between the BG and RDF(S)
fragments based on transformation T3.

Theorem 6. Let F and Q be RDF or RDF∗graphs. Let Frdf = F ∪Ardf
k , where k ≥ 1

is the greatest integer such that rdf: k appears in F or Q. Then F `rdf Q iff one of
the following conditions is satisfied:

– T3(Frdf ),Rrdf ` T3({(x, rdf:type, rdf:XMLLiteral)}), where x is an ill-
typed XMLLiteral typed literal.

– T3(Frdf ),Rrdf ` T3(Q).

The same property, obtained by substituting rdf with rdfs, holds for RDFS entailment.

The transformation T3 thus fulfills our main requirement: preserving the notion of
entailment between RDF(S) and BGs. However, this transformation has severe draw-
backs from a user perspective. First, the triples are harder to read than the binary relation
they encode, and this default is made worse when saturating the graph by the applica-
tion of rules. The second drawback is that T3, faithful to RDF, does not offer knowledge



structuring. This was already one of the main criticisms addressed to semantic networks,
and CGs answered that by establishing a clear distinction between factual and ontolog-
ical knowledge. These are the drawbacks addressed in the next transformation.

4.3 The RDF/BG Intuitive Transformation
The second transformation, called Tnat and outlined in Fig. 5, has several qualities:

– It is natural (hence the notation Tnat), in sense that it respects the kinds of knowl-
edge: it translates classes into concept types (both represent sets of entities), prop-
erties into binary relations, and instance into instances.

– It preserves the visual qualities of the graph.
– It allows for a clear distinction between ontological and factual knowledge.

Due to the latter quality, Tnat cannot not translate RDF(S) entirely. However, we
claim that it allows to translate exactly the subset of RDFS used for representing knowl-
edge with the purpose of querying factual knowledge, i.e. typical semantic annotations.
We will denote this fragment of RDF(S) corresponding to BGs by RDFS-. Depending
on the way we translate the signatures of properties, we will also obtain some rules that
do not increase the complexity of deduction.

We define a transformation from RDFS- to BG(+) and a transformation from BG(+)
to RDFS- in such way that these transformations are reciprocal one with respect to
the other. Amongst the triples allowed in RDFS- we distinguish between ontological
triples (corresponding to the vocabulary), factual triples (corresponding to the facts)
and also commentary triples (corresponding to the elements not belonging to the CG
formalism but present in CoGXML, the XML file format of CoGUI). The completeness
result obtained states that, as long as the document to be entailed is composed only of
RDF triples (as opposed to RDFS triples), then BG deduction is complete w.r.t. RDF(S)
entailment. This means that this transformation is well-suited to the deduction of factual
knowledge but not to ontological knowledge.

The RDFS- Fragment In the notations below, B stands for Blanks, L for Literals and
SU for simple URIs, that is URIs not starting by rdf: or rdfs:. We further refine SU
into SUc for the SU belonging to classes, SUp for properties and SUi for instances. The
following triple patterns are allowed in RDFS-:

– Ontological triples: (SUc, rdf:type, rdfs:Class), (SUc, rdfs:subClassOf,
SUc), (SUp, rdf:type, rdf:Property), (SUp, rdfs:subPropertyOf, SUp),
(SUp, rdfs:domain, SUc) and (SUp, rdfs:range, SUc);

– factual triples: (SUi, rdf:type, SUc), (B, rdf:type, SUc) and (s, SUp, o), where
s is either B or SUi, and o is either B, SUi or L;

– commentary triples: (SU, rdfs:label, L) and (SU, rdfs : comment, L).

We do not allow for anonymous classes or properties: for this reason, we forbid
ontological triples containing a blank either as a subject or as an object, as well as
factual triples containing a blank as a property, or as an object when the predicate is
rdf:type. Finally, the separability condition has to be fulfilled: a given SU can appear
only in one of the categories “class” (SUc), “property” (SUp) and “instance” (SUi). In
terms of CGs, this condition states that the sets TC , TR and I are pairwise disjoint.



Transformation Tnat: RDFS- towards BG(+) In the description below, an element is
added to the vocabulary or the fact graph only if it does not already exist. Any addition
of a relation (obviously binary) is done by default with the signature (rdfs:Resource,
rdfs:Resource). Further domain and range statements will induce a specialization of this
signature. rdfs:Resource behaves as the top of the hierarchy. This specialization can be
performed in two different ways: either by specializing the signature in the vocabulary
directly, or by introducing a rule translating this specialization.

The transformation takes place as follows:

1. Creation of the concept types rdfs:Resource, rdfs:Literal and rdfs:Datatype, as well
as the relation type rdf:Property(rdfs:Resource, rdfs:Resource)

2. Treatment of ontological triples:

– (SUc, rdf:type, rdfs:Class) → addition of the concept type SUc
– (SUc1, rdfs:subClassOf, SUc2) → addition of concept types SUc1 and

SUc2, where SUc1 ≤ SUc2
– (SUp, rdf:type, rdf:Property) → addition of the relation type SUp
– (SUp1, rdfs:subPropertyOf, SUp2) → addition of binary relations SUp1

and SUp2 with SUp1 ≤ SUp2
– (SUp, rdfs:domain, SUc) → addition of the binary relation type SUp, of

the concept type SUc, and treatment of the domain information (as explained
above)

– (SUp, rdfs:range, SUc) → similar to above

3. Treatment of factual triples (f.i. Tnat applied to the triples in Fig. 4 yields the BG
in Fig. 2)

– (SUi, rdf:type, SUc) → addition of the concept node [SUc : SUi], addition
to the vocabulary of the individual marker SUi and of the concept type SUc

– (B, rdf:type, SUc)→ similar to above with the only difference of the generic
marker, i.e. the node [SUc :*B] is obtained

– triples of form (s, SUp, o)→ addition of the corresponding concept and relation
nodes, along with the type insertions into the vocabulary

4. The commentary triples, i.e. containing rdfs:comment or rdfs:label are
translated in labels and commentaries in CoGXML

When a document is violating the separability condition, there are several possi-
bilities for dealing with the triples that are causing this violation. A drastic solution
consists in rejecting the RDF(S) document. Another solution consists in only accepting
a subset of the RDF(S) document that satisfies the separability condition: in this case,
the choices made have to be independent of the order in which the triples have been
analyzed, so that two RDFS documents with the same set of triples, thus semantically
equivalent, are translated in the same way. Currently, the implemented solution consists
in rejecting the RDF(S) documents violating the separability between the concept and
relation type hierarchies. For the separation of individual markers with the concept / re-
lation hierarchy, the priority is given to declarations concerning classes and properties.



Transformation Tnat−: BG towards RDFS- We assume that all the relations are
binary. If not, we can first “binarize” the BGs. Binary BGs can be easily translated in
RDFS-:

1. The vocabulary is translated into ontological triples:
– For all concept types t → (t, rdf:type, rdfs:Class)
– For all concept types t1 and t2 s. t. t2 ≤ t1 → (t2, rdfs:subClassOf, t1)
– For all relations r → (r, rdf:type, rdf:Property)
– For all signatures (t1,t2) of a relation r → (r, rdfs:domain, t1),

(r, rdfs:range, t2)
– For all relations r1 and r2 s. t. r2 ≤ r1 → (r2, rdfs:subPropertyOf, r1)

2. The fact graphs are translated into factual triples (f.i. Tnat− applied to the BG in
Fig. 2 yields the triples in Fig. 4):

– We assign a different blank to each generic concept node. The term assigned to
a generic concept node is the above mentioned blank and the one assigned to
an individual concept node is the URI corresponding to its individual marker;

– For all concept nodes of type t1,..., tn and associated term e, we have:
for i from 1 to n → (e, rdf:type, ti)

– For all relation nodes r having as the first neighbor c1 and second neighbor c2

with the associated terms e1 respectively e2 → (e1, r, e2)
3. The commentaries and labels associated to concept and relation types are translated

by commentary triples → (t, rdfs:comment, literal), (t, rdfs:label, literal).

Apart from n-ary relation types, the only element that we cannot translate into RDFS
is the notion of forbidden conjunctive type (expressing that two concept types are dis-
joint). Note it can be translated by the OWL predicate owl:disjointWith (see Sect. 5).

Note that the rules associated with signatures could be translated into RDFS- (which
is not implemented yet in the transformation provided by CoGUI).

Properties of Tnat and Tnat− These transformations are “essentially” reciprocal, in
the following sense: their composition is the identity, up to a fixed set of axiomatic
knowledge, which is made explicit by the transformation, but has no incidence on the
semantics of the transformed knowledge. More precisely:

Property 2. Let K be an RDF graph (resp. a vocabulary and a BG F ). Let f be Tnat− ◦
Tnat (resp. Tnat ◦ Tnat−). Then K ′ = f(K) = K ∪A, where A is a fixed set of triples
(resp. F ∪A, where A is a fixed part of the vocabulary), and f(K ′) = K ′.

The following result specifies the kind of completeness obtained:

Theorem 7.
Let G1 and G2 be RDFS- graphs such that G2 contains solely factual triples.
Then G1 `rdfs G2 iff Tnat(G1) ` Tnat(G2).
Let F and Q be BGs on a vocabulary V .
Then V, F ` Q iff Tnat−(V) ∪ Tnat−(F ) `rdfs Tnat(Q).



5 Perspectives

Let us emphasize the interest of the second transformation, i.e. Tnat. This transfor-
mation is in line with the knowledge representation vision of the Semantic Web, in
the sense that it clearly distinguishes between different kinds of knowledge. Moreover,
CoGUI allows to visualize the knowledge base obtained according to this separation.
It defines a fragment of RDF(S) that can be provided with a semantics in classical
first-order logics, which is compatible with most description logics, in particular the
OWL-DL fragment. Hence, it is potentially extensible to take a richer ontology into
account, that would be represented by description logics.

As a matter of fact, many RDFS files use simple OWL features. The combination of
RDFS and OWL-DL in documents leads to a combinatorial explosion of the querying
problem. Recently, restrictions of OWL-DL have been proposed to overcome this explo-
sion (see OWL2 5). We are currently studying the precise relationships between these
restrictions and fragments of CGs in the context of query answering. As a preliminary
and pragmatic work, we have extended the Tnat translation to some OWL statements
which can be expressed in BG+, thus without increasing complexity of reasoning.

References

1. J.-F. Baget. Simple Conceptual Graphs Revisited: Hypergraphs and Conjunctive Types for
Efficient Projection Algorithms. In Proc. of ICCS’03, volume 2746 of LNAI. Springer, 2003.

2. J. F. Baget. RDF Entailment as a Graph Homomorphism. In Proc. of ISWC’05, 2005.
3. J.-F. Baget and M.-L. Mugnier. The Complexity of Rules and Constraints. JAIR, 16:425–465,

2002.
4. M. Chein and M. Mugnier. Graph-based Knowledge Representation: Computational Foun-

dations of Conceptual Graphs. Springer, 2009.
5. M. Chein and M.-L. Mugnier. Conceptual Graphs: Fundamental Notions. Revue

d’Intelligence Artificielle, 6(4):365–406, 1992.
6. M. Chein and M.-L. Mugnier. Concept types and coreference in simple conceptual graphs.

In K. E. W. et al, editor, ICCS, volume 3127 of LNAI, pages 303–318. Springer, 2004.
7. O. Corby, R. Dieng, and C. Hebert. A Conceptual Graph Model for W3C RDF. In Proceed-

ings of ICCS00, volume 1867 of LNAI. Springer, 2000.
8. P. Hayes, editor. RDF Semantics. W3C Recommendation. W3C, 2004.
9. M.-L. Mugnier. Knowledge Representation and Reasoning based on Graph Homomorphism.

In Proc. ICCS’00, volume 1867 of LNAI, pages 172–192. Springer, 2000.
10. J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine. Addison-

Wesley, 1984.

5 http://www.w3.org/TR/owl2-profiles/


