arXiv:1011.2560v1 [cs.LO] 11 Nov 2010

Verifying Safety Properties With the TLA™* Proof System

Kaustuv Chaudhutj Damien Doligez, Leslie Lampor, and Stephan Mefz

L INRIA Saclay, Francekaustuv.chaudhuri@inria. fr
2 INRIA Rocquencourt, Francélamien.doligez@inria. fr
3 Microsoft Research Silicon Valley, USAttp://lamport.org
4 INRIA Nancy, Francestephan.merz@inria. fr

1 Overview

TLAPS, the TLA proof system, is a platform for the development and meclaénic
verification of TLA" proofs. The TLA proof language is declarative, and understand-
ing proofs requires little background beyond elementaryheraatics. The language
supports hierarchical and non-linear proof constructiah eerification, and it is inde-
pendent of any verification tool or strategy. Proofs aretemiin the same language as
specifications; engineers do not have to translate theh-legel designs into the lan-
guage of a particular verification tool. proof managetinterprets a TLA proof as a
collection of proof obligationsto be verified, which it sends toackend verifiershat
include theorem provers, proof assistants, SMT solvesdacision procedures.

The first public release of TLAPS is available from [1], distited with a BSD-like
license. It handles almost all the non-temporal part of Tla& well as the temporal
reasoning needed to prove standard safety propertiesrticydar invariance and step
simulation, but not liveness properties. Intuitively, fetaproperty asserts what is per-
mitted to happen; a liveness property asserts what mustelmagor a more formal
overview, see [3, 10].

2 Foundations

TLA* is a formal language based on TLA (the Temporal Logic of Acs)12]. It was
designed for specifying the high-level behavior of conentrand distributed systems,
but it can be used to specify safety and liveness propertiasydiscrete system or
algorithm. A behavior is a sequence of states, where a Statie assignment of values
to state variablesSafety properties are expressed by describing the allstepd (state
transitions) in terms o&ctions which are first-order formulas involving two copies
andv’ of each state variable, whevedenotes the value of the variable at therent
state and/ its value at thenextstate. These properties are proved by reasoning about
actions, using a small and restricted amount of temporaor@ag. Proving liveness
properties requires propositional linear-time tempaoogid reasoning plus a few TLA
proof rules.

It has always been possible to assert correctness prapefsgstems in TLA, but
not to write their proofs. We have added proof constructethas a hierarchical style
for writing informal proofs [11]. The current version of thenguage is essentially the

http://arxiv.org/abs/1011.2560v1

same as the version described elsewhere [7]. Here, we desily the TLAPS proof

system. Hierarchical proofs are a stylistic variant of natdeduction with lemmas and
have been used in other declarative proof languages [85]14ATierarchical proof is

either a sequence of steps together with their proofs, cafgllevest-level) proof that

simply states the known facts (previous steps and theoramasjefinitions from which

the desired conclusion follows. The human reader or a babkerifier must ensure that
the leaf proofs are correct in their interpretation of TLi& believe the entire proof.

The TLAPS proof manager, TLAPM, reads a (possibly incong)l&ierarchical
proof and invokes the backend verifiers to verify the leaigfsoOne important back-
end is Isabell&LA*, which is an implementation of TLAas an Isabelle object logic
(see Section 4.1). Isabefld. A* can be used directly with Isabelle’s generic proof
methods, or other certifying backend verifiers can produoefg that are checked by
IsabellgTLA*. Currently, the only certifying backend is the Zenon theopover [4].
Among the non-certifying backends is a generic SMT-LIBdshbackend for SMT
solvers, and a decision procedure for Presburger aritoma® plan to replace these
with certifying implementations such as the SMT solver V¢8] and certifying imple-
mentations of decision procedures [6].

TLAPS is intended for avoiding high-level errors in systemst for providing a
formal foundation for mathematics. It is far more likely ®system error to be caused
by an incomplete or incorrect specification than by an iretrproof inadvertently ac-
cepted as correct due to bugs in TLAPS. Although we prefdifgieig backends when-
ever possible, we include non-certifying backends for aaied reasoning in important
theories such as arithmetic.

3 Proof management

A TLA* specification consists of a root module that can (trandyfjvienport other
modules by extension and parametric instantiation. Eadthubeaconsists of a number
of parameters (state variables and uninterpreted cos$tatgfinitions, and theorems
that may have proofs. TLAPS is run by invoking the Proof Mare@LAPM) on the
root module and telling it which proofs to check. In the catreersion, we use pragmas
to indicate the proofs that are not to be checked, but thisahihnge when TLAPS
is integrated into the TLA Toolbox IDE [2]. The design of TLAPM for the simple
constant expressions of TlEAvas described in [7]; this section explains the further
processing required to support more of the features of TOAAPM first flattens the
module structure, since the module language of Tlig\not supported by backend
verifiers, which will likely remain so in the future.

Non-constant reasoningA TLA* module parameter is eithercnstantor a (state)
variable Constants are independent of behaviors and have the sémedvaach state
of the behavior, while a variable can hav&éient values in dierent states. Following
the tradition of modal and temporal logics, TLAormulas do not explicitly refer to
states. Instead, action formulas are built from two copiasdv’ of variables that refer
to the values before and after the transition. More gengrdlé prime operatorcan

be applied to an entire expressigrwith € representing the value efat the state after

a step. Aconstant expression is one that does not involve any state variables, and
is therefore equal te’. (Double priming is not allowed in TL#A the TLAf syntactic
analyzer catches such errors.)

Currently, all TLAPS backends support logical reasoninly @m constant expres-
sions. The semantics of the prime operator is thereforeastinally approximated as
follows: it is commuted with all ordinary operators of mattetics and is absorbed by
constant parameters. Thuseiis the expressiornu(= v + 2 = ¢) whereu andv are vari-
ables and a constant, theg equals’ = V' + 2« ¢. TLAPM currently performs such
rewrites and its rewrite engine is trusted.

Operators and substitutivityAt any point in the scope of its definition, a user-defined
operator is in one of two stategsableor hidden A usable operator is one whose defi-
nition may beexpandedn a proof; for example, if the operat&defined byP(x,y) =
X + 2 = y is usable, then TLAPM may replad¥?2, 20) with 2+ 2 « 20 (butnot with
42, which requires proving that22 = 20 = 42). A user-defined operator is hidden by
default; it is made usable in a particular leaf proof by esifiii citing its definition, or
for the rest of the current subproof byse step (see [7] for the semanticsef).
Because TLAis a modal logic, it contains operators that do not obey stitisity,
which underlies Leibniz’s principle of equality. For exaledrom (U = 42) = True one
cannot deduceu(= 42) = true, i.e., U = 42. A unary operato®() is substitutivaf
e = f impliesO(e) = O(f), for all expressionsandf. This definition is extended in the
obvious way to operators with multiple arguments. Most eftinodal primitive opera-
tors of TLA" are not substitutive; and an operator defined in terms ofsulstitutive
operators can be non-substitutive. If a non-substitutperator is usable, then TLAPM
expands its definition during preprocessing, as describttei previous paragraph; if it
is hidden, then TLAPM replaces its applications by crypamiric hashes of its text to
prevent unsound inferences by backend verifiers. This imaarwative approximation:
for example, it prevents proving(e A f) = O(f A e) for a hidden non-substitutive op-
eratorO. Users rarely define non-substitutive operators, so tregms to be no urgent
need for a more sophisticated treatment.

Subexpression referencea:fairly novel feature of the TLA proof language is the abil-
ity to refer to arbitrary subexpressions and instances efaiprs, theorems, and proof
steps that appear earlier in the module or in imported magdudelucing the verbosity
and increasing the maintainability of Tt:Aroofs.Positionalreferences denote a path
through the abstract syntax; for example, for the definjtdfx,y) = x = 20%y + 2,
the referenc@®(3, 4)!2!1 resolves to the first subexpression of the secondgubssion
of O(3,4), i.e., 20« 4. Subexpressions can also be labelled and accesséabeited
references. For example, f@(x, y) = x = |::(y = 20) + 2, the referenc®(3, 4)!l refers
to 4+ 20 and will continue to refer to this expression even if thiérgigon of O is later
modified toO(x,y) = X = 7 = y2 + 1::(20 = y) + 2. TLAPM replaces all subexpression
references with the expressions they resolve to prior théuprocessing.

Verifying obligations: Once an obligation is produced and processed as described be
fore, TLAPM invokes backend verifiers on the proof obligasaorresponding to the
leaf proofs. The default procedure is to invoke the Zenoortm prover first. If Zenon

succeeds in verifying the obligation, it produces an Idafisar proof script that can
be checked by IsabellELA*. If Zenon fails to prove an obligation, then IsabglieA*

is instructed to use one of its automated proof methods. Efeutt procedure can be
modified through pragmas that instruct TLAPM to bypass Zensa particular Isabelle
tactics, or use other backends. Most users will invoke tlagmas indirectly by using
particular theorems from the standafdAPS module. For instance, using the theorem
namedSimpleArithmeticin a leaf proof causes TLAPM to invoke a decision proce-
dure for Presburger arithmetic for that proof. The user earm what standard theorems
can prove what kinds of assertions by reading the docunienfaut she does not need
to know how such standard theorems are interpreted by TLAPM.

4 Backend verifiers

4.1 IsabellgTLA*

IsabellgTLA* is an axiomatization of TLAIn the generic proof assistant Isabelle [13].
It embodies the semantics of the constant fragment of TIDATLAPS; as mentioned
in Section 2, it is used to certify proofs found by automatckend verifiers. We ini-
tially considered encoding TL'Ain one of the existing object logics that come with
the Isabelle distribution, such as Isabg&lle or IsabellgHOL. However, this turned out
to be inconvenient, mainly because TLA untyped. (Indeed, TLAdoes not even
distinguish between propositions and terms.) We would teadto define a type of
TLA* values inside an existing object logic and build Ti-gpecific theories for sets,
functions, arithmetietc, essentially precluding reuse of the existing infrasticet

IsabellgTLA* defines classical first-order logic based on equality, dadils, and
Hilbert’'s choice operator. All operators take argumentd egturn values of the sin-
gle typec representing TLA values. Set theory is based on the uninterpreted predi-
cate symbok and standard Zermelo-Frankel axioms. Unlike most presentaof ZF,
TLA* considers functions to be primitive objects rather thas eébrdered pairs. Nat-
ural numbers with zero and successor are introduced usitbgitis choice as some
set satisfying the Peano axioms; the existence of such @ stablished from the
ZF axioms. Basic arithmetic operators over natural numbech as<, +, and« are
defined by primitive recursion, and division and modulus deéined in terms oft
andx. Tuples and sequences are defined as functions whose damaingial intervals
of the natural numbers. Characters are introduced as plalirsxadecimal digits, and
strings as sequences of characters. Records are functimsewlomains are finite sets
of strings. Isabelle’s flexible parser and pretty-printansparently converts between
the surface syntax and the internal representation. Tinelatd library introduces ba-
sic operations for these data structures and proves elampdatnmas about them. It
currently provides more than 1400 lemmas and theoremsgmonding to about 200
pages of pretty-printed Isar text. IsabglleA* sets up Isabelle’s generic automated
proof methods (rewriting, tableau and resolution provansl their combinations).

It is a testimony to the genericity of Isabelle that settipgaunew object logic was
mostly a matter of perseverance and engineering. Becausé isluntyped, many the-
orems come with hypotheses that express “typing conditidfte example, proving
n + 0 = nrequires proving tham is a number. When the semantics of TLallowed

us to do so, we set up operators so that they return the expégpe”; for example,
p A gis guaranteed to be a Boolean value whatever its argunpeantsiq are. In other
cases, typechecking is left to Isabelle’s automatic proethods; support for condi-
tional rewrite rules in Isabelle’s simplifier was essentiamake this work.

4.2 Zenon

Zenon is a theorem prover for first-order logic with Hilbsithoice operator and equal-
ity. It is a proof-producingheorem prover: it outputs formal proof scripts for the theo
rems it proves. Zenon was extended with a backend that pescaroofs in Isar syntax;
these proofs use lemmas based on the Isgiéle’ object logic and are passed to
Isabelle for verification. Zenon is therefore not part of thusted code base of TLAPS.

Zenon had to be extended with deduction rules specific to*Tkéles for reason-
ing about set-theoretic operators, for thae operator of TLA, for set extensionality
and function extensionality, for reasoning directly on bded quantifiers (which is not
needed in theory but is quite important fdfieiency), and for reasoning about func-
tions, stringsetc Interestingly, Hilbert's choice operator was alreadydiseZenon for
Skolemization, so we were easily able to supporicth@se operator of TLA.

Future work includes adding rules to deal with tuples, sagas, records, and arith-
metic, and improving the handling of equality. While thesesome overlap between
Zenon and Isabelle’s automatic methods as they are inatadtin Isabell@LA*, in
practice they have fferent strong points and there are many obligations where one
succeeds while the other fails. Zenon uses Isabelle’s attomproof tactics for some
of the elementary steps when it knows they will succeedffeceusing these tactics as
high-level inference rules.

4.3 Other backends

The first release of TLAPS comes with some additional notifgerg backends. For
arithmetic reasoning we have:

— An SMT-LIB based backend that can be linked to any SMT soétigations are
rewritten into the AUFLIRA theory of SMT-LIB, which genetglrequires omit-
ting assumptions that lie outside this theory. This backem#eded for reasoning
about real numbers. We have successfully used Yices, CVB3yve&tiT and Alt-
Ergo in our examples. In future work we might specialize tféseric backend for
particular solvers that can reason about larger theories.

— A Presburger arithmetic backend, for which we have impleegiCooper’s al-
gorithm. Our implementation is tailored to certain elensenft TLA* that are not
normally part of the Presburger fragment, but can be (comsigely) injected.

For both these backends, TLAPM performs a simple and highgervative sort detec-
tion pass for bound identifiers. Both backends are curremhycertifying, but we plan
to replace them with certifying backends in the future. Irtipalar, we are integrating
the proof-producing SMT solver veriT [5], with the goal ofitaing it for discharging
TLA* proof obligations.

5 Proof development

Writing proofs is hard and error-prone. Before attemptiagptove correctness of a
TLA* specification, we first check finite instances with the TLC mlazhecker [12].
This usually catches numerous errors quickly — much morekguthan by trying to
prove it correct. Only after TLC can find no more errors do wedrwrite a proof.

The TLAf language supports a hierarchical, non-linear proof dgretnt process
that we find indispensable for larger proofs [9]. The higHegel proof steps are derived
almost without thinking from the structure of the theorenb#éoproved. For example, a
step of the fornP; v...Vv P, = Qis proved by the sequence of steps asseRing Q,
for eachi. When the user reaches a simple enough step, she first trdlg adtomatic
proof using a leaf directive citing the facts and definitidinat appear relevant. If that
fails, she begins a new level with a sequence of proof-lessrsn steps that simplify
the assertion, and a finalp step asserting that the goal follows from these steps. These
new lower-level steps are tuned until thep step is successfully verified. Then, the
steps are proved in any order. (The user can ask TLAPM whps $tave no proofs.)
The most common reason that leaf proofs fail to verify is thatuser has forgotten to
use some fact or definition. When a proof fails, TLAPM prirtte usable hypotheses
and the goal, with usable definitions expanded. Examinirsgahtput often reveals the
omission.

This kind of hierarchical development cries for a user if@ee that allows one to
see what has been proved, hide irrelevant parts of the paodfeasily tell TLAPM
what it should try to prove next. Eventually, these funcsiavill be provided by the
TLA* Toolbox. (It now performs only the hiding.) When TLAPS isdgtated into the
Toolbox, writing the specification, model-checking it, amdting a proof will be one
seamless process. Meanwhile, we have written an Emacs matalows hierarchical
viewing of proofs and choosing which parts to prove.

We expect most users to assume simple facts about datasgsistich as sequences
rather than spending time proving them — especially at tlggnnéng, before we have
developed libraries of such facts for common data strustuRelying on unchecked
assumptions would be a likely source of errors; it is easy #&kana mistake when
writing an “obviously true” assumption. Such assumptidmswsd therefore be model-
checked with TLC.

5.1 Example developments

We have written a number of proofs, mainly to find bugs and ssewell the prover
works. Most of them are in thexamples sub-directory of the TLAPS distribution.
Here are the most noteworthy:

— Peterson’s Mutual Exclusion Algorithrithis is a standard shared memory mutual
exclusion algorithm. The algorithm (in its 2-process vanis described in a dozen
lines of PlusCal, an algorithm language that is automagicednslated to TLA.
The proof of mutual exclusion is about 130 lines long.

— The Bakery Algorithm with Atomic Reads and WrifEsis is a more complicated
standard mutual exclusion example; its proof (for tterocess version) is 800
lines long.

— Paxos.We have specified a high-level version of the well-known Racansensus
algorithm as a trivial specification of consensus and twmegfient steps—a total
of 100 lines of TLA. We have completed the proof of the first refinement and most
of the proof of the second. The first refinement proof is 55€dilong; we estimate
that the second will be somewhat over 1000 lines.

Tuning the back-end provers has made them more powerfulinggkoofs easier to
write. While writing machine-checked proofs remains tine® and more time consum-
ing than we would like, it has not turned out to béidult once the proofidea has been
understood.

Acknowledgement§eorges Gonthier helped design the TLgroof language. Jean-
Baptiste Tristan wrote the (incomplete) Paxos proof.

References

1. TLAPS web-sitehttp://www.msr-inria.inria.fr/~doligez/tlaps.
. TLA* Toolbox. http://www.tlaplus.net/tools/tla-toolbox/.

3. B. Alpern and F. B. Schneider. Defining livenedsf. Process. Let}.21(4):181-185, Oct.
1985.

4. R.Bonichon, D. Delahaye, and D. Doligez. Zenon : An exit#esutomated theorem prover
producing checkable proofs. In N. Dershowitz and A. Voronlaxlitors,Proc. 14th LPAR
pages 151-165. Springer LNCS 4790, Oct. 2007.

5. T. Bouton, D. C. de Oliveira, D. Déharbe, and P. FontainexiTv An open, trustable and
efficient SMT-solver. In R. Schmidt, editoEADE 22 pages 151-156, Montreal, Canada,
2009. Springer LNCS 5663.

6. A. Chaieb and T. Nipkow. Proof synthesis and reflectionlifezar arithmetic. Journal of
Automated Reasoning1:33-59, 2008.

7. K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. A TLRroof System. In G. Sut-
cliffe, P. Rudnicki, R. Schmidt, B. Konev, and S. Schulz, editdfstkshop on Knowledge
Exchange: Automated Provers and Proof Assistamisnber 418 in CEUR Workshop Pro-
ceedings, pages 17-37, 2008.

8. P. Corbineau. A declarative proof language for the Cofpassistant. In F. Honsell,
M. Miculan, and I. Scagnetto, editorgforkshop on Types for Proofs and Prograrpages
69-84, Udine, Italy, 2007. Springer LNCS 4941.

9. E. Gafni and L. Lamport. Disk PaxoBistributed Computing16(1):1-20, 2003.

10. L. Lamport. Proving the correctness of multiprocesgams. IEEE Trans. Softw. Eng.
SE-3(2):125-143, Mar. 1977.

11. L. Lamport. How to write a proofAmerican Mathematical Monthly102(7):600-608, Aug.
1995.

12. L. Lamport.Specifying System#ddison-Wesley, Boston, 2003.

13. L. C. Paulson.Isabelle: A Generic Theorem ProveSpringer Verlag LNCS 828, Berlin,
Heidelberg, 1994.

14. P. Rudnicki. An overview of the Mizar project. Morkshop on Types for Proofs and
Programs pages 311-332, Bastad, Sweden, 1992.

15. M. Wenzel. The Isabellsar reference manual, Dec. 2009.
http://isabelle.in.tum.de/dist/Isabelle/doc/isar-ref.pdf.

N

