Beluga: A Framework for Programming and
Reasoning with Deductive Systems
(System Description)

Brigitte Pientka and Joshua Dunfield

McGill University, Montréal, Canada
{bpientka, joshua}@cs.mcgill.ca

Abstract. Beluga is an environment for programming and reasoning
about formal systems given by axioms and inference rules. It implements
the logical framework LF for specifying and prototyping formal systems
via higher-order abstract syntax. It also supports reasoning: the user
implements inductive proofs about formal systems as dependently typed
recursive functions. A distinctive feature of Beluga is that it not only rep-
resents binders using higher-order abstract syntax, but directly supports
reasoning with contexts. Contextual objects represent hypothetical and
parametric derivations, leading to compact and elegant proofs. Our test
suite includes standard examples such as the Church-Rosser theorem,
type uniqueness, proofs about compiler transformations, and preserva-
tion and progress for various ML-like languages. We also implemented
proofs of structural properties of expressions and paths in expressions.
Stating these properties requires nesting of quantifiers and implications,
demonstrating the expressive power of Beluga.

1 Introduction

Beluga is an environment for programming with and reasoning about deduc-
tive systems. It uses a two-level approach. The data level implements the logical
framework LF [3], which has been successfully used to define logics and repre-
sent derivations and proofs. Its strength and elegance comes from supporting
encodings based on higher-order abstract syntax (HOAS), in which binders in
the object language are represented as binders in LF’s meta-language.

On top of LF, we provide a computation level that supports analyzing and
manipulating LF data via pattern matching. A distinctive feature of Beluga is
explicit support for contexts and contextual objects, which concisely character-
ize hypothetical and parametric derivations (proof objects). These contextual
objects are analyzed and manipulated naturally by pattern matching.

The Beluga system is unique in having context variables, allowing generic
functions that abstract over contexts. As types classify terms, context schemas
classify contexts. Contexts whose schemas are superficially incompatible can be
reasoned with via context weakening and context subsumption.

The main application of Beluga is to prototype deductive systems together
with their meta-theory. Deductive systems given via axioms and inference rules

are common in the design and implementation of programming languages, type
systems, authorization and security logics, and so on. In Beluga, inductive proofs
about deductive systems are directly implemented as recursive functions that
case-analyze some given (possibly hypothetical) derivations. At the same time,
Beluga serves as an experimental framework for programming with proof objects,
useful for certified programming and proof-carrying code [6].

Beluga is implemented in OCaml. It provides a completely new implementa-
tion of LF [3] together with type reconstruction, constraint-based higher-order
unification and type checking. In addition, it provides a computation language
that supports writing dependently-typed recursive functions over contextual ob-
jects and explicit contexts. Building on our earlier work [10,11], we designed a
palatable source language. To achieve a practical system, we implemented bidi-
rectional type reconstruction for dependently typed functions.

We tested our implementation of LF type reconstruction on many examples
from the Twelf repository [7] and found its performance competitive. We also
implemented a broad range of proofs as recursive Beluga functions, including
proofs of the Church-Rosser theorem, proofs about compiler transformations,
subject reduction, and translation from natural deduction to Hilbert style. To
illustrate the expressive power of Beluga, our test suite includes simple theorems
about structural relationships between expressions and proofs about the paths
in expressions. These latter theorems have nested quantifiers and implications,
placing them outside the fragment of propositions expressible in systems such
as Twelf. Type reconstruction of these proofs takes less than a second. Finally,
Beluga provides an interpreter, based on a lazy environment-based semantics,
to execute computation-level programs.

The Beluga system, including source code, examples, and an Emacs mode,
is available from http://complogic.cs.mcgill.ca/beluga/.

To provide an intuition for what Beluga accomplishes and how it is used, we
first present a type uniqueness proof in Beluga. Section 3 compares Beluga to
systems with similar applications. Section 4 discusses Beluga’s implementation.

2 Example: Type Uniqueness

To illustrate the core ideas behind Beluga, we implement a proof of type unique-
ness for the simply-typed lambda-calculus (STLC). First, we briefly review how
to represent the STLC and its typing rules in LF.

tp: type . exp: type .

nat: tp. lam : tp — (exp—exp) — exp.
arr: tp — tp — tp. app : exp — exp — exp.

oft: exp — tp — type. equal: tp — tp — type.

t_app: oft El (arr T2 T) — oft E2 T2 °-rof: equal T'T.

— oft (app E1 E2) T.

t_lam: ({x:exp} oft x T1 — oft (E x) T2)
— oft (lam T1 E) (arr T1 T2).

The first part states that nat is a data-level type tp and that arr takes two
arguments of type tp and constructs a tp. To represent A\-term constructors, we
use higher-order abstract syntax: The constructor lam takes a tp and the body
of the abstraction, of type (exp — exp). For example, lam x:nat . z is represented
by lam nat Ax.x. In the second part, we represent the typing judgment M : T
in our object language by an LF type oft, and the typing rules are represented
by LF type constants t_app and t_lam.

The rule t_app encodes the typing rule for applications: from derivations of
oft E1 (arr T2 T) and oft E2 T2 we get oft (app E1 E2) T. The rule t_lam uses
a parametric hypothetical derivation “for all x assuming oft x T1 we can derive
oft (E x) T2”, represented as a function type {x:exp} oft x T—oft (E x) T2.
Finally, we define the equality judgment, which simply encodes reflexivity.

The above is standard in LF. We now state type uniqueness:

Theorem. IfI'+oft E T and '+ oft E T’ then equal T T’.

This statement makes explicit the context I' containing variable typing as-
sumptions. Note that while terms E can depend on variables declared in I'; no
variables can occur in the types T and T’, though this is not captured by the
statement above.

The theorem corresponds to a type of a recursive function in Beluga. Before
showing how to implement it, we describe more precisely the shape of contexts
I', using a context schema declaration:

schema tctx = some [t:tp] block x:exp. oft x t;

The schema tctx describes a context containing assumptions x: exp, each asso-
ciated with a typing assumption oft x t for some type t. Formally, we are using
a dependent product X' (used only in contexts) to tie x to oft x t. We thus do
not need to establish separately that for every variable there is a unique typing
assumption: this is inherent in the definition of tctx.

We can now state the Beluga type corresponding to the statement above:

{g:tctx} (oft (E ..) TD[g] — (oft (E ..) T’)[g] — (equal T T’)[]

Read it as follows: for all contexts g of schema tctx, given derivations of
(oft (E..) T)[g] and of (oft (E..) T’) [g] we can construct a derivation of
(equal TT’)[1. The [] means the result is closed. As we remarked, only the
term E can contain variables; the type T is closed. Although we did not state
this dependency in the on-paper statement, Beluga distinguishes closed objects
from objects depending on assumptions. To describe the dependency of E on the
context g, we write (E ..) associating .. with the variable E. (Technically, .. is
an identity substitution mapping variables from g to themselves.) In contrast, T
by itself denotes a closed tp that cannot depend on hypotheses in g.

The proof of type uniqueness is by case analysis on the first derivation.
Accordingly, the recursive function in Figure 1 pattern-matches on the first
derivation d, of type (oft (E..) T) [g]. The first two cases correspond to d
concluding with t_app or t_lam. The third case corresponds to when d derives
(oft (E..) T) [g] by using a declaration from the context g. If the context were

rec unique : {g:tctx} (oft (E ..) T)[g]
— (oft (E ..) T?)I[g]
— (equal T T’)[]
=fn d= fn £ = case 4 of
| [g]l t_app (D1 ..) (D2 ..) = % Application case
let [g] t_app (F1 .) (F2 .) = £ in
let [] e_ref = unique ([g]l D1 ..) ([gl F1 .)) in
[1 e_ref

| [g] t_lam (\x.\u. D .. x u) = % Abstraction case
let [g] t_lam (\x.\u. F .. x u) = £f in
let [] e_ref = unique ([g,b:block x:exp.oft x _ 1 D ..b.1 b.2)
([g,b] F .. b.1 b.2) in

[1 e_ref
| [g] #q9.2 .. = % d :oft #q.1 T % Assumption case
let [g] #r.2 .. =£f in % £ :oft #q.1 T’
[] e_ref ;

Fig. 1. Implementation of type uniqueness in Beluga

concrete, we could simply refer to the concrete variable names listed, but our
function is generic for any context g. So we use a parameter variable #q that
stands for some declaration in g.

The first (application) case is essentially a simpler version of the second
(abstraction) case, so we omit the application case.

Abstraction case: If the first derivation d concludes with t_lam, it matches the
pattern [g] t-1am (Ax.Au.D .. x u), and is a contextual object in the context g of
type oft (lam T1 (Ax. EO .. x)) (arr T1 T2). Thus, E.. = lam T1 (Ax. EO .. x)
and T = arr T1 T2. Pattern matching—through a let-binding—serves to invert
the second derivation f, which must have been by t_lam with a subderiva-
tion F1 .. xu deriving oft (EO .. x) T2’ that can use x, u:oft x T1, and as-
sumptions from g. Hence, after pattern matching on d and f, we know that
E=1am T1 (Ax. EO..x) and T=arr Tl T2 and T’ = arr T1 T2’.

The use of the induction hypothesis on D and F in a paper proof corre-
sponds to the recursive call to unique. To appeal to the induction hypothe-
sis, we need to extend the context by pairing up x and its typing assumption:
g, b:block x:exp. oft x T1. In the code, we wrote an underscore _ instead of T1,
which tells Beluga to reconstruct it. (We cannot write T1 there without binding
it by explicitly giving the type of D, so it is much easier to write _.) To retrieve
x we take the first projection b. 1, and to retrieve x’s typing assumption we take
the second projection b.2. Note that while unique’s type says it takes a context
variable {g:tctx}, we do not pass it explicitly; Beluga infers it from the context
g, b:block x:exp. oft x _in the first argument passed.

Now we can appeal to the induction hypothesis using D1 ..b.1b.2 and
F1..b.1b.2 in the context g,b:block x:exp. oft x T1. We pass three argu-
ments: the context g and two contextual objects. From the i.h. we get a contex-

tual object, a closed derivation of (equal (arr T1 T2) (arr T1 T2’))[]. The
only rule that could derive this is e_ref, and pattern matching establishes that
T2 must equal T2, and hence arr T1 T2 = arr T1 T2, i.e. T = T’. Hence, there
is a proof of [] equal T T’, and we can finish with the reflexivity rule e_ref.

Assumption case: Here, we must have used an assumption from the context g
to construct the derivation d. Parameter variables #q allow a generic case that
matches a declaration block x:exp.oft x S for any S in g. Since our pattern
match proceeds on typing derivations, we want the second component, written
#q.2. The pattern match on d also establishes that E = #q.1 and S = T. Next,
we pattern match on f, which has type oft (#q.1 ..) T’ in the context g. Clearly,
the only possible way to derive f is by using an assumption from g. We call
this assumption #r, standing for a declaration block y:exp. oft y S, so #r.2
refers to the second component oft (#r.1 ..) S’. Pattern matching between
#r.2 and f also establishes that both types are equal and that S’ = T’ and
#r.1 = #q.1. Finally, we observe that #r.1 = #q.1 only if #r is equal to #q.
Consequently, both parameters have equal types, and S = 8> = T = T’. (In
general, unification in the presence of X-types does not yield a unique unifier,
but in Beluga only parameter variables and variables from the context can be of
Y type, yielding a unique solution.)

3 Related Work

There are many approaches for specifying and reasoning about formal systems.
Our work builds on the experience with Twelf [7], which provides a meta-
language for specifying, implementing and reasoning about formal systems using
higher-order abstract syntax. However, proofs in Twelf are relations; one needs
to prove separately that the relation constitutes a total function and Twelf sup-
ports both termination and coverage checking.

A second key difference is that Twelf does not explicitly support contexts
and contextual data; contexts (worlds) in Twelf are implicit. Consequently, it is
not possible to distinguish between different contexts within the same statement
and base cases are scattered.

The third key difference is its expressiveness. In Twelf, we can only encode
forall-exists statements, while Beluga directly handles a larger class of state-
ments. An example is the statement that if, for all paths P through a lambda-
term M, we know that P also characterizes all paths through another term N,
then M and N must be equal.

Delphin [12] is closest to Beluga. Its implementation uses much of the Twelf
infrastructure, but proofs are implemented as functions (like Beluga) rather than
relations. As in Twelf, contexts are implicit with similar consequences. To have
more fine-grained control over assumptions which we typically track in a context,
Delphin users can use a continuation-based approach where the continuation
plays the role of a context and must be explicitly managed by the programmer.

Abella [2] is an interactive theorem prover for reasoning about specifications
of formal systems. Its theoretical basis is different, but it supports encodings

based on higher-order abstract syntax. However, contexts are not first-class and
must be managed explicitly. For example, type uniqueness requires a lemma that
each variable has a unique typing assumption, which comes for free in Beluga.

Finally, the Hybrid system [5] tries to exploit the advantages of HOAS within
the well-understood setting of higher-order logic as implemented by systems such
as Isabelle and Coq. Hybrid provides a definitional layer where higher-order
abstract syntax representations are compiled to de Bruijn representations, with
tools for reasoning about them using tactical theorem proving and principles of
(co)induction. This is a flexible approach, but contexts must be defined explicitly
and properties about them must be established separately.

4 Implementation

Beluga is implemented in OCaml. It provides a complete reimplementation of
the logical framework LF. Similarly to the Twelf core, Beluga supports type
reconstruction for LF signatures based on higher-order pattern unification with
constraints. In addition, we designed and implemented a type reconstruction
algorithm for dependently-typed functions on contextual data.

Type reconstruction is, in general, undecidable for the data level (that is,
LF) and for the computation level. For LF, our algorithm reports a principal
type, a type error, or that the source term needs more type information. For
our computation language, we check functions against a given type and either
succeed, report a type error, or fail by asking for more type information. It is
always possible to make typing unambiguous by adding more annotations.

An efficient implementation of higher-order unification is crucial to this. For
higher-order patterns [4], we implemented a unification algorithm [8] and, simi-
larly to Twelf, extended it with constraints. We also extended the algorithm to
handle parameter variables and X-types for variables.

Beluga also supports context subsumption, so one can provide a contextual
object in a context ¥ in place of a contextual object in some other context &,
provided ¥ can be obtained by weakening &. This mechanism, similar to world
subsumption in Twelf, is crucial when assembling larger proofs.

Finally, Beluga includes an interpreter with a lazy environment-based opera-
tional semantics. This allows us to execute Beluga programs, producing concrete
derivations and other LF data.

In the future, we plan to address two significant issues.

Totality. Type-checking guarantees local consistency and partial correctness,
but does not guarantee that functions are total. Thus, while we can implement,
partially verify, and execute functions about derivations in deductive systems,
Beluga does not currently guarantee the validity of a meta-proof. The two miss-
ing pieces are coverage and termination. We formulated an algorithm [1] to
ensure that all cases are covered, and plan to implement it over the next few
months. Verifying termination will follow ideas in Twelf [13,9] for checking that
arguments in recursive calls are indeed smaller.

Automation. Currently, the recursive functions that implement induction proofs
must be written by hand. We plan to explore how to enable the user to inter-
actively develop functions in collaboration with theorem provers that can fill in
parts of functions (that is, proofs) automatically.

References

1.

10.

11.

12.

13.

J. Dunfield and B. Pientka. Case analysis of higher-order data. In Interna-
tional Workshop on Logical Frameworks and Meta-Languages: Theory and Prac-
tice (LFMTP’08), volume 228 of Electronic Notes in Theoretical Computer Science
(ENTCS), pages 69-84. Elsevier, June 2009.

A. Gacek. The Abella interactive theorem prover (system description). In 4th
International Joint Conference on Automated Reasoning, volume 5195 of Lecture
Notes in Artificial Intelligence, pages 154—161. Springer, Aug. 2008.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143-184, January 1993.

D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation, 1(4):497-536,
1991.

A. Momigliano, A. J. Martin, and A. P. Felty. Two-Level Hybrid: A system for
reasoning using higher-order abstract syntax. In International Workshop on Log-
ical Frameworks and Meta-Languages: Theory and Practice (LFMTP’07), volume
196 of FElectronic Notes in Theoretical Computer Science (ENTCS), pages 85-93.
Elsevier, 2008.

G. C. Necula. Proof-carrying code. In 24th Annual Symposium on Principles of
Programming Languages (POPL’97), pages 106-119. ACM Press, Jan. 1997.

F. Pfenning and C. Schiirmann. System description: Twelf — a meta-logical frame-
work for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th Inter-
national Conference on Automated Deduction (CADE-16), volume 1632 of Lecture
Notes in Artificial Intelligence, pages 202—206. Springer, 1999.

B. Pientka. Tabled higher-order logic programming. PhD thesis, Department of
Computer Science, Carnegie Mellon University, 2003. CMU-CS-03-185.

B. Pientka. Verifying termination and reduction properties about higher-order
logic programs. Journal of Automated Reasoning, 34(2):179-207, 2005.

B. Pientka. A type-theoretic foundation for programming with higher-order ab-
stract syntax and first-class substitutions. In 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’08), pages
371-382. ACM Press, 2008.

B. Pientka and J. Dunfield. Programming with proofs and explicit contexts. In
ACM SIGPLAN Symposium on Principles and Practice of Declarative Program-
ming (PPDP’08), pages 163-173. ACM Press, July 2008.

A. Poswolsky and C. Schiirmann. System description: Delphin—a functional pro-
gramming language for deductive systems. In International Workshop on Logical
Frameworks and Meta-Languages: Theory and Practice (LFMTP’08), volume 228
of Electronic Notes in Theoretical Computer Science (ENTCS), pages 135-141.
Elsevier, June 2009.

E. Rohwedder and F. Pfenning. Mode and termination checking for higher-order
logic programs. In H. R. Nielson, editor, Proceedings of the European Symposium
on Programming, pages 296-310, Linkoping, Sweden, Apr. 1996. Springer-Verlag
Lecture Notes in Computer Science (LNCS) 1058.

