Herod and Pilate:
two Tableau Provers for Basic Hybrid
Logic

Serenella Cerrito Marta Cialdea Mayer
Lab. Ibisc Dipart. Informatica e Automazione
Université d’Evry Val d’Essonne, Universita di Roma Tre
France Italy

This is a draft version of a paper published on the Proceedings of
IJCAR 2010. It should not be cited, quoted or reproduced.

Abstract

This work presents two provers for basic hybrid logic HL(@), which
have been implemented with the aim of comparing the internalised tableau
calculi independently proposed, respectively, by Bolander and Blackburn
[3] and Cerrito and Cialdea Mayer [5]. Experimental results are reported,
evaluating, from the practical point of view, the different treatment of
nominal equalities of the two calculi.

1 A Brief Presentation of the Calculi P and H

The treatment of nominal equalities in proof systems for hybrid logics may eas-
ily induce many redundancies. In fact, when processing a statement of the form
@,b, any known property of a can potentially be copied to b (and vice-versa).
This work compares, from a practical point of view, two different approaches to
nominal equalities, represented by two internalised tableau calculi for HL(Q@),
both terminating without loop-checking and with no restriction on rule applica-
tion strategies. The two calculi were independently proposed, respectively, in [3]
and [5] (a revised and extended version of the latter is [4]). The main difference
between them is the treatment of nominal equalities, that is essentially carried
out by means of an elegant and simple rule in the first calculus ([3], here named
P), which copies formulae labelled by a to the equal nominal b (the Id rule),
while the second ([4, 5], the calculus H) uses a more technically involved rule,
requiring explicit substitution (the Sub rule).

An analysis and comparison of P and H, highlighting their respective similar-
ities and differences from a theoretical point of view can be found in [7], where
also an application-oriented, though abstract, reformulation of the expansion
rules can be found. This presentation describes the implementations and some
experimental results, run on sets of formulae randomly generated by hGen [1].

The experiments show that the approach to nominal equalities in H, although
theoretically less elegant than P’s, has important practical advantages. The
systems are also briefly compared to other implemented tableau provers. We
omit here the definition of the syntax and semantics of HL(@), which can be
found in any work on hybrid logic.

Since the provers only deal with the uni-modal version of HL(@), the (nec-
essarily brief and informal) description of the tableau systems that follows is re-
stricted accordingly. Differently from [4, 5, 7], for the sake of simplicity, tableaux
are presented here in the “nodes as formulae” style. Assuming that input for-
mulae are in negation normal form, tableau nodes in both P and H are labelled
by satisfaction statements, i.e. formulae of the form @, F, where F' is in nega-
tion normal form. The initial tableau for a set .S of formulae is a single branch
tableau whose nodes are labelled by @Q,F', for each F' € S, where a is a new
nominal. The set {Q,F | F € S} is called the initial set.

The two systems share the following expansion rules:

Qq(F AG) Q. (FVG)) Q,Q,F
Q,F,Q,G Q,F | Q.G Q,F (@
Q,0F, @, b Q. OF

aF (O) @.0b. Gy F (©) where b is new in the branch
The <-rule is subject to some restrictions that will be given later on.

It is assumed that a formula is never added to a branch where it already
occurs and that the <-rule, which generates new nominals, is never applied
twice to the same premise on the same branch. A tableau branch is closed if
it contains either @,p and @Q,—p for some nominal a and atom p, or @Q,—a for
some nominal a.

A formula of the form @, b, where b is a nominal, is a relational formula. A
relational formula generated by application of the <-rule is called an accessibility
formula. The system P restricts the applicability of the ¢-rule to cases where
its premise @,<F is not an accessibility formula, while in H it is restricted to
cases where @Q,<F is not a relational formula.

If a nominal b is introduced in a branch © by application of the <-rule to
a premise of the form @,OF, then we say that b is a child of a, and use the
notation a <g b . The relation <g™ is the transitive closure of <g. If a -<g b
we say that b is a descendant of a and a an ancestor of b in the branch ©.

The essential difference between the two calculi consists in the treatment
of nominal equalities. In P, such formulae are expanded by means of the two
premises rule Id, which is applicable only if @, F' is not an accessibility formula:

Q. F, Qb

a,F (Id)

The system H treats equalities by means of a more complex rule, with side
effects, the Substitution rule (Sub). When expanding a formula of the form @,b
(where a # b) by means of Sub in a branch O, the whole branch is modified as
follows: every occurrence of a is replaced by b, and every formula containing a
descendant of a is deleted.

The two rules for the treatment of equalities are apparently very different.
However, they bear strong similarities, which are highlighted in [7]. We only

observe here that the restriction on the Id rule, and nominal deletion in the Sub
rule, are crucial to ensure strong termination of the respective systems. And
their role is similar: avoiding the “adoption” of a replaced nominal’s children by
the replacing one. In simple words, we can say that the main difference between
the two systems is that P is more tolerant than H: even when the descendants
of a nominal are of no use any longer, they are left alive, since they are not
harmful, either. H, on the contrary, is radical and bloody: when a nominal
becomes useless, it is killed with all its descent.

Nominal deletion in H has a practical advantage, avoiding the employment
of resources to expand formulae labelled by “useless” nominals. It can therefore
be conjectured that the treatment of nominal equalities in H might be more
efficient than in P. In order to verify such an hypothesis, the calculi P and H
have been implemented, as described in the next section.

2 Pilate and Herod

The system Pilate (“What crime has he committed?”) implements the calculus
P, and Herod is the implementation of the slaughter of the innocents repre-
sented by H. The two systems are implemented in Objective Caml [12] and are
available at Herod web page [13]. In the rest of this section a description of the
implementations is given, with some simplifications and abstractions.

Both systems take as input a file specifying a set of hybrid formulae and build
a tableau for them in a depth-first manner. If a complete and open branch is
found, then a model of the initial set of formulae is extracted from it and given as
output. Otherwise, the set is declared unsatisfiable. At any stage of the search
process, the systems consider a single active branch, the others being kept in a
stack, where the branching points are stored and retrieved upon backtracking.

A branch O is represented by a set (implemented by a hash table) of worlds.
Each world w corresponds to a nominal occurring in the branch and is a structure
(arecord) with the following fields: name(w) stores the nominal a corresponding
to w; pending(w) contains the formulae labelled by a (a=name(w)) in O, that
still have to be processed; memory(w) contains the formulae labelled by a in
© that have already been processed but have to be kept in memory for future
use (i.e. literals and formulae of the form OF and OF); children(w) is a set of
pointers to the children of a in O, i.e. the nominals b such that a <g b.

In the implementation of Herod, beyond the set of its worlds, each branch
is associated a table of replacements, that is updated with the application of
the substitution rule, and used whenever accessing a nominal, looking for its
presently replacing nominal. Substitution is in fact treated in a lazy way. In
the following, we shall denote the nominal replacing a by replaces(a), meaning
that replaces(a) = a if a has not been replaced in the branch.

The expansion loop obeys the following basic principle: for each world w,
memory(w) is “saturated” with respect to any rule application, in the sense
that every formula (or pair of formulae) in memory(w) has been expanded. At
each stage, a world w is chosen for expansion and a formula F' selected from
pending(w). According to the form of F', different operations are performed.

e If F is a literal ¢, then its consistency is checked with respect to the
literals in memory(w). If the branch is closed, then the systems backtrack;

otherwise, if ¢ is not a nominal, it is moved to memory(w) and if it is a
nominal, the respective rules for equalities, described below, are fired.

e If F' is either a disjunction, or a conjunction or a satisfaction statement,
its expansion (or, in the case of a disjunction, one of its expansions, the
other being recorded in the stack) is added to pending(w) and F is deleted.

The treatment of the other rules differs in the two systems. We begin by
describing Herod.

H1. The expansion of a formula of the form ¢F in a world w causes the moving
of OF from pending(w) to memory(w), the creation of a new world w’ with
F epending(w’), and the addition of w’ to children(w).

H2. The O-rule in Herod is fired whenever the selected formula has the form
of one of its premises: if it has the form OF, then the O-rule is applied to
it and each formula of the form b €memory(w). Moreover, it is applied
to each Ob implicitly represented by children(w). Symmetrically, if the
extracted formula has the form <b, then the O-rule is applied to it and
each formula of the form OF €memory(w). The obtained expansions are
in both cases added to pending(w).

H3. Finally, if the selected formula is a nominal b, the substitution rule is fired.
If w’ is the world representing b, then: (a) every formula in pending(w)
is copied to pending(w’); (b) every formula of the form OF €memory(w)
is copied to pending(w’); (c) every formula of the form OF €memory(w) is
copied to memory(w') and the O-rule is fired against each Ge €memory(w’)
and the children of w’; (d) the literals in memory(w) are added to memory(w’),
after a consistency check. Finally, the table of replacements is updated,
and the world w and, recursively, all its descendants are deleted. This suf-
fices to implement nominal deletion; in fact, every information related to a
descendant w” of w is contained either in w” itself, or in its parent, which
is either w or, in turn, a descendant of w (that is deleted altogether).

Let us now turn to consider the implementation of the Id rule in Pilate.
The basic principle is always that the set in memory(w) has to be maintained
saturated with respect to every rule application. Therefore:

P1. When an equality @Q,b is processed, i.e. a nominal b is chosen from pend-
ing(w) for some world w with name(w)=a, it is moved to memory(w) and
the Id rule is fired against @,b and: (a) any already processed formula of
the form @, F that is not an accessibility formula, yielding @,F (i.e. F
is added to to the pending field of the world w’ representing b — provided
that F is not already in memory(w’)); (b) any already processed formula
of the form @,¢, producing @Q.b (i.e. for all nominal ¢ in memory(w), b is
added to the pending field of the world w’ representing ¢ — provided that
b is not already in memory(w’)); and, finally (c) Id is applied to @,b and
@b itself, if a # b (producing @b, i.e. b is added to the pending field
of the world representing b); such an operation is in fact necessary for
completeness. The membership tests are needed in order to avoid that, in
the presence of a looping chain of equalities, formulae are copied forever,
passing from the memory of a node to the pending formulae of another
one and then back to the pending formulae of the first one.

The symmetric case is subtler, since the leftmost premise of the Id rule can have
any form. Pilate’s treatment consists in firing the Id rule against any memorised
equality every time a formula is moved to memory(w):

P2. when processing a literal or a formula of the form OF or OF chosen from
a world w with name(w)=a, beyond the operations performed by Herod
(H1 and H2), the Id rule is fired against such a formula and any already
processed equality of the form @b (i.e. any nominal in memory(w), and
the results are added to the pending field of the world representing b).

3 Experimental Results

The relative performances of Herod and Pilate have been evaluated running the
provers on a set of 1600 sets of formulae, randomly generated by hGen [1], and
approximately equally partitioned into satisfiable and unsatisfiable. The modal
depth (greatest number of nested modal operators) of the tests varies from 10
to 40, and the number of clauses varies from 60 to 200. The sets of formulae
used for the benchmarks and the parameters used for their generation can be
found at Herod web page [13]. The experiments were run on an Intel Pentium
4 3GHz, with 3Gb RAM, running under Linux, and the provers were given 1
minute timeout.

Considering the 1274 tests that both Pilate and Herod solved in the allowed
time, Pilate is in the average more than 50 times slower than Herod, and the
median run time of Pilate is more than 5 times Herod’s one.! Moreover, Pilate
runs out of time almost 50% more often than Herod. The diagram on the left
in Figure 1 plots the average run time of the two systems against the number
of clauses of the tests solved by both provers. In the the diagram, points on the
X-axis group all sets with the same number of clauses, independently of their
modal depth. Pilate seems to be more sensible to the phase transition in the
easy-hard-easy pattern of the benchmarks [8].

T rv— T T T T y e

Herod “Herod"
4r L

time (s)
time (s)

60 80 100 120 140 160 180 200 20 40 60 80 100 120 140
number of clauses size

Figure 1: Pilate and Herod average run times

Maybe more interesting is the comparison between the two systems on a
set of hand-written formulae which involve many <¢’s and equalities, where the
differences in treating equalities should be pushed to the limit. The formulae
we have used have the form @Q,, ¢ (Qg a2 A ... AQ, an41 ACF), where O™ is a

1The median times are computed counting timeouts as values greater than all the others.

sequence of n O’s; dominating n nominal equalities, and F' is a (non trivially)
unsatisfiable formula. Processing such formulae forces the provers to generate n
new worlds before processing the equalities. The size of such formulae is taken
to be n. The results are represented by the diagram on the right in Figure 1.
As can be seen, Pilate can only solve problems up to size 100 in the allowed
time of one minute, while Herod solved the problems up to the maximal tested
size (600), within 0.11 seconds.

The empirical results described above confirm that Pilate consumes, in gen-
eral, more resources than Herod. It is important to point out, moreover, that the
different performances are effectively due to the different treatment of equalities.
In fact, on a set of 400 modal formulae (without nominals and satisfaction oper-
ators) randomly generated by hGen, of modal depth varying from 30 to 70, the
two provers had the same cases of timeouts and the same average and median
execution times. The same results, showing that that all the difference between
the systems is due to their treatment of equalities, are obtained when running
the two provers on the hand-tailored collection of modal formulae proposed in
[2], where in fact Pilate and Herod show the same behaviour.

It must be remarked, however, that Pilate constitutes a more or less “ad lit-
eram” implementation of P and that more effective ways of treating its Id rule
can be conceived. For this reason, Herod has been compared with HTab [11],
which implements the prefixed calculus presented in [3]. HTab implements equal-
ity by means of equivalence classes of nominals and prefixes, that are created,
enlarged and merged while the tableau construction proceeds. Many redundan-
cies are avoided by processing only formulae true at the representative of each
class. However, in HTab, the descendants of any nominal are always expanded,
thus consuming time and space. The comparison has also considered another
prover, Spartacus [10].2 Spartacus processes nominal equalities by merging the
content of the corresponding “nodes”, and electing one of them as the repre-
sentative of both [9]. Both HTab and Spartacus are much more mature provers
than Herod, handling a richer logic and implementing many important optimi-
sation strategies. On the contrary, at present, the only simple rule application
strategy adopted by Herod, beyond semantic branching, consists of delaying
tableau branching as far as possible. And in fact, HTab and Spartacus behave
definitely much better than Herod when run on the set of hand-tailored collec-
tion of modal formulae presented in [2], as well as on hybrid formulae of a very
low modal depth (personal communication by the maintainer of HTab). The ex-
periments reported below aimed at testing whether Herod gains any advantage
from its treatment of equalities.

The three provers were run on the same sets of random formulae used for the
comparison with Pilate. As can be seen in the tables below, HTab could solve
95% of the tests in the allowed time (one minute) and space (7% more than
Herod), and Spartacus failed to solve only one test in the allowed one minute
time. Although the number of Herod’s failures is the highest one, surprisingly
enough its median run time is much better than HTab’s and Spartacus’s. More-
over, the average execution times on all the problems (modal depth 10 to 40)
solved by both Herod and HTab are in favour of Herod. In the average, more-
over, the execution times of Herod and Spartacus are comparable.

2In the tests, HTab 1.4.0 and Spartacus 1.0.1 were used, both run with the respective
default options.

modal Number of failures Median times
depth | Herod | HTab Spartacus | Herod | HTab Spartacus
10 56 22 1 0.02 0.07 0.07
20 47 12 0 0.02 0.14 0.12
30 44 24 0 0.03 0.20 0.16
50 42 24 0 0.04 0.29 0.21
total 189 82 1 0.03 0.16 0.13
Average times
Herod vs HTab Herod vs Spartacus
modal || number of tests | Average time number of tests Average time
depth || solved by both | Herod | HTab solved by both | Herod | Spartacus
10 340/400 0.16 0.12 344/400 0.16 0.06
20 348/400 0.03 0.21 353/400 0.03 0.11
30 347/400 0.03 0.27 356,/400 0.04 0.16
50 346,/400 0.25 0.31 358,/400 0.24 0.20
total 1381/1600 0.12 0.23 1411/1600 0.12 0.13

The efficiency of Herod’s treatment of equalities is apparent when compar-
ing the three systems on the set of hand-written formulae earlier defined. The
interest of such tests relies on the fact that they are meant not so much to com-
pare the provers in themselves, but rather their different treatments of nominal
equalities. The provers were run on formulae up to size 600. Herod employed
10 seconds to solve the problem of maximal size, while the execution times of
Spartacus and HTab were, respectively, of 24 and 28 seconds.

4 Concluding Remarks

The experimental results are encouraging and suggest that, although an impor-
tant refinement and optimisation work still has to be done, Herod’s approach
to nominal equalities is algorithmically interesting. In fact, although Herod is
still at a very early stage of development, the very nature of the treatment of
nominal equalities in H already gives rather good results, thanks to nominal
deletion that allows one to economize on the number of processed nominals.
Therefore it seems worth going on and refine its implementation, both by some
routine work that still can be done, as well as by studying and experimenting
more effective rule application strategies and the implementation of basic opti-
misation techniques. Moreover, Herod has to be extended to handle different
accessibility relations and the global and converse modalities [6].

Acknowledgements. The very first versions of Herod and Pilate were devel-
oped as a bachelor project at “Universita di Roma Tre” by Emanuele Benassi,
Fabio Giammarinaro and Chiara Varani.

References

[1] C. Areces and J. Heguiabehere. hGen: A random CNF formula generator
for hybrid languages. In Methods for Modalities 3 (M4M-3), Nancy, France,
2003.

[2] P. Balsiger, A. Heuerding, and S. Schwendimann. A benchmark method for
the propositional modal logics K, KT, S4. Journal of Automated Reasoning,
24(3):297-317, 2000.

[3]

[4]

8]

[12]

[13]

T. Bolander and P. Blackburn. Termination for hybrid tableaus. Journal
of Logic and Computation, 17(3):517-554, 2007.

S. Cerrito and M. Cialdea Mayer. An efficient approach to nominal equal-
ities in hybrid logic tableaux. Journal of Applied Non-classical Logics. To
appear.

S. Cerrito and M. Cialdea Mayer. Terminating tableaux for HL(@) without
loop-checking. Technical Report IBISC-RR-2007-07, Ibisc Lab., Université
d’Evry Val d’Essonne, 2007. (http://www.ibisc.univ-evry.fr/Vie/TR/
2007/IBISC-RR2007-07.pdf).

S. Cerrito and M. Cialdea Mayer. Tableaux with substitution for hybrid
logic with the global and converse modalities. Technical Report RT-DIA-
155-2009, Dipartimento di Informatica e Automazione, Universita di Roma
Tre, 2009.

M. Cialdea Mayer, S. Cerrito, E. Benassi, F. Giammarinaro, and C. Varani.
Two tableau provers for basic hybrid logic. Technical Report RT-DIA-145-
2009, Dipartimento di Informatica e Automazione, Universita di Roma Tre,
20009.

I. P. Gent and T. Walsh. The SAT phase transition. In Proceedings of the
Eleventh Furopean Conference on Artificial Intelligence (ECAI’94), pages
105-109, 1994.

D Goétzmann. Spartacus: A tableau prover for hybrid logic. Master’s thesis,
Saarland University, 20009.

D. Gotzmann, M. Kaminski, and G. Smolka. Spartacus: A tableau prover
for hybrid logic. In M4M6, number 128 in Computer Science Research
Reports, pages 201-212. Roskilde University, 2009.

G. Hoffmann and C. Areces. HTab: A terminating tableaux system for
hybrid logic. Electronic Notes in Theoretical Computer Science, 231:3-19,
2009. Proceedings of the 5th Workshop on Methods for Modalities (M4M-
5), 2007.

X. Leroy. The Objective Caml system, release 3.11. Documentation and
user’s manual. (http://caml.inria.fr/), 2008.

Herod web page. http://cialdea.dia.uniroma3.it/herod/, 2009.

