Skip to main content

Monotonicity Inference for Higher-Order Formulas

  • Conference paper
  • First Online:
Automated Reasoning (IJCAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6173))

Included in the following conference series:

Abstract

Formulas are often monotonic in the sense that if the formula is satisfiable for given domains of discourse, it is also satisfiable for all larger domains. Monotonicity is undecidable in general, but we devised two calculi that infer it in many cases for higher-order logic. The stronger calculus has been implemented in Isabelle’s model finder Nitpick, where it is used to prune the search space, leading to dramatic speed improvements for formulas involving many atomic types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Applied Logic, vol. 27. Springer, Heidelberg (2002)

    Book  Google Scholar 

  2. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL—lessons learned in formal-logic engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 19–36. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L. (eds.) ITP-10. LNCS. Springer, Heidelberg (to appear, 2010)

    Google Scholar 

  4. Claessen, K.: Private communication (2009)

    Google Scholar 

  5. Claessen, K., Sörensson, N.: New techniques that improve MACE-style model finding. In: MODEL (2003)

    Google Scholar 

  6. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  7. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  8. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge (2006)

    Google Scholar 

  9. Jackson, D., Shlyakhter, I., Sridharan, M.: A micromodularity mechanism. In: FSE/ESEC 2001, pp. 62–73 (2001)

    Google Scholar 

  10. Kuncak, V., Jackson, D.: Relational analysis of algebraic datatypes. In: Gall, H.C. (ed.) ESEC/FSE 2005 (2005)

    Google Scholar 

  11. McCune, W.: A Davis–Putnam program and its application to finite first-order model search: Quasigroup existence problems. Technical report, ANL (1994)

    Google Scholar 

  12. Momtahan, L.: Towards a small model theorem for data independent systems in Alloy. ENTCS 128(6), 37–52 (2005)

    MATH  Google Scholar 

  13. Nipkow, T.: Verifying a hotel key card system. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 1–14. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  15. Pnueli, A., Rodeh, Y., Strichman, O., Siegel, M.: The small model property: How small can it be? Inf. Comput. 178(1), 279–293 (2002)

    Article  MathSciNet  Google Scholar 

  16. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Weber, T.: SAT-Based Finite Model Generation for Higher-Order Logic. Ph.D. thesis, Dept. of Informatics, T.U. München (2008)

    Google Scholar 

  19. Zhang, J., Zhang, H.: SEM: A system for enumerating models. In: Kaufmann, M. (ed.) IJCAI 95, vol. 1, pp. 298–303 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blanchette, J.C., Krauss, A. (2010). Monotonicity Inference for Higher-Order Formulas. In: Giesl, J., Hähnle, R. (eds) Automated Reasoning. IJCAR 2010. Lecture Notes in Computer Science(), vol 6173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14203-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14203-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14202-4

  • Online ISBN: 978-3-642-14203-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics