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Abstract. Hadoop has been widely used in various clusters to build
scalable and high performance distributed file systems. However, Hadoop
distributed file system (HDFS) is designed for large file management. In
case of small files applications, those metadata requests will flood the
network and consume most of the memory in Namenode thus sharply
hinders its performance. Therefore, many web applications do not benefit
from clusters with centered metanode, like Hadoop. In this paper, we
compare our Fat-Btree based data access method, which excludes center
node in clusters, with Hadoop. We show their different performance in
different file I/O applications.
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1 Introduction

Recently, the “cloud” has attracted considerable attentions in high performance
and scalable distributed systems research. In these systems, a large number of
servers are lined up and work in parallel. Many distributed execution frame-
works have been proposed, in which, Map-Reduce [2] is one of the most famous
frameworks in these works. There are numerous academic and commercial im-
plementations of Map-Reduce framework because it offers a simple, functional
interface that transparently executes the computations on cluster architecture
with a good scalability.

The most popular and public available Map-Reduce based project is Hadoop
[8], an open source version under development by Apache Software Foundation.
Its core components include an implementation of Map-Reduce, with a primary
storage system called “Hadoop Distributed File System (HDFS)” to provide
a conceptually simple programming model and abstract away any knowledge of
where the data lives. Therefore, Hadoop has been widely used in both commercial
and academic world, and shows high performance in many parallel processing
tasks [9], [10].

On the other hand, many data access methods in parallel databases [3], [4],
[5], are other choices for data processing on the “cloud”. Besides the contributions
made by almost all the famous database vendors that are attracted in parallel
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databases over the past two decades, many ongoing academic projects are also
engaged to provide better performance, scalability and failure tolerance parallel
database systems [11], [12], [13], [14]. Although the parallel database and Map-
Reduce based systems may seem to target different applications, it is in fact
possible to write the parallel processing tasks for almost all the applications
with Map-Reduce jobs or database queries with these two systems, individually
[15]. Therefore, it is meaningful to have some comparisons between these two
systems for the users information.

In addition, in most recently, there is a new trends in the parallel processing
system which tries to build a hybrid system based on Map-Reduce framework
and Parallel DBMS to allow better code reusability, data independence and
automatic query optimization [15]. However, almost all the forerunners do not
achieve the performance of parallel databases as well as the scalability, fault
tolerance of MapReduce-based systems. One of the reasons is the different the
storage layers, the HDFS layer or DBMS layer, they adopted. Because these
storage layers have different performance in storing different size of data, it
seems interesting and necessary to compare these two basic systems in different
file I/O applications, and this comparison results may be referred in the design
of future hybrid Map-Reduce/DBMS systems.

The purpose of this paper is to show the different I/O performance of Hadoop
in the applications of different file sizes, especially for the small file I/O case. We
compare the time consumed by Hadoop and a parallel DBMS in initializing and
accessing all their data, individually. The overhead for accessing files in Hadoop
is then discussed. In addition, a parallel database system based on Fat-Btree
index [5] is introduced and used in this comparison, whose better scalability
and availability than the Hadoop’s are also shown through the experiments and
discussion.

The rest of the paper is organized as follows: Firstly, we present background
work in Section 2. Then we outline the different maintain cost in Hadoop and
parallel DBMS from architecture perspective in Section 3. In Section 4 we demon-
strate and analyze the different performance in Hadoop and parallel DBMS in
different file I/O applications through experimental results. Finally, we present
related work in Section 5 and conclude our work in Section 6.

2 Background

2.1 Map-Reduce

Map-Reduce model (Fig. 1) consists two main functions, called Map and Reduce.
In the “Map” function, the master node reads a set of “records”, chops it up

into smaller intermediate records in a form of new (key, value) pairs, during this
process, a “split” hash function partitions the records into R disjoint buckets.
Each map bucket is written to the processing node’s disk with these R output
files. Since each map instance is assigned a distinct portion of input “records”
by the scheduler, the total intermediate files created in this process is M*R,
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Fig. 1. Map-Reduce Model

if there are M such distinct portions. Then, “Reduce” function transferred the
intermediate files over network from the Map node’s local disks to individual
reducers, which is called “shuffle”. Note that all the intermediate records with
the same hash values are send into the same reducer and each reducer processes
or combines the records into the final output file.

The advantage of the Map-Reduce is that the parallel and distributed pro-
cesses are actuated automatically just by calling the MAP and Reduce operations
provided within this model. In contract, parallel DBMSs may require their pro-
grammers to participate into this process, like providing the Map and Reduce
processers with User Defined Functions and aggregation operations in DBMS.

2.2 Hadoop

Hadoop is an open source software for reliable, scalable, distributed computing
which has two main components: a freely available implementation of Map-
Reduce framework and a Hadoop Distributed File System (HDFS) [8].

HDFS is a distributed file system which is suitable for distributed processing
on commodity hardware. It replicas the datasets on multiple nodes to make the
data available even there is a failure of nodes. There are two kinds of nodes in
HDFS: a metadata server called Namenode and a large number of data storage
nodes called Datanode. The Namenode is in charge of all metadata and system
actions data within the HDFS. The Datanode is in charge of all read/write and
data replication requests according to the direction from Namenode. Because
there is only one Namenode in Hadoop and it keeps all the metadata in main
memory, it appears to be the bottleneck for handling metadata requests in the
applications, especially for the applications on small files [16]. In addition, this
critical Namenode introduces an SPOF (Single Point of Failure) of the system,
which is not easy to remove [24].
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2.3 Fat-Btree

The Fat-Btree is a kind of parallel B-tree structure, which is proposed to provide
dynamic data management, high throughput and efficient skew handling [5].

As shown in Fig. 2, the leaf pages of the parallel B-tree are distributed
among the “Process Elements” (PEs). Each PE has a subtree of the whole B-
tree containing the root node and intermediate index nodes between the root
node and leaf nodes allocated to that PE. In the Fat-Btree structure, index
nodes close to the root node have multiple copies but with a relatively low
update frequency, on the other hand, leaf nodes have a relatively high update
frequency but are not duplicated. Thus, nodes with higher update frequencies
have lower synchronization overhead. Therefore, the maintain cost in Fat-Btree
is much lower than the ordinary parallel Btree structure, such as Copy-Whole-
Btree and Single-Index-Btree [5]. We have proposed a parallel database system
based on this Fat-Btree index in [20].

PE0 PE1 PE2 PE3

root page

leaf page

index page

Fig. 2. A Fat-Btree

3 System Discussion

In this section, we discuss some of the system operation cost in Hadoop and
Fat-Btree DBMS.

In Hadoop architecture, Map-Reduce model offers a simple, functional inter-
face for distributed processing, while HDFS provides a reliable, shared virtual
storage device.

HDFS stores the datasets and all the intermediate results which are gener-
ated during Map-Reduce processes across multiple nodes. In addition, HDFS
cannot be directly mounted on an existing operating system, like Google File
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System (GFS), data needs to be loaded into HDFS before and after each execu-
tion in Hadoop. This can be very time consuming and we will examine this in
the next section. Moreover, the HDFS store the files in each individual “Block”,
thus it needs to divide or unite the files and fulfill the “Block” which is 64MB
by default. Therefore, extra metadata will be generated in the Namenode. This
space utilization is determined by three space requirement: metadata of directo-
ries, files and blocks. In the HDFS which has 64 users:
Directory entry follows the formula as:

144 Bytes + the length of the directory name;
File entry follows the formula as:

112 Bytes + the length of the file name;
Block follows the formula as:

112 Bytes + 24 Bytes * Number of replicas;
In this paper, we assume that the directory name is in an average length of

16 characters, the file name is in an average length of 13 characters, the number
of replicas is 2 in the system. The block size is the default value of 64 MB.
Table. 1 shows the metadata size for four different file size applications in which
data volume is same as 1 GBytes. As it shows, the metadata size will increase
together with the number of files or the total file size.

Table 1. An Example of Metadata Size in Hadoop

File numbers Size of Each File Dir Meta File Meta Block Meta Total Meta

DataSet-a 10 100M 10,240 1,250 250 11,790 Bytes

DataSet-b 100 10M 10,240 12,500 250 22,990 Bytes

DataSet-c 1,000 1M 10,240 125,000 250 135,490 Bytes

DataSet-d 5,000 200K 10,240 625,000 250 635,490 Bytes

DataSet-e 10,000 100K 10,240 1,250,000 250 1,260,490 Bytes

DataSet-f 20,000 50K 10,240 2,500,000 250 2,510,490 Bytes

DataSet-g 40,000 25K 10,240 5,000,000 250 5,010,490 Bytes

DataSet-h 80,000 12.5K 10,240 10,000,000 250 10,010,490 Bytes

On the other hand, Map-Reduce model requires the Namenode to keep all
the metadata in main memory since they are regularly accessed. However, too
many of these small files will exceed the addressing capacity within this node
and those small file I/Os can flood the networking near Namenode, eventually.
Thus, it prevents the performance of the system and leaves the remaining storage
capacity unutilized. Moreover, Hadoop has to start new process for every map
task. These start-up processes will occupy a great portion of time for the small file
I/O application whose execution time of each task is relatively short. In addition,
the Datanodes in Hadoop may have large states to checkpoint, they contend for
disk and network bandwidth resources, slowing down individual checkpoints.

While for the Fat-Btree database, the metadata needed to be stored for each
tuple are limited. During data accessing process, the index pages are required
only for locating the leaf pages stored in each PE . Therefore, it has a high cache
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Table 2. Experimental Environment

Blade server: Sun Fire B200x Blade Server
CPU: AMD Athlon XP-M 1800+ (1.53 GHz)
Memory: PC2100 DDR SDRAM 1 GB
Network: 1000BASE-T
Gigabit Ethernet Switch: Catalyst 6505 (720GB/s backbone)
Hard Drives: TOSHIBA MK3019GAX (30 GB, 5400 rpm, 2.5 inch)
OS: Linux 2.4.20
Java VM: Sun J2SE SDK 1.6.0 18 Server VM

hit rate if the index pages are cached in each PE. Because of this high cache
hit rate and low maintain cost (Section 2.3), select and update processes in Fat-
Btree are much faster than other conventional parallel B-tree structures [5]. In
addition, the DBMS is able to achieve high performance by using the index to
accelerate join operations.

Since there is a trade-off in Hadoop who inherits the features of high scalabil-
ity and performance from Map-Reduce while contains the drawbacks mentioned
above, we would like to evaluate Hadoop performance under different file I/O
applications and compare it with a parallel database implemented with the open
source DBMS Postgres and the Fat-Btree index [20].

4 Experiments

In this section we describe the experiments of Hadoop and our Fat-Btree database.
We focus on evaluating data load (initialize) time and data accessing time, as
well as system scalability.

4.1 Environmental Setup

For our experiments, we used a cluster of up to 32 nodes. Table. 2 shows our
experimental environment.

All the nodes run the Hadoop version 0.20.1 on JDK 1.6.0, and we deploy the
system with the default configuration settings, except for changing the replicas
number to 1 which is the same as that in Fat-Btree database so as to compare
with it later. We do not use multiple replicas because we focus on the file I/O
performance in Hadoop here. In addition, we use an individual node as the
Namenode in the experiments to ensure that the performance of Datanodes will
not be affected.

4.2 Data Load Performance

In this experiment, we load the same datasets as shown in TABLE 1, from the
node’s local disk into each system’s internal storage to study their performance
by examining the time it takes. Although Hadoop has been designed to run on a
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very large number of nodes, the Datanode number in our experiments is only up
to 32 nodes. This is because by our observations, this software is typically used
with significantly less instances in current computation clouds. For example,
Amazon limits the number of nodes for their Hadoop application to 20 unless
the respective customer passes an extended registration request [26].

We first use the dataset-{a, b, c, d, e} in this experiment to load HDFS by
the command-line utility provide in Hadoop. The files in these datasets are in
plain text manner to enable “wordcount” function available in later experiments.

Fig. 3. Data Load Time of Different File Sizes

Fig. 3 shows the data load performance of loading the same volume of dataset-
1GB. The data loading time is not same from each other if the size per each file
is different. The time required for dataset-{a, b, c} are almost same. The little
difference may lie in the different file split and combination cost when fill the
data into blocks. For the dataset-{d, e} Hadoop consumed much larger time. This
reason may be that Hadoop forces each task to run in an individual process, thus
each task has to redo the same initialization in its process. When the file number
is increasing, the process start-up overhead will soon come to be un-ignorable.

Now, we use dataset-{f, g, h}, a small file dataset to make a comparison
between Hadoop and Fat-Btree database in the data load experiment.

In this experiment, Fat-Btree DBMS loads the data by executing the LOAD
SQL command sequentially from one node. Then the Fat-Btree evenly distributes
these tuples across the cluster automatically. The tuples which are inserted into
Fat-Btree DBMS contain the same content as the small files that loaded into
Hadoop. Fig 4 shows the time needed to load the same volume of datasets both
in Hadoop and Fat-Btree DBMS. As it shows, the data load time is increased
when the individual data size is decreasing in both systems. Note that when the
data (file/tuple) size is larger than 100K, the load time in both Hadoop and Fat-
Btree DBMS do not grow obviously, because a great portion of cost in writing
one piece of data is the file I/O cost. However, when the data size becomes
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Fig. 4. Data Load Time Comparison

smaller, which means the file I/O cost in each process decreased, the extra cost
turns to be dominate. Therefore, the load time in Hadoop soon overcomes that
in Fat-Btree DBMS because the Hadoop has a larger process initialization, data
combination and metadata management costs in storing the same volume of
data, while these extra costs may be unobvious in the parallel databases, which
have optimized and sophisticated process and storage management methods.

In a short conclusion, to load the dataset from local disk into Hadoop’s
virtual disk, lots of data input/split tasks will be launched as several individual
processes. If the input file is in a small size (e.g. less than 50K in this experimental
environment), the load performance of Hadoop will decrease dramatically, and
underperform the Fat-Btree DBMS.

4.3 Data Access Performance

Now, we study the data access performance of Hadoop, including the throughput
and scalability, and make a comparison with Fat-Btree DBMS.

Firstly, we modify the demonstration Map-Reduce program “wordcount” in
Hadoop source code. To test Hadoop I/O performance: The Map function in
“wordcount” is modified to read all the words in the small files on HDFS and
write record of each word into an output file as the (key, 1) pairs, there is
no calculation function in Map to get the summary of each word’s appearance
times. And then, we remove the Reduce function in the program, thus the output
generated by each Map instance is the final output of the program. Our purpose
of these modifications is to get the time required by Hadoop to read and write
every word in all the files in HDFS while eliminate the extra cost of calculating,
grouping and shuffling. Thus the execution time of this program is mainly the
time for the file I/O process in Hadoop, then we can compare this time with
that required by the Fat-Btree DBMS.

On the other hand, we use the SQL Command like: SELECT * FROM TA-
BLE WHERE ID == ’X’; to fetch all the contents from the tuples in Fat-



Comparison Between Hadoop and A Fat-Btree Based System 9

Btree DBMS and use the SQL Command like: UPDATE TABLE SET TEXT
= ’STRING’ WHERE ID == ’X’ to overwrite the same data. Each node has 4
client threads to execute these commands in parallel to read and write all the
data in the database.

Fig. 5. Data Access Time in Hadoop and Fat-Btree

As shown in Figure 5, Hadoop takes several hours to finish the “wordcount”
transaction, while Fat-Btree outperforms Hadoop by a factor about 400, which
only needs several minutes to read and write all the data. This is because the
start-up costs for the small file I/O applications are dominated in the execution
time. On average, each task in Hadoop needs about 20 seconds to start and run
at full speed.

In addition, Fig. 5 also shows the different scalabilities of Hadoop and Fat-
Btree systems. We find that when the node number is increased by twice from
8 to 32, the scalability of Hadoop declines from 96% to 85% compared to that
of Fat-Btree which only decreases slightly. This is because Hadoop use the job
tracker to coordinate Datanode activities, and its overhead will increase as more
nodes are added into the system. However, Fat-Btree DBMS does not contain
these centered nodes, thus the potential bottlenecks are eliminated from the
system. The reason for the slight decline may be the raise of communication
cost within the Fat-Btree when the node number increasing.

In a short conclusion, for the small file I/O applications, Hadoop’s perfor-
mance decreased dramatically because the overhead in process start-up. It may
cause every task to wait 20 seconds on average before they are executed in full
speed. On the other hand, Fat-Btree DBMS does not suffer this problem and
achieve a better scalability.
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5 Related Works

As an open source software which implements a framework of Map-Reduce,
Hadoop has been embraced by lots of data-intensive distributed applications
both in commercial and academic societies. However, Hadoop seems only to be
able to run large-scale analyses on big data. Almost all the applications adopt
Hadoop engine for the computation on huge datasets [17], [18], because the
performance for the application on small or middle size dataset in Hadoop is not
as attractive as DBMS. A lot of researches that focus on these problems have
been proposed. For instance, [19] optimizes the Hadoop in its branch project
of HPMR, which focuses on cutting off the cost in the “Reduce” process with
the High Performance Map-Reduce Engine. [17] proposes a method to reduce
the metadata for the small files in Hadoop by compressing the small data which
has some kind of semantic relations in the specific applications together. In
[1], the small file metadata problem is slightly addressed in the original web
implementation of Hadoop. However, there seem no effective solutions in these
former researches for improving the small file I/O performance in Hadoop as
discussed in this paper.

Therefore, recent researches, which use Hadoop as its execution engine, adopt
a light database system into the system for organization the intermediate results
and trial datasets, as in [21], [22], [23], [25]. These systems try to bring Map-
Reduce ideas together with DBMS system and aim to integrate declarative query
constructs from the database community into MapReduce-like software to allow
better code reusability, data independence and automatic query optimization.
Different from above interface level solutions, HadoopDB [6] integrates Hadoop
with Postgres in systems-level, which may be the first practice that builds a real
hybrid system of Map-Reduce and Parallel DBMS. What is more, this kind of
hybrid Map-Reduce/DBMS system is looked upon as an optimal solution for
parallel processing systems in recent future [15].

However, HadoopDB does not in general match the performance of parallel
database systems especially in data selection. Since HadoopDB use the databases
to store all the data sources similar to data blocks in HDFS, the large size of
data used in [6] may be one of the reasons that hinders the data access efficiency
of HadoopDB. Therefore, it is very important to choose the better storage layer,
database or HDFS layer, dynamically in the future hybrid Map-Reduce/DBMS
systems to store the files in the applications. To make this decision, the compar-
ison between Hadoop and parallel DBMS in their file I/O performance on the
datasets of different data size is needed for the future system design information.

As far as we know, there seems no former work that gives the comparison. In
recently, there is a similar comparison work as ours [7], which compares Hadoop
with other two parallel DBMSs is proposed. However, they focus on the analyses
of different storage mechanism (row-based/column based) and aggregation per-
formance in the vertical/horizontal partition DBMS with Hadoop. In addition,
the size of individual data used in their experimental datasets is much larger
than that of ours. What is more, the tranditional hash and clustered index used
in these parallel DBMSs may hinder the database systems scalability. Note that
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the data load performance experiment result is hence different with ours; the
scalability comparison result between our parallel DBMS and Hadoop is also
different from that declared in [7].

6 Conclusion

In this paper, we focus on comparing the Hadoop, which is an implementation
of map-reduce paradigm, with a parallel database system that was developed
earlier at Tokyo Institute of Technology. We have taken eight different datasets
to examine the data loading, accessing and modification cost of these two system
especially for small file I/O. These comparison results could be a note for the
information of future hybrid Map-Reduce and Parallel DBMS design.

Our results show that, Hadoop has significant overheads due to task initial-
ization; the Namenode appears as the bottleneck when the system scales up,
especially for handling the small files. Our parallel DBMS shows its higher per-
formance, over a factor of 400 in the small file I/O performance, and shows its
better scalability than that of Hadoop. Note that some of the system features
in both Hadoop and DBMS are no longer the same as they used to be in former
researches which mainly considered the data in large file size. As there is a great
contrast in file I/O performance of Hadoop and parallel DBMS when handling
the small size of data, a flexible storage layers mechanism should be considered
in the design of the future hybrid Map-Reduce/DBMS systems.
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