T2R2 rIgA2US-FURIMY

Tokyo Tech Research Repository

Od/dodn
Article / Book Information

Title FileSearchCube: A File Grouping Tool Combining Multiple Types of
Interfile-Relationships

Journal/Book name Web-Age Infromation Management, Springer LNCS, Vol. 6184/2010, |,

pp. 386-397
000 /lIssue date 2010, 7
o | wpikdogo T s ases
0000/ Copyrght | The orginalpublcation s avaiable atwwwspringerccom,
Note guoduoobobbogoogoooon

This file is author (final) version.

Powered by T2R2 (Tokyo Institute Research Repository)

http://dx.doi.org/10.1007/978-3-642-14246-8_38
http://t2r2.star.titech.ac.jp/

FileSearchCube: A File Grouping Tool
Combining Multiple Types of
Interfile-Relationships

Yousuke Watanabe!, Kenichi Otagiri?, and Haruo Yokota!:?

! Global Scientific Information and Computing Center
Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552 Japan
watanabe@de.cs.titech.ac.jp, yokota@cs.titech.ac.jp
? Graduate School of Information Science and Engineering
Tokyo Institute of Technology
otagiri@de.cs.titech.ac.jp

Abstract. Filesin computers are increasing in number, so we require file
management tools to find target files and to classify large groups of files.
Our research group has been developing a system that provides virtual
directories made up of related files. Many methods to extract inter-file
relationships are available, such as word frequency, access co-occurrence,
and so on. In practice, users need to select and combine multiple types of
inter-file relationships to form groups of files they want. For this purpose,
we propose FileSearchCube, a tool for file group analysis that introduces
the data-cube concept. FileSearchCube provides cube operations for a
set of files, and helps users to find relevant file groups.

1 Introduction

Files stored in computer systems are increasing in number [1]. We have various
types of files, including plain text, RTF documents, images, videos and so on.
Even if the files are organized by folder, it is difficult to find target files in a
large set of files. To solve this problem, we often use desktop search [8,11]. Most
desktop search tools are keyword-based full-text search. They extract keywords
from file paths, metadata of files (tags) and file contents. They also create an
index for extracted keywords. When a user enters keywords, the tool returns a
list of files associated with the keywords. Desktop search is useful when a target
file includes common keywords.

Many other situations arise, however, in which desktop search tools cannot
deliver satisfactory results. For example, when we need multiple files associated
with different keywords, we have to choose multiple keywords and submit multi-
ple search requests. Especially, keyword information for non-text files is limited
(only file paths may be available); it is difficult for desktop search tools to find
them. The difficulty arises because of limitations in keyword-based search tech-
niques.

When we want to derive multiple target files, we would like to obtain, at
one time, multiple files that have logical relationships. To achieve this, a good
approach is to analyze interfile relationships and group related files. When such
logical file relationships are discovered, desktop search tools can expand search
results more easily. And when we have forgotten files used in previous work,
we can find them again by traversing file relationships. Examples of such rela-
tionships include common keywords, modified at similar times, having similar
file paths, concurrently accessed by the same user, and so on. Types of inter-
file relationships abound, and various scoring measures for them are proposed.
Which measures should we use? Can we use them together? For more precise
and flexible search requirements, we need to combine multiple measures of inter-
file relationships to create relevant file groups. Even if files are not appropriately
separated by the keyword-based grouping method, we may do that by combining
other measures, such as access co-occurrence. Although file grouping tools sup-
porting a single type of interfile relationship already exist, there are no schemes
to uniformly combine multiple measures.

We propose a file grouping scheme to combine multiple interfile relationships.
Its model is based on the data cube [4], which is generally used in OLAP. We
call it FileSearchCube. Our scheme supports functions for generating relevant
file groups: choosing appropriate relationship measures, changing granularity of
grouping, selecting groups based on multiple conditions. A dimension in File-
SearchCube is a list of clusters constructed from one scoring measure of inter-
file relationship. FileSearchCube consists of multiple lists of clusters constructed
from multiple measures. A user applies cube operations to the cube, and gets the
sub-cube that the user wants. Cube operations are slice and roll-up/drill-down.
Slice is an operation to cut the cube based on multiple conditions for dimen-
sions. Roll-up/drill-down are operations to change the granularity of groupings
for each dimension. Our scheme analyzes a large number of files more easily
than previous systems. We have developed a prototype system and include an
experimental evaluation in this paper.

The remainder of this paper is organized as follows: Section 2 describes re-
lated work. Section 3 introduces interfile relationships used in this paper. Section
4 presents the proposed file-grouping framework using the data cube. Section 5
describes our prototype system. Section 7 shows experiment results. And finally
the Section 8 summarizes the paper and mentions future research issues.

2 Related Work

We first introduce search engines integrating keywords and other information.
Google desktop search [8] provides a timeline view to display files that are mod-
ified and where in the search result they are modified. FRIDAL[7] integrates
keyword search and access co-occurrences recorded in log data of file servers.
Although this technique can find more files than conventional keyword search
engines, the purpose is not to group files.

Semantic File System [3] provides a logical view based on metadata attached
in file attributes. In this system, files belong to virtual directories defined by
multiple conditions for a file’s metadata. Windows Vista provides a search folders
function. These systems use only file attributes. They do not consider interfile
relationships, such as path similarity and access co-occurrences.

Faceted search [5,6] explores objects with step-by-step selections. In each
step, the system presents a set of selected objects and candidates of the object’s
attributes to give a condition for the next selection. Faceted search is similar to
our scheme; it does not, however, consider interfile relationships.

Linking File Systems (LiFS)[2] can handle interfile relationships such as ref-
erence, copy/original and dependency. This system supports links to describe
file relationships. Our scheme does not consider complex graph structures, but
takes into account binary interfile relationships computed as numerical values.

3 Interfile Relationships

This section introduces similarity measures for interfile relationships. Of course,
there are many similarity measures not described below. It is possible to intro-
duce additional measures into FileSearchCube. We assume only that a measure
returns a numeric value corresponding to an interfile relationship. In the remain-
ing part, we assume that a similarity value between file x and file y is normalized
in [0, 1]. The number 1 is the strongest relationship, and 0 is the weakest.

3.1 Text Similarity

Text similarity is used in document clustering. When many common keywords
are contained in files, the files are strongly related to each other. Here, we assume
a vector model. We extract keywords from file and y; we then create word
vectors v, vy. Similarity between z and y is computed by a cosine value of two
vectors. Simieqt (T, y) For simplicity, we do not consider metadata

— Vz ' Uy
= Nvellllvg 17
(tag) information and file name to compute text similarity in this paper. We

regard similarity between non-text files and other files as 0.

Although applicable only to text data, an advantage of text similarity is
that the value is computed from file contents. Unlike text similarity, the three
measures described below do not handle file contents. A disadvantage of this
measure is that it is impossible to compute similarity for non-text files.

3.2 Modified Time Similarity

If two files are modified in close time instants, they may be processed to-

gether. This measure computes the similarity score based on the last time the

two files were modified. Similarity score is computed by the following formula.
. mtime(x)—mtime .

SiMatime(T,y) = 1— mawa"bep(‘m(tizm(a)im(gyw(b)|), mtime(f) expresses the last

modified time of file f. The denominator in the formula is to normalize score
(€ [0,1]).

The advantage of modified time similarity is that it is applicable to all files.
However, it is difficult to associate modified files with read-only files (their mod-
ified times are not changed).

3.3 Path Similarity

This measure regards files to be strongly related if they are located in the
same folder or ancestor-descendant folders. In this paper, we use edit distance
to compute path similarity. Edit distance is the distance between two strings.
It is the number of operations (insert, delete, replace) to get the same string
from one to another. Path similarity is computed by the following formula:

. _ editDistance(z,y)
SZmpath(iE,y) =1- mawg pep (editDistance(a,b))

Path similarity works well when a user religiously organizes files and folders.
On the other hand, when a user does not pay attention to file organization
(e.g., many files are located in the same folder), this measure cannot distinguish
between related files and irrelevant files.

3.4 Access Co-occurrence Similarity

When a user accesses two files at the same time, these files are processed together.
If access co-occurrences are frequently observed, such files are strongly related.
We can obtain access information from log data produced by file servers. [7]
uses log data from a Samba server [10]. This log contains user id, file path,

open/close time, and so on. In this paper, co-occurrence similarity is computed
Tt(z,y)
mawg per (Xt(a,b))’?

by total length of the co-occurrence time. Simeooccur(T,y) =
t(z,y) expresses the set of co-occurrence times of files z and y.

Unlike modified time similarity, co-occurrence similarity can associate modi-
fied files with read-only files. Because of limited log data, however, it is difficult
to derive precise similarity for files rarely used and files newly created.

As described above, various measures for interfile relationships have been
proposed. They have advantages and disadvantages, and the effectiveness of
these measures depends on user behavior and tendency. Thus, we have to choose

and combine appropriate measures case by case.

4 FileSearchCube

FileSearchCube generates file groups by integrating multiple measures of inter-
file relationships (Figure 1). Since its data model is based on the data cube, it
consists of dimensions and hierarchies. And it supports cube operations such
as slice/dice and roll-up/drill-down. Although the conventional data cube tar-
gets the presentation of aggregation results rather than groups of items, File-
SearchCube aims to discover logical groups of files.

Dimension of Clusters ¢y ster t1
generated by Text Similarity
Cluster t2

Cluster t3

Di ion of Clusters X
enerated by Modified dews.ppt | icde.tex ipsi.doc i
Time Similarity
Cluster m1
Cluster m2 0.8|=
Cluster m3 Drill-down on Clustering
| " " Modified Time
Cluster c1 Cluster c2 Cluster c3 .
sim
N Dimension of Clusters generated Low De n d rogra m
Slice for by Co-occurrence Similarity ~ Cluster t1
“Cluster m1”
Cluster 2 smfamsndeEEEmEnnEEnnn
Cluster t3 n Threshold
Cluster t1 , " e I I L |
Cluster m1’| dewsppt [icde.tex ipsj.doc High @ = ﬂ@j Q] E ﬂ"‘f
Cluster m2’ v _ Clusters
Cluster t2 , 5 ted b
Cluster m3' = E genera y
g 28] E m threshold
Cluster mé4’
dewsppt | icdetex | ipsidoc
Cluster t3 Cluster m5’
Cluster c1 Cluster c2Cluster c3 Cluster mé’

Cluster c1 Cluster <2 Cluster c3 Fig. 2. Dendrogram generated
by hierarchical clustering
Fig. 1. FileSearchCube

4.1 Dimension

In FileSearchCube, a dimension is a list of file clusters generated by one similarity
measure. Here, we use similarity measures introduced in Section 3. Conventional
clustering is used in the tool. We summarize a clustering method below. Figure
1 presents a cube consisting of three dimensions. For instance, a file dews.ppt be-
longs to a cluster t3 generated by text similarity, m1 by modified time similarity,
and cl by co-occurrence similarity. We can use auxiliary dimensions generated by
file information such as file name (dictionary order), file size, and file types (file
extensions). A user groups files by combining clustering results from multiple
measures and file information.

Clustering Method: By applying the formulas shown in Section 3 to N files,
we can get an N X N similarity matrix. The clustering method receives this
matrix as input. In this paper, we use conventional hierarchical clustering [4].
The method first makes a set of minimum clusters composed of each element;
it then merges clusters that have high similarity values. It repeats merging, and
finally produces one large cluster concatenating all clusters. A process in which
the clustering method merges clusters is expressed as a dendrogram. Figure 2 is
a dendrogram, which is the clustering result of 8 files. Clusters merged near the
root of the dendrogram are regarded as having weak relationships. We can cut
a dendrogram based on a threshold value and divide it into subtrees. Each pair
of clusters within a subtree has larger similarities than the threshold value. A
threshold value controls granularity of clusters. When a threshold value is near
the root of the dendrogram, rough clusters are generated. When a threshold
value is near the leaves of the dendrogram, fine clusters are generated. This
property contributes to adjusting the granularity of groups in the data cube.

4.2 Hierarchy

In the conventional data cube, a concept hierarchy is used to change aggregation
units in more abstracted/concreted layers. FileSearchCube also uses hierarchy
information to group files. Hierarchies for dimensions corresponding to file at-
tribute information are similar to those in the conventional method. They are
defined in advance. For example, with the file extension type dimension, lower
(concrete) layers are “.doc”, “.txt”, “.png”, “.jpg” and higher (abstract) layers
are “document”, “image”. Hierarchies for dimensions corresponding to clustering
results are substituted by dendrograms of clustering results. As described in Sec-
tion 4.1, a dendrogram expresses the progress of merging clusters. Roll-up /drill-
down cube operations change the granularity of clusters using dendrograms.

4.3 Cube Operations

Slice and Dice: Slice is a cube operation, which clips a sub-cube according to
specified conditions. When conditions are defined on two or more dimensions,
the operation is called dice. In this system, a user is also able to clip file groups
by slicing the data cube. Beyond specifying a cluster label directly, conditions
can also specify “cluster containing file A”. Figure 1 is an example of slice. It
clips a sub-cube with conditions that a label of modified time cluster equals m 1.
Roll-up and Drill-down: Roll-up is an operation to regroup items by more
abstract layers in the concept hierarchy. For example, roll-up changes monthly
groups to yearly groups. On the other hand, drill-down is an operation to regroup
items by more concrete layers. In FileSearchCube, dimensions of file attributes
support conventional style roll-up/drill-down. Roll-up/drill-down for dimensions
of clustering results are interpreted as an operation changing granularity of clus-
ters. A threshold to cut a dendrogram controls granularity. When a dendrogram
is cut near the root, the operation generates rough clusters. Figure 1 is an ex-
ample of drill-down on a clustering result of modified time similarity.

Pivot: Pivot is an operation to change the order of dimensions and direction of
axes. This is the same operation used in the conventional data cube.

5 Prototype System

A prototype system of our proposed scheme is written in Ruby (ActiveScrip-
tRuby) and R. The architecture of the system is shown in Figure 3. The system
consists of a similarity extractor, cluster generator, cube controller, and the Cube
UL

— Similarity Extractor: The similarity extractor obtains interfile relation-
ships between files in a file system. The current implementation supports the
text similarity, modified time similarity, path similarity and co-occurrence
similarity introduced in Section 3. To compute text similarity, we use a sim-
ilarity search facility provided by Hyperestraier [9], a full-text search engine.
Hyperestraier has file convertor xdoc2txt, so beyond handling plain text, it

Cube Operations
| Cube Ul |

Cluster Hierarchies
File Attributes

Cluster Hierarchy Cluster Hierarchy Cluster Hierarchy Cluster Hierarchy
(Dendrogram) (Dendrogram) (Dendrogram) (Dendrogram)

| i Cluster Generator

milari Path Similari Modified Time Co-occurrence
Text Similarity ath Similarity similarity Sty

Text Similarity Path Similarity Modified Time Co-occurrence
Extractor Extractor Similarity Extractor Similarity Extractor

Cube Controller |

Word Frequency File Path File Access (;

Fig. 3. System architecture

can also handle .doc, .xls, .ppt, .pdf and other common file types. Path sim-
ilarity and modified time similarity are computed by scanning a file system
directly. Access co-occurrences are extracted from log data recorded by a
Samba file server [10]. Log data entries each contain the timestamp of file
open/close, user name and file path.

— Cluster Generator: The cluster generator applies the hierarchical agglom-
erative clustering method for each similarity measure. It derives a dendro-
gram corresponding to the cluster merge process. This part is achieved using
the hclust function in R.

— Cube Controller: The cube controller manages dendrograms produced by
the cluster generator. It integrates clustering results and produces a multi di-
mensional cube. When it receives roll-up/drill-down requests from the Cube
UI, it cuts dendrograms with a relevant threshold value.

— Cube UI: The Cube UI provides a cube-style interface and cube operations
to users. The interface is based on Microsoft Excel. Since Excel has a named
pivot table function similar to data cube, the Cube UI uses the Win32 OLE
library and outputs Excel files that include cube data. Excel does not support
Roll-up/drill-down operations, so they are performed in a separate window.

6 Examples

We show examples of the file grouping process using FileSearchCube (Figure
4). The first example is a requirement that “drill down text similarity composes
groups by combining access co-occurrence similarity.”

1. In Figure 4, Snapshot1 shows 10 clusters generated by the clustering method
based on text similarity. Clusters of other measures are not divided (only one
cluster in each dimension). A cluster text06 consists of seven files that have
common keywords.

2. Snapshot2 presents a cube divided into 10 clusters on co-occurrence similar-
ity dimension. Cluster text06 is divided into two small clusters.

3. A user who wants to divide clusters more precisely performs a drill-down
operation. Snapshot3 shows a cube divided into 20 clusters on co-occurrence
similarity dimension. Cluster text06 is now divided into three groups (3 files,
3 files and 2 files). Files in each group are strongly related.

The second requirement is “find files modified in the same period in which files
in the group of the first requirement are modified.”

1. Snapshot4 shows the same cube in Snapshot 3. Here, we suppose base files
belong to both cluster text06 and cluster cooccur02. The requirement wants
to get files modified in the same period in which base files are modified.

2. To get the target group, drill-down operation on the dimension of modified
time similarity is required. Snapshot5 is a cube divided into 10 clusters on the
dimension of modified time similarity. Since the base files belong to cluster
mtime01l, we have to search target files in mtime01.

3. Snapshot6 represents a cube sliced by a condition mtime0l on the modified
time dimension. Each cell of the cube includes files modified in the same
period (mtime01).

7 Experimental Evaluation

To evaluate effectiveness of FileSearchCube, we experimented using our proto-
type system. As experiment data, we prepared 300 files from an author’s home
directory. We chose files with the file extensions shown in 1. Full-text search en-
gine Hyperestraier can extract keywords from 200 files (the remaining 100 files
are images or binary data). The Samba log (Aug. 7 2008 - Dec. 24 2008) contains
834 access co-occurrences with 135 files.

To build an answer set, we manually labeled 300 files. Table 2 shows 39 labels
for 300 files. The label “Research paper” contains tex source and presentation
files. “Event” contains calls for workshop papers and member lists. “Software
development” contains manuals and text-based configuration files, and icon im-
ages. “Office document” contains application forms for business trips; some are
created from the same template.

7.1 Number of Generated Groups

The number of groups generated by one or more measures is shown in Table 3.
The first column represents the combination of measures. The second column
is the number of groups. The number of clusters generated in each dimension

Modified time
Similarity

o0ceur
Similarity

ey
Shapenr, %

Snapshot1 Text Similarity:
10 clusters

larity xt Similarity
= = F— s <) = F— PR = -
@ b J—— e ..
© o e E TR T e =3 =
: o i | S5, =
: BT e =
5 == =
it
i Requirement 1:
& ivi Y TR FUILTRES
s s e Divide the cluster based on Co-occur e
E— P
ot e et o m
T e e e S WSS =, Ly
Ty e o W e o = o e | 7o
o s St e e s i e
ey e
e R
=] 1 Stwwc2]. A 4 > | Srowt Stoo? | Shuutzs Sheet Srow?. Shewe3 ¢ AN O HPHamNAA.
o

Modified time, Modified time,
fosTedy st 77 A4
Snapshot3 i . Snapshot4 Text Similarity: 10clusters S
Drill down on co-occur S\l::f;t\‘i; Cooccur Sim.: 20 clusters Similarity
clusters (10 to 20)
T ———— S %o

Text Similarity
< & = = = N aioin T
= = G = — ® S
e P == S e e —————— =
§ = - o ERE e = Sene
T 3 i et ¢ x 3 ey
5 oot 1 a e i ' d ¢ 2 Do
oo . H Y 2l &
oo : 2 5 H
14 eooceurtd 2 2 5 &
i HE : H :
2 AT AT =
Registration Info. of DEIM2009 | 2. st ¥ -t 3 l‘:ﬂ:‘ 7 ve-tam :'—v‘!:v.»
; | Document of Prototype sys. -
B Y e e —— e e - [T W
St s LT o | 7or0an
- o= ' I——— Requirement 2:
cocane | Tex source and PDI Find files modified at which base files were modified & immaman
o

Modified ti
Similarity

SnapshotS Drill-down on Text Similarity: 10 clusters
modified time sim| Cooccur Similarity: 20clusters| Cooccur

B fil T Mod. time Sim.: slice mtime01
ase files are belonging to
Mod time cluster “mtime01

Similarity

1

|
-

]

§{

fl

(T r e g

Fig. 4. Examples of file grouping

(single measure) is fixed at 20. Files not extracted by keywords and files not
recorded by any co-occurrence are grouped into the unknown group. The third
column is the average number of files in one group. The fourth column is the
average/maximum entropy among all groups. When a group consists of files with
the same label, then the entropy of the group becomes 0. We first explain the
differences in groups generated by each measure, then show combinations of two
Or Inore measures.

Single Measure

— Text: Text similarity generates clusters that have the highest value of aver-
age entropy among four measures. This means they are mixtures of various
labels. There are interesting clusters: a cluster integrating Research paper
1 and 2 and a cluster integrating Equipment management 1 and 2. Office

Table 2. Answer set
Table 1. Extensions

of experiment files [Category of labels [#files in the sets |
Research paper 1-2 1,29
Event 1-3 3, 8,13
-JPG .PNG .ai .bib .css Software development 1-5 16, 24, 5, 49, 54
.csv .doc .docm .docx Meeting 1-4 6,9, 4, 3
.(.eml -eps .htm .html .ico Equipment management 1-4 4,3,9,6
-jpg .pdf.png .ppt .pptx Paper review 1-7 2,2,1,2,3,3,3
rtf tex txt xls .xlsx Office document 1-12___ |3, 4, 2, 2,5, 3,4, 1, 1, 1, 2, 3
etc 1-2 5,2

Table 3. Experiment result (20 clusters in each dimension)

Measure #groups|Average #file[Entropy(avg/max)
SiMmieat 20 15.0 0.369 / 1.105
SiMomtime 20 15.0 0.382 / 0.920
Simpatn 20 15.0 0.174 / 1.291
Simecooccur 20 15.0 0.064 / 1.270
Simteat X Simcooccur 47 6.38 0.137 / 1.080
Simmtime X SiMcooccur 48 6.25 0.112 / 1.270
Simiext X Simpath 57 5.26 0.112 / 1.045
Simamtime X SiMpath 63 4.76 0.092 / 0.700
SiMmieet X SiMantime 75 4.00 0.091 / 0.678
Simpath X SiMcooccur 42 7.14 0.080 / 1.302
Simiest X SiMmpath X SiMcooccur 83 3.61 0.065 / 1.073
Simmtime X StMpath X SiMcooccur 84 3.57 0.061 / 0.728
Simiezt X SiMmtime X StMcooccur 100 3.00 0.053 / 0.678
Simiext X Simmtime X SiMpath 107 2.80 0.036 / 0.602
Simiext X Simmtime X Simpatn X SiMeooccur 126 2.38 0.022 / 0.602

documents created by the same template are grouped into one cluster. A
copied file and its original file become the same cluster.

— Modified time: Modified time similarity generates clusters classified roughly,
but they are still mixtures of various labels. We think the number of clusters
for this measure is too small (#cluster=20).

— Path: Path similarity generates clusters reflecting folder hierarchy in a phys-
ical file system. Files located in brother folders are not divided, even if we
change the granularity of clustering. The author tends to put office docu-
ments in similar locations, so they are not divided.

— Co-occurrence: Co-occurrence similarity generates clusters with low en-
tropy. For “Software development 1,” it generates a cluster including manual
and configuration files. For “Research paper 2,” it generates a cluster that
includes tex source and PDF files. For “Paper review 6,” a paper to review
and present comments for the paper are grouped into the same cluster. There
are, however, many files in which there are no co-occurrences in log data;
they are included in the unknown group.

Combination of Multiple Measures

As shown in Table 3, all combinations of two measures can generate smaller
groups than a single measure. Single cases contain files not classified by text simi-
larity and co-occurrence similarity. Combinations of multiple measures, however,

 precision(average)

OOOO0O0000
SNSRI

co-occur,text
text,modified
text,path
co-occur,path
modified,path
modified
text,path
co-occur,text

co-occur,modified
co-occur,modified
co-occur, path

single single

Fig. 5. Precision of single measure and Fig. 6. Precision of single measure and
combinations in type 1 combinations in type 2

can classify them into relevant groups, because path and modified time similarity
cover all files, unlike text and co-occurrence similarity. Groups generated by a
combination of co-occurrence and path similarities have the lowest average en-
tropy among all combinations of two measures. However, this combination marks
the highest maximum entropy. This implies that generated groups are skewed.
Combinations of three or more measures generated more small groups. Some
combinations generated over 100 groups. However, we have only 39 labels in the
data set. We need a larger data set to evaluate 100 groups correctly. Evaluation
with large data sets is a future research issue.

7.2 Effectiveness of Combining Multiple Measures

We cousider two scenarios to evaluate the efficiency of our scheme.

Type 1: “Group files used in the same work.”

We often access files in different folders during the same work. It is hard, however,
to remember all files used in the work. This type of requirement is typical in file
search. For evaluation, we use a set of files labeled “Software developmentl” (16
files). Figure 5 shows the result of this experiment. The vertical axis represents
average precision of generated groups including files labeled “Software develop-
ment1.” If at least one common file exists in both a cluster C' and an answer set
A, we calculate precision of C' by the following formula: Precision4(C) = \A‘g‘c|
In single cases, the measure of path similarity is the best among four measures.
Text similarity is the worst, because text information is not useful to determine
which files were used in the same work. In combinations of two measures, com-
bining path and modified time similarity is the best. And we can see that all
combinations of multiple measures mark higher precision than when they are
used separately.

Type 2: “Group files created from the same template.”

When we write a new document for a paper procedure, we want to search old
documents written for the same procedure. As a test data set, we used files
labeled Paper review 5, 6, and 7 in Table 2 (9 files). They include reviewer’s
comments of the same journal, so these files are text data written in the same
format. The name of the journal may be a common keyword. Results are shown in

Figure 6. In a single case, co-occurrence similarity is the best. In combinations of
two measures, however, combining text and modified time similarity is the best.
Since content information is important in this type of requirement, combinations
that include text similarity improve.

This experiment shows the effectiveness of combining multiple measures. We
think the best combination may change according to a user’s tendencies and
requirements. Without FileSearchCube, users must manually check which com-
bination is the best. FileSearchCube can simplify the task.

8 Conclusion

This paper proposes FileSearchCube, which provides a multidimensional cube to
analyze a large number of files. It generates file groups using multiple measures of
interfile relationships. To achieve roll-up/drill-down operations, FileSearchCube
uses results of the hierarchical clustering method. The generated groups are
useful in summarizing logical structure of file systems and expanding the results
of desktop search. We implemented a prototype system and evaluated it with
experiments.

Several future research issues remain. The first is to integrate more similarity
measures, such as image similarity. FileSearchCube can treat a measure that
returns a numeric value corresponding to an interfile relationship. The second
is detailed experiments for more users and more files. We will also evaluate the
Cube UI with the focus on improved usability.

References

1. N. Agrawal, W. J. Bolosky, J. R. Douceur and J. R. Lorch. “A Five-Year Study of
File-System Metadata,” ACM Trans. Storage, Vol. 3, No. 3, p. 9, 2007.

2. A. Ames, C. Maltzahn, N. Bobb, E. L. Miller, S. A. Brandt, A. Neeman, A. Hiatt
and D. Tuteja. “Richer File System Metadata Using Links and Attributes,” Proc.
IEEE MSST, pp. 49-60, 2005.

3. D.K.Gifford, P.Jouvelot, M.A.Sheldoon, J.W.O’ Toole,Jr. “Semantic File Systems,”
Proc. ACM SOSP, pp. 16-25, 1991.

4. J. Han and M. Kamber. “Data Mining: Concepts and Techniques” Morgan Kauf-
mann, 2006.

5. G. Smith, M. Czerwinski, B. Meyers, D. C. R. ; G. G. Robertson and D. S. Tan.
“FacetMap: A Scalable Search and Browse Visualization Visualization and Com-
puter Graphics,” IEEE TVCG, Vol. 12, No. 5, pp. 797-804, 2006.

6. K. Yee, K. Swearingen, K. Li and M. Hearst. “Faceted Metadata for Image Search
and Browsing,” Proc. CHI, pp. 401-408, 2003.

7. T. Watanabe, T. Kobayashi, H. Yokota. “A Method for Searching Keyword-lacking
Files Based on Interfile Relationships” Proc. of CooplS, Springer LNCS 5333, pp.
14-15, 2008. (poster)

8. Google Desktop. http://desktop.google.com/ja/features.html

9. Hyper Estraier. http://hyperestraier.sourceforge.net/index.ja.html

10. Samba, http://us3.samba.org/samba/
11. Windows Search. http://www.microsoft.com/windows/products/winfamily/
desktopsearch/default.mspx

