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Abstract. Programmable Logic Controllers (PLCs) are widely applied to control
safety critical systems. Efficient formal and non-formal methods to detect faulty
behavior have been developed, but finding the cause of the buggy behavior is
often still a manual process.
Automatic fault localization for PLCs is studied in this paper. Methods for au-
tomated debugging are analyzed and compared with respect to accuracy and run
time. The experimental results on industrial models show a high accuracy at low
run time costs.

1 Introduction

A Programmable Logic Controller (PLC) is a re-programmable computer based on
sensors and actors that is running a user defined software periodically. That makes a
PLC highly configurable and applicable in various industrial sectors, e.g., in nuclear
power plants and in railway interlocking systems. The assurance of the correct behav-
ior in safety critical systems is a must. In this work PLCs suitable to control railway
electronic interlocking specified to Safety Integrity Level 3 (IEC61508) are considered.

Model checking of PLC software was proposed in, e.g., [3, 11, 15, 18]. The out-
put of a model checker is either a proof of correctness of the model with respect to a
specification or a failure trace, i.e., a counter-example that shows the incorrect behav-
ior. Debugging the observed faulty behavior often relies on manual simulation and is
a time consuming task. Automated debugging of faulty behavior in PLC programs has
not been considered so far and is in focus of this paper.

Several techniques for automated debugging have been proposed for software (e.g. [22,
2, 13, 9]) as well as for hardware (e.g. [21, 6, 17, 7]). The aim of automated debugging
is the highlighting of potential fault locations to an engineer to reduce the complexity
for a subsequent manual debugging session. Thus, fixing the faulty behavior remains
a manual task to avoid unexpected changes that may be introduced by methods that
perform repairs automatically [4].

Explaining debugging techniques compute traces that are similar to a failure trace
but fulfill the specification to explain the faulty behavior [10]. The difference between
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the execution of the correct trace and a failure trace reveals potential fault candidates.
Program slicing returns statements on the path from a (faulty) observation point to the
primary inputs. The analysis is performed statically or dynamically with respect to the
actual values of the failure trace [22, 2]. The techniques above do not fully exploit the
expected behavior at the observation points and an over-approximation of fault candi-
dates may be returned only.

Model-based diagnosis is more precise by computing fault locations on an abstract
model [13]. Using a solver for Boolean Satisfiability (SAT) allows to handle large prob-
lem instances due to the tremendous improvements in Boolean satisfiability solving [5,
12]. SAT-based debugging [17] partially automates the debugging by finding possible
fault locations, i.e., components that can fix the faulty behavior. The usability for com-
plex models was shown for debugging hardware [17] as well as software [9].

In this work we analyze methods for automated debugging of PLC programs. Three
automated debugging methods are evaluated: (1) static analysis, (2) dynamic analysis,
and (3) correction-based debugging.

2 Diagnosis Model

In IEC61131-3 two textual and three graphical programming languages for PLCs are
standardized. In this paper we focus on the assembler-like language Instruction List (IL).
More specifically, Statement List (STL) is the input language of the PLC considered [16].
STL is similar to IL and is referenced as IL in the remainder of this paper.

The behavior of an IL program is specified in M lines of code that are sequen-
tially executed in a deterministic order. Each line contains one instruction, composed
of an optional label, an operator and an optional operand of {variable, constant}. The
control flow is influenced by jump instructions, that are referencing a label in line r,
1 ≤ r ≤M . IL programs may be additionally divided into sub-programs.

A CDFG is constructed from the IL program to perform automated debugging.
Nodes in the CDFG represent data instructions or control predicates, respectively. Data
dependency and the control flow are modeled by edges.

An abstract model or a concrete model of the executing CPU of the PLC can be used
to construct the CDFG. Because a CPU consists of several registers, stacks as well as
accumulators the execution of an IL instruction highly depends on those state variables.
The usage of a concrete model for the CPU semantic is more complex, but allows to
perform CPU specific analyses. For example, registers may be highlighted to observe
the faulty behavior, e.g., for a subsequent manual debugging session. A concrete model
of the SIMATIC S7 CPU is used in this work. The SIMATIC S7 operates on a 16-
bit status word, two 32-bit accumulators, and a nesting stack that stores intermediate
results. Operations up to a bit-width of 32 are supported [16].

Technically, the IL program is translated to SystemC [20] by augmenting the be-
havioral information of the underlying CPU as described in [18]. Afterwards, the aug-
mented implementation is analyzed with the parser of [8] to construct a CDFG repre-
sentation similar to a netlist on RTL [19]. Depending on the chosen instruction, one
instruction in IL corresponds to t, 0 < t, nodes in the CDFG. For example, the in-
struction L (Load) operates on the accumulator and requires two assign nodes (one for



each accumulator). Other instructions operate on the 16-bit status word of the CPU,
e.g., JC (Jump Conditional) evaluates and updates four bits of the status word. The
reference to the original instruction in IL is kept for each node in the CDFG. Thus, the
selection of at least one of the t nodes of an instructions enables to mark the instruction
itself.

Faults in software that change the output behavior of the IL program and that are ob-
servable at least at one observation point are considered. Thereby, an observation point
may be any program state, internal variable, or primary output. Methods for verification
are capable to provide one failure trace or in more general a set of m failure traces. The
cause of faults in PLC hardware is most likely physical (e.g. due to aging) than logical
(e.g. a missing instruction). However, the extension to debug faults in the underlying
hardware is a possible extension for future work.

Without loss of generality, let a failure trace consists of:

– an input stimuli I to activate the fault,
– a set of R observation points OPi and its faulty responses under I:

vfaulty(OPi), 1 ≤ i ≤ R,
– a set of R expected responses for each observation point:

vexpected(OPi), 1 ≤ i ≤ R

An input stimuli I defines values for primary inputs and values for state variables with
respect to a single PLC cycle. The faulty behavior is observable at least at the R observa-
tion points. Thus, simulating the PLC program with respect to the input stimuli I yields
a pairwise distinct at all observation points: ∀i : vfaulty(OPi) 6= vexpected(OPi), 1 ≤
i ≤ R. The expected responses are automatically obtained by simulating the stimuli I
on a reference model.

Components are used to explain the faulty behavior. In general, a component may
be of any granularity, e.g., a set of instructions, a single instruction, or a single operand.
However, the complexity of diagnosis increases with the granularity. Without loss of
generality, single instructions in IL are considered as components in this work only.

A fault candidate is a component that may change the value at all observation points
to the expected values. A fix is a component that changes the value at all observation
points to the expected values: ∀i : vfaulty(OPi) = vexpected(OPi), 1 ≤ i ≤ R. The
actual fault site is the position where the fault was injected and it is called fault site.

3 Debugging Algorithms

The CDFG and a set of m failure traces (m ≥ 1) are the input for automatic debug-
ging. Three debugging techniques are analyzed in the following: (1) static analysis, (2)
dynamic analysis, and (3) correction-based debugging.

The following sections briefly introduce the methods. For more information about
the debugging techniques, we refer the reader to the referenced papers in the respective
sections.



3.1 Static Analysis

Independent of any failure trace, a static analysis on the CDFG enables to identify com-
ponents that have no influence on the output behavior of the IL program. The redundant
code fragments manifest themselves as pending nodes in the CDFG, i.e., nodes without
successors, and are detectable in linear time (linear in the number of nodes). Only nodes
that are in at least one fan-in of any primary output influence the output behavior. Oper-
ations that are not in any fan-in are redundant, cannot change the output behavior, and
can be removed from consideration. By this, the initial number of fault candidates is
reduced. Therefore, the information is also worthwhile for code optimization on the IL
program. For example, an assignment to a variable A is removable, if no read operation
is applied to A and A is not an output or a state element.

An additional analysis based on static slicing [22] uses the observation points to
further reduce the number of fault candidates. A faulty behavior is observable at an
observation point OPi. Thus, all nodes on the path to any OPi are potential fault can-
didates. All nodes that are not in the recursive fan-in of any OPi cannot influence the
value at OPi and do not have to be considered for diagnosis. The nodes on the path
from an observation point OPi are recursively computed in linear time.

Let Pji be a set of nodes on the path for failure trace j and observation point OPi.
While assuming a single fault, all relevant nodes for debugging (P ′) are computed by
P ′ =

⋂
Pji. For multiple faults the intersection can be empty, e.g., if a faulty behavior

is observed on two observation points that have disjunctive input cones. One element
from each path has to be selected while assuming multiple faults. However, due to
the computational complexity for computing the hitting set, an over-approximation is
considered for multiple faults only: P ′ =

⋃
Pji. The union of all nodes from any path

are returned as fault candidates in case of multiple faults.

3.2 Dynamic Analysis

Dynamic analysis is applied to debug the IL program with respect to the input stimuli
of a failure trace. Instead of debugging all parts of an IL program, the failure trace is
analyzed to determine the sensitive path.

For this purpose, the failure trace is simulated on the CDFG to obtain the assigned
values on each node in the CDFG at first. Afterwards, an affect analysis is performed
based on path tracing [1], i.e., a path from an observed faulty behavior at an observa-
tion point to the primary inputs is computed [21]. The path is extracted by following
the controlling values, i.e., the operations that are responsible for the current value at
the observation point vfaulty(OPi). In difference to dynamic slicing [2], path tracing
returns statements that are responsible for the current value at the observation points
instead of statements that might affect the value only.

For example, the controlling paths for a logical AND with output value 0 are the
inputs with value 0 assigned. An input with 1 assigned is not responsible for the out-
put value 0 and thus cannot be responsible for the faulty behavior. If both inputs are
controlling paths, the algorithm follows both paths.

The dynamic analysis is performed for all observation points OPi and all m failure
traces in linear time. Thereby, each failure trace is simulated on the CDFG, followed



by path tracing. All nodes on the sensitive path from any observation point are poten-
tial fault candidates. Like for the static analysis, either the intersection or the union is
computed for all sensitive paths while assuming single faults or multiple faults, respec-
tively [21].

3.3 Correction-Based Debugging

Static analysis and the dynamic debugging technique use information about the observa-
tion points OPi and the input stimuli only. Correction-based debugging is a technique to
obtain higher accuracy by considering additionally the expected output responses at the
observation points OPi [17]. The input for the debugging algorithm is a CDFG, a set of
m failure traces and the expected responses for each observation point vexpected(OPi).

In contrast to static analysis and debugging based on simulation, the returned fault
candidates are proved to fix the failure trace while assuming a non-deterministic be-
havior of a component. That is, the output behavior of a component is replaced by
an unconstrained new input that may have any value assigned. This allows to check
whether the application of any correction at the component fixes the faulty behavior at
all observation points, i.e., it holds ∀i : vexpected(OPi) = vfaulty(OPi), 1 ≤ i ≤ R.

For each component correction logic is inserted in the CDFG as described in [9].
That is, each right-hand side of an expression and all control predicates can be replaced
by a non-deterministic value. One abnormal predicate for each component controls the
activation at all expressions and control predicates from the same component, simulta-
neously. The CDFG is extended by correction logic, the input stimuli (I) is constrained
to the values of the failure trace, and the observation points are restricted to the expected
responses (vexpected(OPi)).

The initial debugging instance is contradictory, due to the constrained expected re-
sponses at the observation points OPi. Correction-based debugging resolves the con-
flict by activating exactly k abnormal predicates. Thereby, k gives the cardinality of the
fault candidate and may be a single fault (k = 1) or a multiple fault (k > 1). Starting
with k = 1, k is incremented as long as the instance is still contradictory. A cardinal-
ity constraint controls the activation of abnormal predicates. The debugging model is
translated into Conjunctive Normal Form (CNF) and given to a Boolean satisfiability
solver (SAT solver) to declare the instance satisfiable or unsatisfiable. After the conflict
is resolved, i.e. the instance is satisfiable, fault candidates of minimal cardinality are
obtained.

4 Evaluation

The debugging methods are evaluated on concrete benchmarks in the following sec-
tions. A detailed case study is presented in Section 4.1 to highlight the pro and cons of
the debugging techniques. Experimental results for the application on industrial bench-
marks are given in Section 4.2.
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Fig. 1. Faulty program

4.1 Case Study

An example is used to illustrate the approaches. Figure 1 (left) shows a part of a combi-
national IL program. The program converts the eight inputs (Bit0 to Bit7) into a byte
(ByteV alue). The inputs (Bit0 to Bit7) are Booleans and the output (ByteV alue)
is a byte of bit-width 8. The program checks each input bit separately and adds the
corresponding value to ByteV alue.

The program is faulty at checking the value of Bit0 (Line 3, marked bold). Here, the
logical AND (A) is used instead of the (correct) NAND operator (AN ). Therefore, the
least significant bit (Bit0) is not interpreted correctly and the condition in code block
(2) inverts. The computed ByteV alue is either too high or too low with a delta of one.

To demonstrate the techniques, the program is partially defined and requires input
values for Bit0 and Bit1, only. The primary output ByteV alue is the observation
point in the example. Simulating the test case Bit0 = 1 and Bit1 = 0 leads to the
faulty value vfaulty(ByteValue) = 0 whereas vexpected(ByteValue) = 1 is expected.

Figure 1 (center) shows an abstract CDFG for the IL program. The numbers in
brackets are referencing the corresponding code block in IL (Figure 1 (left)). For exam-
ple, the two instructions in code block (1) initialize ByteV alue with 0.

The details of the register changes of the CPU are exemplarily shown for the in-
structions in block (1) and block (2) on the right-hand side of Figure 1. The internal
registers of the CPU are enclosed in ’<’ and ’>’. For example, the two accumulators
are denoted by ’<ACCU1>’ and ’<ACCU2>’. As shown in Figure 1, the operations
use and modify different registers. Thus, a fault candidate gives additional information
to the internal registers where the fault is observable best. Moreover, a fine granular
component model may further increase the accuracy of diagnosis by highlighting value
changes on register level as potential fault candidates.



Table 1. Diagnosis results

Test case Static Analysis Dynamic Analysis Correction-Based
Bit0 Bit1 (1) (2) (3) (4) (5) LOC (1) (2) (3) (4) (5) LOC (1) (2) (3) (4) (5) LOC

0 0 x x x x x 12 x x x 6 x x 4
1 0 x x x x x 12 x x x 6 x x 4
0 1 x x x x x 12 x x x x 10 x x x 8
1 1 x x x x x 12 x x x x 10 x x x 8

Single fault x x x x x 12 x x 4 x 2
Multiple fault x x x x x 12 x x x x x 12 x 2

Table 1 compares the quality of the debugging results with respect to all possible
test cases (22 = 4) (Column Test case). The rest of the columns give the diagnosed code
blocks ((1), .., (5)) for the algorithms and the corresponding number of lines in the IL
program (Column LOC). An ’x’ marks the diagnosis with respect to the test case. The
final diagnosis results for the consideration of all four test cases with respect to a single
fault assumption and a multiple fault assumption is given in the last two rows. Note,
code blocks are highlighted, but the diagnosis is itself performed on instruction level.
An (un)marked code block means that none/all instructions within the code block have
been marked as fault candidate by the debugging algorithm. None of the debugging
algorithms return a subset of the instructions within a code block only.

The application of static analysis on the example is not very efficient. That is, any
path from the primary inputs ends at the observation point ByteV alue. All nodes are
required for the computation of ByteV alue and no node is prunable. As shown in
Table 1, all diagnoses return all instructions in the IL program as fault candidates.

Dynamic diagnosis is more accurate. The usage of the input stimuli increases the ac-
curacy and some code blocks are pruned (see Table 1). Each test case activates different
paths and the final diagnosis depends on the considered test cases. The final diagnosis
with respect to a single fault assumption for test case 1 and test case 3 returns code block
(2), (3), and (4). The consideration of all four test cases further prunes code blocks and
returns code block (2) (the fault site) and code block (4) as potential fault candidates
only. However, the cardinality of the fault is typically not known in advance and using
all test cases is often not feasible for models with a large number of inputs. Additionally,
any fix at (4) cannot fix the faulty behavior. The fault candidates in code block (4) have
not been proved to fix the faulty behavior. The final diagnosis without any assumption
on the fault cardinality returns all code blocks as potential fault candidates and does not
help for debugging.

Correction-based debugging is more accurate in comparison to the first two analy-
ses. Only fault candidates that fix the faulty behavior are returned. Code block (4) is
accurately determined to be not a fault candidate. The results for each failure trace are
more accurate and the final diagnosis with respect to all test cases returns the block with
the original fault site only. The fault candidates are automatically of minimal cardinality
and no assumption on the cardinality of the fault has to be made.



Table 2. Efficiency

Initial Static Analysis Dynamic Analysis Correction-Based
model |FCs| |FCs| Red. Time |FCs| Red. Time |FCs| Red. Time
model-1 63 51 19.05 < 1.00 37 41.27 < 1.00 23 63.49 < 1.00
model-2 53 47 11.32 < 1.00 30 43.40 < 1.00 17 67.92 < 1.00
model-3 22 18 18.18 < 1.00 12 45.45 < 1.00 11 50.00 < 1.00
model-4 367 74 79.84 < 1.00 43 88.32 12.81 30 91.83 14.21
model-5 615 130 78.86 1.43 92 85.04 26.52 3 99.51 2.96
model-6 833 728 12.61 9.52 374 55.10 51.99 29 96.52 39.97

4.2 Industrial Software

The debugging algorithms are further evaluated on six industrial programs from the
railway interlocking domain. The models have different complexity and use Boolean
operations (e.g. logical AND and OR), arithmetic operations (e.g. 16-bit addition), and
control flow statements (e.g. conditional jumps). The number of instructions in the mod-
els are ranging from 22 to 833 and the models have up to 23 primary inputs, 10 primary
outputs, and 31 state variables.

A faulty implementation has been created by injecting a single fault manually in the
IL model, e.g. replacing an operator A with an AN. The failure traces are obtained by
applying SAT-based equivalence checking to a high level specification (see [18]). In all
cases, the diagnosis is performed with respect to a single fault assumption and a ran-
domly generated single failure trace. Components on instructions level are considered.

All experiments are conducted on an AMD Athlon 6000+ (3GHz) running Linux.
The main memory was limited to 4 GB and the run time is measured in CPU seconds.
The word level framework WoLFram is the back-end for the analysis [19]. ZChaff is
the underlying SAT engine for correction-based debugging [14].

The experimental results are shown in Table 2. Column |FCs| gives the number of
fault candidates and Column Red. denotes the reduction to the initial number of fault
candidates in percent. The diagnosis time for the debugging algorithms is shown in
Column Time.

All debugging algorithms are capable to reduce the initial number of fault candi-
dates. For model-4 and model-5 more than 78% of the instructions are determined by
all algorithms to not be a fault candidate. For other benchmarks, static analysis and
dynamic analysis provide a rough diagnosis only, e.g. for model-1 and model-2. Here,
simulation has advantages over static analysis, but correction-based debugging outper-
forms both algorithms. Correction-based debugging shows the best diagnostic resolu-
tion for all benchmarks. Thereby, the original fault site has been correctly determined
by all algorithms. Fault candidates are efficiently detected by all methods and the com-
plexity for a subsequent manual fix of an engineer is reduced. Regarding run time, all
debugging algorithms require less than one minute for the diagnosis only.

In summary, all debugging algorithms support the manual debugging task by reduc-
ing the number of fault candidates. An engineer can focus on small parts of the whole
program only. Automatic debugging gives hints for correction and helps to understand
the faulty behavior. The computational overhead is low and the accuracy high.
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